Public Key Algorithms

- hash: irreversible transformation(message)
- secret key: reversible transformation(block)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Encryption</th>
<th>Digital Signatures</th>
<th>Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>El Gamal</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Zero-knowledge proofs</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Diffie-Hellman: exchange of secrets

all: pair (public, private) for each *principal*
Modular Addition

- addition modulo (mod) $K \implies$ (poor) cipher with key K
- additive inverse: $-x$: add until modulo (or 0)
- “decrypt” by adding inverse
Modular Multiplication

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

- multiplication by 1, 3, 7, 9 works as cipher
- multiplicative inverse x^{-1}: $y \cdot x = 1$
- only 1, 3, 7, 9 have multiplicative inverses (e.g., $7 \leftrightarrow 3$)
- use *Euclid’s Algorithm* to find inverse
Totient Function

- x, m relatively prime = no other common factor than 1
- relatively prime \neq prime (9 rel. prime 10)
- e.g., 6 not relatively prime to 10: 2 divides both 6 and 10
- *totient function* $\phi(n)$: number of numbers less than n relatively prime to n
 - if n prime, $\{1, 2, \ldots, n - 1\}$ are rp $\Leftrightarrow \phi(n) = n - 1$
 - if $n = p \cdot q, p, q$ distinct prime $\Leftrightarrow \phi(n) = (p - 1)(q - 1)$:
 - $n = pq$ numbers in $\{0, 1, 2, \ldots, n - 1\}$; exclude non-rp
 - exclude multiples of p or q
 - p multiples of $q < pq (0,1,\ldots), q$ multiples of $p < pq$
 - thus, exclude $p + q - 1$ numbers – don’t count 0 twice
 - $\phi(pq) = pq - (p + q - 1) = (p - 1)(q - 1)$
Modular Exponentiation

\[x^y \mod n \neq x^{y+n} \mod n! \]

<table>
<thead>
<tr>
<th>(x^y)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
Modular Exponentiation

- encryption: x^3 works, x^2 does not
- exponentiative inverse y of x: $(a^x)^y = a$
- columns: $1 = 5, 2 = 6, 3 = 7, \ldots$
- $x^y \mod n = x^{y \mod \phi(n)} \mod n$
- $\mathfrak{rp}(10) = \{1, 3, 7, 9\} \implies \phi(n) = 4$
- true for almost all n: any $n =$product of distinct primes (square-free)
- for any y with $y = 1 \pmod{\phi(n)} \implies x^y \mod n = x \mod n$ (e.g., $1, 5$ and 9)
RSA

- Rivest, Shamir, Adleman
- variable key length (common: 512 bits)
- ciphertext length = key length
- slow ➙ mostly used to encrypt secret for secret key cryptography
RSA Algorithm

Generate private and public key:

- choose two large primes, \(p \) and \(q \), about 256 bits (77 digits) each
- \(n = p \cdot q \) (512 bits), don’t reveal \(p \) and \(q \)
- factoring 512 bit number is hard

public key: \(e \) \(\implies \) \(e \text{ rp } \phi(n) = (p - 1)(q - 1) \implies \langle e, n \rangle \)

private key: \(d = (e \text{ mod } \phi(n))^{-1} \implies \langle d, n \rangle \)

encryption: of \(m < n \): \(c = m^e \mod n \)

decryption: \(m = c^d \mod n \)

verification: \(m = s^e \mod n \) (signature \(s \))
RSA example

\[
p = 47 \\
q = 71 \\
n = pq = 3337 \\
e = 79 \text{ prime, i.e., } rp \text{ to } (p - 1)(q - 1) \\
d = 79^{-1} \mod 3220 = 1019 \\
m = 688232687666683 \\
m_1 = 688 \\
c_1 = 688^{79} \mod 3337 = 1570 \\
p_1 = 1570^{1019} \mod 3337 = 688
\]
Why does RSA work?

- \(n = pq, \phi(n) = (p - 1)(q - 1) \)
- \(de = 1 \pmod{\phi(n)} \) since \(e \) \text{ rp } \phi(n) \text{ and } d = e^{-1} \)
- \(x^{de} = x \pmod{n} \forall x \)
- encryption: \(x^e \)
- decryption: \((x^e)^d = x^{ed} = x \)
- signature: reverse
Why is RSA secure?

