Announcements

Lectures 1-15 are available.

Homework 4 will be available tomorrow, due 11/12.
More BGP Extensions

• HELLO optional parameters:
 1. TCP MD5 Authentication (RFC2385).
 2. Capabilities negotiation (RFC2842).
 – TLVs indicating what optional capabilities the sender supports.
• If receiver does not support, closes connection with appropriate NOTIFICATION.
TCP MD5 Authentication

- TCP option type 19.
- 18 bytes long.
- 16 bytes of MD5 hash, including key, of TCP segment.

- Poor authentication.
- Should have used IPsec (of course).
- Does not make key management any easier.
Route Refresh Capability

• It’s a request to the peer to send its Adj-RIB-Out.
• Used when the inbound policy of a peer changes.
 – All the routes that the peer had gotten (and potentially filtered or changed attributes thereof) have to be re-processed by the input policy engine.
• Alternative: close and reopen BGP session.
 – Causes lots of routes to flap.

• RFC 2918
• New BGP message (Type=5).
Outbound Route Filter Capability

• Request to the peer to send its inbound prefix filters.
• Rationale: why bother sending routes that will be filtered anyway?

• draft-ietf-idr-route-filter-06.txt
Graceful Restart Capability

• Indicates the ability to preserve BGP state across restarts.
• Minimizes disturbance.

• draft-ietf-idr-restart-05.txt
Dynamic Capability

- Capabilities are negotiated during OPEN.
- DC allows capabilities to be negotiated after OPEN.
- CAPABILITY message (Type=6)

- draft-ietf-idr-dynamic-cap-02.txt
Multiprotocol Extensions for BGP-4

• Negotiated capability.
• Extension to allow BGP-4 to carry routes for protocols other than unicast IPv4 (IPv6, multicast, etc.)

• Two new attributes:
 – MP_REACH_NLRI (Type=14)
 • Replaces NEXT_HOP attribute and NLRI field.
 – MP_UNREACH_NLRI (Type=15)
 • Replaces list of withdrawn routes.

• RFC2858 and draft-ietf-idr-rfc2858bis-02.txt
Dynamic Behavior of BGP

- The network is never in steady-state.
- Links break, routers crash, people make mistakes.
 - Routes get withdrawn.
 - New routes get advertised.
- How often do these happen?
- What is the effect on prefix reachability?
- Are they random or do they follow patterns?
- How disruptive are they?
- Can we/do we do anything to protect the network against them?

- Lots of recent and current research.
Link Failure (Single-homed system)

- AS 7 (prefix: g) is single-homed.
Link Failure (Single-homed system)

- Link between AS2 and AS7 fails.
- AS2 removes g from its RIB (both its Adj-RIB-1 and its Loc-RIB).
- AS2 withdraws route to g.
- Route withdrawals propagate, invalidating RIB entries.
Link Failure (Multihomed system)

- AS 7 (prefix: g) is dual-homed.
- All RIB entries are shown.
Link Failure (Multihomed system)

- Link 2-7 fails.
- AS2 selects next best route.
Link Failure (Multihomed system)

- New route is advertised.
- AS1 removes route to g (it’s in the AS_PATH).
- AS3 puts replaces route from AS2, but prefers route via AS1 (shorter).
- AS4 has to choose between 7-1-2 and 7-1-3.
Link Failure (Multihomed system)

- AS4 sticks decides to stick with AS2 (higher LOCAL_PREF).
- Has to advertise new route, since AS_PATH changed.
Route Flapping

• Routing instability.
• Route disappears, appears again, disappears again…
 – Withdrawal, announcement, withdrawal, announcement…
• Visible to the entire Internet.
 – Wastes resources, triggers more instability.
• Some causes of Route Flapping:
 – Flaky inter-AS links.
 – Flaky or insufficient hardware.
 – Link congestion.
 – IGP instability.
 – Operator error.
Link Instability

• The first three are examples of link instability.
 – Link itself fails.
 – Router/router interface fails.
 – Messages can’t get through.
• When a link goes down, routers withdraw routes associated with this link.
 – Customer-ISP.
 – ISP-ISP.
• Announcements travel throughout the default-free zone.
• Aggregation may mask downstream flapping.
 – Does not work for multihoming
IGP Instability

- IGP route-preference rule exports instability.
IGP Instability

- MEDs can export internal instability.
Route Flap Dampening

- RFC2439
- Router detects route flapping.
- *Penalty*:
 - Increased each time a route flaps.
 - Decreased over time.
- If penalty threshold exceeded (*suppress limit*), route is suppressed.
- Until penalty drops below a certain level (*reuse limit*).

- There is evidence that it may be harmful.
 - BGP explores alternate paths when a route is withdrawn.
 - Dampening merely makes the exploration run in slow motion.
 - Too aggressive.
Convergence

• Link-State algorithms avoid loops by running the same computation (Dijkstra SPF) on the same data.
• Distance-Vector (Bellman-Ford-like) algorithms (e.g., RIP) avoid loops by selecting routes with a lower metric.
• Path-Vector algorithms (e.g., BGP) avoid loops by detecting self in path.

• LS converges as soon as new LSAs flooded.
• DV counts to infinity.
 – Split horizon/poison reverse/triggered updates just make the counting-to-infinity faster.
• How about BGP?
BGP Explores All Paths!

- See Labovitz et al., SIGCOMM 2000.
BGP Explores All Paths!

- Link 7-1 goes down.
- AS1 withdraws the route to prefix g.
• AS 2, 3, 4 remove [1 7] route.
• Select their next best route.
• Advertise it.
• AS1 ignores the routes it gets (self in AS_PATH).
• (e.g.) AS2 gets $[3\ 2\ 1\ 7]$ from AS3; treats it as implicit withdrawal of $[3\ 1\ 7]$, then rejects it (self in AS_PATH).
• Process repeats one more time, then all ASes lose their routes to g.
BGP Explores $n!$ Paths (cont’d)

- Problem was exacerbated by MinRouteAdvertisementInterval.
- Routers would wait 30 seconds before sending next set of updates.
- Common perception at the time was “BGP converges within 30 seconds”.
- There were paths that took over 15 minutes to converge.
- This sort of behavior creates routing traffic without always benefiting connectivity.
- Lots of other sources of instability.
BGP Conclusion

- Protocol (deceptively) simple.
- Lots of accumulated current practices.
- It mostly works.
- But for how much longer?