Network Security: Secret Key Cryptography

Henning Schulzrinne
Columbia University, New York
schulzrinne@cs.columbia.edu

Columbia University, Fall 2000

©1999-2000, Henning Schulzrinne
Last modified September 28, 2000
Secret Key Cryptography

- fixed-size block, fixed-size key \rightarrow block
- DES, IDEA
- message into blocks?
Generic Block Encryption

- convert block into another, *one-to-one*
- long enough to avoid known-plaintext attack
- 64 bit typical (nice for RISC!) $\Rightarrow 18 \cdot 10^{18}$ (peta)
- naive: 2^{64} input values, 64 bits each $\rightarrow 2^{70}$ bits
- output should look random
- plain, ciphertext: no correlation (half the same, half different)
- \Rightarrow bit spreading

substitution: 2^k, $k \ll 64$ values mapped $\Rightarrow k \cdot 2^k$ bits

permutation: change bit position of each bit $\Rightarrow k \log_2 k$ bits to specify

round: combination of substitution of chunks and permutation
 do often enough so that a bit can affect every output bit – but no more
Block Encryption

64-bit input

8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits

S1 S2 S3 S4 S5 S6 S7 S8

8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits

key-based substitution functions

permute the bits, possibly based on the key

loop for n rounds

64-bit intermediate

64-bit output
Data Encryption Standard (DES)

- published in 1977 by National Bureau of Standards
- developed at IBM ("Lucifer")
- 56-bit key, with parity bits
- 64-bit blocks
- easy in hardware, slow in software
- 50 MIPS: 300 kB/s
- 10.7 Mb/s on a 90 MHz Pentium in 32-bit protected mode
- grow 1 bit every 2 years
Breaking DES

- brute force: check all keys ➔ 500,000 MIPS years
- easy if you have known plaintext
- have to know something about plaintext (ASCII, GIF, …)
- commercial DES chips not helpful: key loading time > decryption time
- easy to do with FPGA, without arousing suspicion
- easily defeated with repeated encryption
DES Overview

- initial permutation
- 56-bit key \rightarrow 16 48-bit per-round keys (different subset)
- 16 rounds: 64 bit input + 48-bit key \rightarrow 64-bit output
- final permutation (inverse of initial)
- decryption: run backwards \Rightarrow reverse key order
Permutation

- just slow down software
- ith byte $\rightarrow (9-i)$th bits
- even-numbered bits into byte 1-4
- odd-numbered bits into byte 5-8
- no security value: if we can decrypt innards, we could decrypt DES
DES: Generating Per-Round Keys

56-bit key \(\rightarrow\) 16 48-bit keys \(K_1, \ldots, K_{16}\):

- bits 8, 16, \ldots, 64 are parity
- permutation
- split into 28-bit pieces \(C_0, D_0: 57, 49, \ldots\)
- again, no security value
- rounds 1, 2, 9, 16: single-bit rotate left
- otherwise: two-bit rotate left
- permutation for left/right half of \(K_i\)
- discard a few bits \(\Rightarrow\) 48-bit key in each round
XOR Arithmetic

- \(x \oplus x = 0 \)
- \(x \oplus 0 = x \)
- \(x \oplus 1 = \bar{x} \)
DES Round

- Mangler function can be non-reversible

 - $L_{n+1} = R_n$

 - $R_{n+1} = m(R_n, K_n) \oplus L_n$

- Decryption

 - $R_n = L_{n+1}$

 - $L_n = m(R_n, K_n) \oplus R_{n+1}$

because $(\oplus L_n, R_{n+1}): R_{n+1} \oplus R_{n+1} \oplus L_n = m() \oplus L_n \oplus L_n \oplus R_{n+1}$
DES Mangler Function

- $R(32), K(48) \oplus L_n \rightarrow R_{n+1}$
- expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors
- 6-bit chunks: expanded $R \oplus K$
- 8 different S-boxes for each 6 bits of data
- **S box:** 6 bit (64 entries) into 4 bit (16) table: 4 each
- four separate 4x4 S-boxes, selected by outer 2 bits of 6-bit chunk
- afterwards, random permutation: P-box
DES: Weak Keys