- factor 512-bit number: half million MIPS years (= all US computers for one year)
- given public key \(\langle e, n \rangle\)
- need to find exponentiative inverse of \(e\)
- need to know \(p, q\) to compute \(\phi(n)\)
- abuse: if limited set of messages, can compare \(\Rightarrow\) append random number
- 2/2/1999: RSA-140 was factored.
RSA Efficiency: Exponentiating

• $123^{54} \mod 678 = (123 \cdot 123 \cdots)/678$

• modular reduction after each multiply:

• $(a \cdot b \cdot c) \mod m = (((a \cdot b) \mod m) \cdot c) \mod m$

\[
egin{align*}
123^2 & = 123 \cdot 123 = 15129 = 213 \pmod{678} \\
123^3 & = 123 \cdot 213 = 26199 = 435 \pmod{678} \\
123^4 & = 123 \cdot 435 = 53505 = 435 \pmod{678}
\end{align*}
\]

• 54 small multiplies, 54 divides

• exponent power of 2: 123^{32}

\[
egin{align*}
123^2 & = 123 \cdot 123 = 15129 = 213 \pmod{678} \\
123^4 & = 213 \cdot 213 = 45369 = 671 \pmod{678} \\
123^8 & = 621 \cdot 621 = 385641 = 213 \pmod{678}
\end{align*}
\]
• $123^{2x+1} = 123^{2x} \cdot 123$
RSA Efficiency: Exponentiating

54 = 110110₂; start with exponent “1”.

\[10 \leftrightarrow 123^2 = 123 \cdot 123 = 15129 = 213 \pmod{678} \]
\[11 + 1 \ 123^3 = 213 \cdot 123 = 26199 = 435 \pmod{678} \]
\[110 \leftrightarrow 123^6 = 435 \cdot 435 = 189225 = 63 \pmod{678} \]
\[1100 \leftrightarrow 123^{12} = 63 \cdot 63 = 3969 = 579 \pmod{678} \]
\[1101 + 1 \ 123^{13} = 579 \cdot 123 = 71217 = 27 \pmod{678} \]
\[11010 \leftrightarrow 123^{26} = 27 \cdot 27 = 729 = 51 \pmod{678} \]
\[11011 + 1 \ 123^{27} = 51 \cdot 123 = 6273 = 171 \pmod{678} \]
\[110110 \leftrightarrow 123^{54} = 171 \cdot 171 = 29241 = 87 \pmod{678} \]

or \(x^{54} = (((((x^2 x)^2 x)^2 x)^2 x)^2)^2 \) = 87 \pmod{678} \\
\(\Rightarrow \) 8 multiplies, 8 divides \(\Rightarrow \) linearly with exponent bits
RSA Implementation

public key: $O(k^2)$, private key: $O(k^3)$, key generation: $O(k^4)$

<table>
<thead>
<tr>
<th></th>
<th>Pijnenburg PCC101</th>
<th>CFB</th>
<th>90 Mb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>Pijnenburg PCC101</td>
<td>CFB</td>
<td>90 Mb/s</td>
</tr>
<tr>
<td>Vasco</td>
<td>CRY12C102</td>
<td>CFB</td>
<td>22 Mb/s</td>
</tr>
<tr>
<td>RSA</td>
<td>Pijnenburg PCC202</td>
<td>512</td>
<td>40 kb/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1024</td>
<td>25 kb/s</td>
</tr>
<tr>
<td>Vasco</td>
<td>PQR512</td>
<td>512</td>
<td>32 kb/s</td>
</tr>
</tbody>
</table>

- fastest RSA hardware: 300 kb/s
- 90 MHz Pentium: throughput (private key) of 21.6 kb/s, 7.4 kb/s per second with a 1024-bit modulus
- DES software: 100 times faster than RSA
- DES hardware: 1,000 to 10,000 times faster
Finding Big Primes p and q

- infinite number of primes, probability $1/\ln n$
- ten-digit number: 1 in 23, hundred-digit: 1 in 230
- pick at random and check if prime
- bad: divide by all \sqrt{n}

- Euler’s Theorem: $a \equiv n \Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$
- if n prime, $\phi(n) = n - 1$

Theorem 1 (Fermat’s Little Theorem) If p is prime and $0 < a < p$, $a^{p-1} \equiv 1 \pmod{p}$

- if p not prime, does not usually hold
- \Rightarrow pick some $a < n$, compute $a^{n-1} \mod{n} \Rightarrow 1$
- probability of accepting bad n: $10^{13} \Rightarrow$ repeat
Carmichael Numbers

