Semantic Nets, Frames, World Representation

CS – W4701
24 February, 2004
Knowledge Representation as a medium for human expression

• An intelligent system must have KRs that can be interpreted by humans.
 – We need to be able to encode information in the knowledge base without significant effort.
 – We need to be able to understand what the system knows and how it draws its conclusions.
Knowledge Representation

• Logic (prepositional, predicate)
• Network representation
 – Semantic nets
• Structured representation
 – Frames
• Issues in KR
 – Hierarchies, inheritance, exceptions
• Advantages and disadvantages
Propositional Logic

– It is raining ➔ RAINING
– It is sunny ➔ SUNNY

We can deduce whether a certain proposition is true or false

– Socrates is a man ➔ SOCRATESMAN
– Plato is a man ➔ PLATOMAN

We can not draw any conclusions about Similarities between Socrates and Plato
Predicate Logic

– Socrates is a man \(\Rightarrow\) MAN (SOCRATES)
– Plato is a man \(\Rightarrow\) MAN (PLATO)

Now the structure of representation reflects the structure of knowledge

– All Romans were either loyal to Caesar or hated him \(\Rightarrow\)

\[\forall x \text{ROMAN} \rightarrow \text{loyalto}(x, \text{Caesar}) \lor \text{hate}(x, \text{Caesar}) \]

It is difficult to represent knowledge in predicate logic with only THERE EXISTS, ALL, AND, OR
Semantic Networks

• First introduced by Quillian back in the late-60s

• Semantic network is simple representation scheme which uses a graph of labeled nodes and labeled directed arcs to encode knowledge
 – Nodes – objects, concepts, events
 – Arcs – relationships between nodes

• Graphical depiction associated with semantic networks is a big reason for their popularity
Nodes and Arcs

- Arcs define binary relations which hold between objects denoted by the nodes.
Non-binary relations

- We can represent the generic *give* event as a relation involving three things:
 - A giver
 - A recipient
 - An object
Inheritance

• Inheritance is one of the main kinds of reasoning done in semantic nets

• The ISA (is a) relation is often used to link a class and its superclass.

• Some links (e.g. haspart) are inherited along ISA paths

• The semantics of a semantic net can be relatively informal or very formal
 – Often defined at the implementation level
Multiple Inheritance

- A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple parent nodes and their ancestors in the network. It can cause conflicting inheritance.

Nixon Diamond
(two contradictory inferences from the same data)
Example
Advantages of Semantic nets

• Easy to visualize
• Formal definitions of semantic networks have been developed.
• Related knowledge is easily clustered.
• Efficient in space requirements
 – Objects represented only once
 – Relationships handled by pointers
Disadvantages of Semantic nets

- Inheritance (particularly from multiple sources and when exceptions in inheritance are wanted) can cause problems.
- Facts placed inappropriately cause problems.
- No standards about node and arc values
Conceptual Graphs

- *Conceptual graphs* are semantic nets representing the meaning of (simple) sentences in natural language.
- Two types of nodes:
 - *Concept nodes*: there are two types of concepts, individual concepts and generic concepts.
 - *Relation nodes*: (binary relations between concepts).
Frames

- Frames – semantic net with properties
- A frame represents an entity as a set of slots (attributes) and associated values
- A frame can represent a specific entry, or a general concept
- Frames are implicitly associated with one another because the value of a slot can be another frame

3 components of a frame
- frame name
- attributes (slots)
- values (fillers: list of values, range, string, etc.)

<table>
<thead>
<tr>
<th>Book Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot → Filler</td>
</tr>
<tr>
<td>• Title → Al. A modern Approach</td>
</tr>
<tr>
<td>• Author → Russell & Norvig</td>
</tr>
<tr>
<td>• Year → 2003</td>
</tr>
</tbody>
</table>
Features of Frame Representation

- More natural support of values than semantic nets (each slot has constraints describing legal values that a slot can take)
- Can be easily implemented using object-oriented programming techniques
- Inheritance is easily controlled
Inheritance

• Similar to Object-Oriented programming paradigm

Hotel Room
- what → room
- where → hotel
- contains
 - hotel chair
 - hotel phone
 - hotel bed

Hotel Chair
- what → chair
- height → 20-40cm
- legs → 4

Hotel Phone
- what → phone
- billing → guest

Hotel Bed
- what → bed
- size → king
- part → mattress

Mattress
- price → 100$
Modern Data-Bases combine three approaches: conceptual graphs, frames, predicate logic (relational algebra)

Example
Benefits of Frames

• Makes programming easier by grouping related knowledge
• Easily understood by non-developers
• Expressive power
• Easy to set up slots for new properties and relations
• Easy to include default information and detect missing values
Drawbacks of Frames

• No standards (slot-filler values)
• More of a general methodology than a specific representation:
 – Frame for a class-room will be different for a professor and for a maintenance worker
• No associated reasoning/inference mechanisms
Description Logic

- There is a family of frame-like KR systems with a formal semantics
 - KL-ONE, Classic
- A subset of FOL designed to focus on categories and their definitions in terms of existing relations. **Automatic classification**
 - Finding the right place in a hierarchy of objects for a new description
- More expressive than frames and semantic networks
- Major inference tasks:
 - Subsumption
 - *Is category C1 a subset of C2?*
 - Classification
 - *Does Object O belong to C?*
KL-ONE (Brachman, 1977)

• Bi-partite view of knowledge representation
 1. Descriptions
 2. Assertions

• Entities can be “described” without making any particular assertions about them

• Descriptions are made from other descriptions using a very small set of operators
KL-ONE basics

- Structured inheritance network
- Basic elements:
 - Concepts: Things in the world
 - Generic concepts
 - Individuals
 - Roles: Conceptual properties of an entity
 - parts, attributes, function arguments, linguistic cases
 - Structured descriptions: Relations among roles
Kinds of concepts

- Defined
 - Have explicit necessary and sufficient properties (roles)
 - Often are specializations of primitive concepts

- Primitive
 - Have no sufficient properties
 - May have other, necessary properties
 - Correspond to natural kinds
A KL-ONE Network

- Can be viewed as a kind of semantic network
- Preserves a complex set of relations among descriptions as concepts become more general and more specific
- Clarifies which concepts \textit{subsume} other concepts
- Requires a \textit{classifier} to take new descriptions and to place them where they belong, maintaining all appropriate relationships
A simple KL-ONE network of Generic Concepts

Defined concepts are in yellow; Primitive concepts are in green.
KL-ONE “Roles”

- Are like *properties* of frames
- Capture the notion that, at different times, a functional role may be played by different entities
- Include *value restrictions*, which are necessary type restrictions on role fillers
- Include *number restrictions*, which are necessary restrictions on cardinality (min, max)
The Primitive Concept MESSAGE

A MESSAGE is, among other things, a THING with at least one Sender, all of which are PERSONs, at least one Recipient, all of which are PERSONs, a Body, which is a TEXT, a SendDate, which is a DATE, and a ReceivedDate, which is a DATE.
OVERFLOW

• Semantic nets: originally developed for mapping sentences (NLP). Example with Shank’s graphs.