- 16 keys to avoid: $C_0, D_0 \ 0\ldots 0, 1\ldots 1, 0101\ldots, 1010\ldots$
- sequential key search \Rightarrow avoid low-numbered keys
- 4 weak keys = $C_0, D_0 = 0\ldots 0$ or $1\ldots 1$ \Rightarrow own inverses: $E_k(m) = D_k(m)$
- semi-weak keys: $E_{k_1}(m) = D_{k_2}(m)$
IDEA

- International Data Encryption Algorithm
- ETH Zurich, 1991
- similar to DES: 64 bit blocks
- but 128-bit keys
Primitive Operations

2 16-bit \rightarrow 1 16-bit:

- \oplus

- $+ \mod 2^{16}$

- $\otimes \mod 2^{16} + 1$:
 - reversible $\iff \exists$ inverse y of x, $\forall x \in [1, 2^{16}]a \otimes x \otimes y = a$
 - or $x \otimes y = 1$
 - example: $x = 2, y = 32769 \iff$ Euclid’s algorithm
 - reason: $2^{16} + 1$ is prime
 - treat 0 as encoding for 2^{16}
IDEA Key Expansion

- 128-bit key \rightarrow 52 16-bit keys K_1, \ldots, K_{52}
- encryption, decryption: different keys
- key generation:
 - first chop off 16 bit chunks from 128 bit key \Rightarrow eight 16-bit keys
 - start at bit 25, chop again \Rightarrow eight 16-bit keys
 - shift 25 bits and repeat
IDEA: One Round

- 17 rounds, even and odd
- 64 bit input \rightarrow 4 16-bit inputs: X_a, X_b, X_c, X_d
- operations \rightarrow output X'_a, X'_b, X'_c, X'_d
- odd rounds use $4K_i : K_a, K_b, K_c, K_d$
- even rounds use $2K_i : K_e, K_f$
IDEA: Odd Round

- \(X'_a = X_a \otimes K_a \)
- \(X'_d = X_d \otimes K_d \)
- \(X'_c = X_b + K_b \)
- \(X'_b = X_c + K_c \)

reverse with inverses of \(K_i \):
\(X'_a \otimes K'_a = X_a \otimes K_a \otimes K'_a \)
IDEA: Even Round

mangler: \(Y_{\text{out}}, Z_{\text{out}} = f(Y_{\text{in}}, Z_{\text{in}}, K_e, K_f) \)

1.

\[
\begin{align*}
Y_{\text{in}} &= X_a \oplus X_b \\
Z_{\text{in}} &= X_c \oplus X_d
\end{align*}
\]

2.

\[
\begin{align*}
Y_{\text{out}} &= ((K_e \otimes Y_{\text{in}} + Z_{\text{in}}) \otimes K_f \\
Z_{\text{out}} &= K_e \otimes Y_{\text{in}} + Y_{\text{out}}
\end{align*}
\]

3.

\[
\begin{align*}
X'_a &= X_a \oplus Y_{\text{out}} \\
X'_b &= X_b \oplus Y_{\text{out}} \\
X'_c &= X_c \oplus Z_{\text{out}} \\
X'_d &= X_d \oplus Z_{\text{out}}
\end{align*}
\]
IDEA Even Round: Inverse

\[X'_{a} = X_{a} \oplus Y_{out} \]

Feed \(X'_{a} \) to input:

\[= X'_{a} \oplus Y_{out} \]
\[= (X_{a} \oplus Y_{out}) \oplus Y_{out} \]
\[= X_{a} \]

\(\Rightarrow \) round is its own inverse! \(\Rightarrow \) same keys
Encrypting a Large Message

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- k-bit Cipher Feedback Mode (CFB)
- k-bit Output Feedback Mode (OFB)
Electronic Code Book (ECB)

- break into 64-bit blocks
- encrypt each block independently
- some plaintext → same ciphertext
- easy to change message by copying blocks
- bit errors do not propagate

→ rarely used
Cipher Block Chaining (CBC)

simple fix: \oplus blocks with 64-bit random number

- must keep random number secret
- repeats in plaintext $\not\rightarrow = \text{ciphertext}$
- can still remove selected blocks
Cipher Block Chaining (CBC)

- random number $r_{i+1} = c_i$: previous block of ciphertext
- random (but public) *initialization vector* (IV): avoid equal initial text
- Trudy can’t detect changes in plaintext
- can’t feed chosen plaintext to encryption
- but: can twiddle some bits (while modifying others):
 modify c_n to change desired m_{n+1} (and m_n)
- combine with MICs
Output Feedback Mode (OFB)

64-bit OFB:

- IV: $b_0 \xrightarrow{\text{encrypt}} b_1 \xrightarrow{\text{encrypt}} b_2 \ldots$

- $c_i = m_i \oplus b_i$, transmit with IV

- ciphertext damage \Rightarrow limited plaintext damage

- can be transmitted byte-by-byte

- but: known plaintext \Rightarrow modify plaintext into anything

- extra/missing characters garble whole rest

variation: k-bit OFB
Cipher Feedback Mode (CFB)

- similar to OFB: generate k bits, \oplus with plaintext
- use k bits of ciphertext instead of IV-generated
- can’t generate ahead of time
- 8-bit CFB will resynchronize after byte loss/insertion
- requires encryption for each k bits
Generating MICs

- only send last block of CBC ➝ *CBC residue*
- any modification in plaintext modifies CBC residue
- replicating last CBC block doesn’t work
- P+I: use separate (but maybe related) secret keys for encryption and MIC ➝ two encryption passes
- CBC(message | hash)
Multiple Encryption DES

- applicable to any encryption, important for DES
- encrypt-decrypt-encrypt (EDE): just reversible functions
- two keys K_1, K_2

\[
\begin{align*}
K_1 & \quad K_2 & \quad K_1 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
m & \rightarrow E & \rightarrow D & \rightarrow E & \rightarrow c
\end{align*}
\]

- decryption just reverse:

\[
\begin{align*}
K_1 & \quad K_2 & \quad K_1 \\
\downarrow & \quad \downarrow & \quad \downarrow \\
c & \rightarrow D & \rightarrow E & \rightarrow D & \rightarrow m
\end{align*}
\]

- standard CBC
Triple DES: Why 3?

- security \leftrightarrow efficiency
- $K_1 = K_2$: twice the work for encryption, cryptanalyst
- plaintext $m_i \xrightarrow{A:E(K_1)} r \xrightarrow{B:E(K_2)} c_i$ (ciphertext)
- not quite equivalent to 112 bit key:
 - assume given $(m_1, c_1), (m_2, c_2), (m_3, c_3)$
 - Table A: 2^{56} (10^4 TB) entries: $r = K\{m_1\}\forall K$, sort by r
 - Table B: 2^{56} entries: $r = c_1$ decrypted with K, sorted
 - find matching $r \iff K_A, K_B$
 - if multiple K_A, K_B pairs, test against m_2, c_2, etc.
 - 2^{64} values, 2^{56} entries $\iff 1/256$ chance to appear in table $\iff 2^{48}$ matches
Triple DES: Why 3?

Table A:

\[r = E(m_1, K) \text{ (64 bits)} \quad K \text{ (56 bits)} \]

\[
\begin{array}{ll}
1234567890abcd00 & \text{ab485095845922} \\
1234567890abcd03 & \text{12834893573257} \\
1234567890abcd04 & \text{43892ab8348a85} \\
1234567890abcd08 & \text{185ab80184092c} \\
\end{array}
\]

Table B:
\[r = D(c_1, K) \text{ (64 bits)} \quad K \text{ (56 bits)} \]

\[\cdots \]

1234567890abcd00 38acd043858ac0
1234567890abcd03 91870ab8a8d8a0
1234567890abcd07 058a0fa858abcd
1234567890abcd09 fd884a90407821

\[\cdots \]

computation: \(2 \cdot 2^{56} + 2^{48}\)
Triple DES

- EDE: can run as single DES with $K_1 = K_2$
- can be used with any chaining method
- CBC on the outside ➤ no change in properties
- CBC on the inside ➤ avoid plaintext manipulation
- but want *self-synchronizing*: wrong bit x in block $n - 1$ ➤ $n - 1$ garbled, n_x changed, others unaffected
- CBC inside: parallelization