- *Carmichael numbers* n: not prime, but $a^{n-1} \equiv 1 \pmod{n} \forall a$ (where a not a factor in n)

- infinitely many

- first few: 561, 1105, 1729, 2465, 2821, 6601, 8911

- 246,683 below 10^{16}

- example: $7^{560} \mod{561} = 1$, but $3^{560} \mod{561} = 375$
Finding Big Primes p and q: Miller and Rabin

Variation on Fermat test:

- express $n - 1$ as $2^b c$, where $b \geq 0$
- compute $a^{n-1} \pmod{n}$ (Fermat) as $(a^c)^{2^b} \pmod{n}$
- square b times
- if not 1 \Rightarrow not prime; if 1, test:
 - if $a^c \pmod{n} \neq 1$ \Rightarrow squaring not-1 \rightarrow 1
 - \Rightarrow square root of 1
 - rule: if n is prime \pmod{n}, $\sqrt{1}$ are 1 and $-1(= n - 1)$
 - \Rightarrow if $\sqrt{1} \neq \pm 1$, n not prime
 - try many values for a; 75% of a fail the test if n not prime
Big Primes: Implementation

1. pick odd random number n

2. check $n/\{3, 5, 7, 11, \ldots \}$ and try again

3. repeat until failure or confidence:

 (a) pick random a and compute $a^c \pmod{n}$, with $n - 1 = 2^b c$

 (b) compute a^c, then b times: $(a^c)^2$

 (c) if result = 1: operand $= \pm 1$? \Rightarrow no prime if not
Finding d and e

- $e = \text{any number rp to } (p - 1)(q - 1)$
- $ed = 1 \pmod{\phi(n)} \quad \Rightarrow \text{Euclid’s algorithm}$

Options for picking e:

1. pick randomly until e is rp to $(p - 1)(q - 1)$
2. choose e and pick p, q so that $(p - 1), (q - 1)$ are rp to e
Having a Small Constant e

- e same small number
- d can’t be small (searchable)
- $e = 3$ or $e = 65537$
- can’t use 2: not rp to $(p - 1)(q - 1)$
- message must be bigger than $\sqrt[3]{n}$
- send copies of message to three people: $e_i = \langle 3, n_i \rangle$
 - Trudy: $m^3 \mod n_1 n_2 n_3 = m^3$ (Chinese remainder)
 - choose random/individualized padding
RSA: $e = 3$

- $3 \text{ rp to } \phi(n) = (p - 1)(q - 1) \text{ since } d = e^{-1}$
- each $p - 1, q - 1$ must be rp to 3
- 3 is factor of $x \implies x \mod 3 = 0$
- $(p - 1) \text{ rp } 3 \implies p = 2 \pmod 3 \implies (p - 1) = 1 \pmod 3$
- $(q - 1) \text{ rp } 3 \implies q = 2 \pmod 3 \implies (q - 1) = 1 \pmod 3$
- choose $p = r \cdot 3 + 2$, r random, odd
RSA: $e = 65537$

- $65537 = 2^{16} + 1$, (Mersenne prime: $2^n - 1$!)
- only 17 multiplies to exponentiate: $x^{2^{16}} x$
- random 512-bit number: 768 multiplies
- avoid “3” problems:
 1. few m with $m^{65537} < n$ (512 bits)
 2. have to send to 65,537 recipients
 3. $n \operatorname{rp} \phi(n) \Rightarrow$ reject $p, q \equiv 1 \pmod{65537}$
RSA Threats: Smooth Numbers

- product of “small” primes
- signed $m_1, m_2 \implies$ can compute signatures on $m_1 \cdot m_2, m_1 / m_2, m_1^j, m_2^j, m_1^j m_2^k$
- example: $m_1^2 : (m_1^d \mod n)^2 \mod n$
- if m_1 / m_2 is prime, can fake signature on that prime
- \implies any product of this collection
- pad with zero on left \implies small number \implies smooth
- pad on right with x bits $\equiv n \cdot 2^x$
- pad on right with random data \implies cube root problem
RSA Threats: Cube Root Problem

- Carol wants your signature for message with digest h
- message digest $h; h' =$ pad with zeros on right
- “signature” $r = \lceil \frac{3}{h'} \rceil \Rightarrow r^e = r^3 = h'$
Public Key Cryptography Standards (PKCS)

- operational standards
- deal with threats (smooth numbers, multiple recipients, ...)
- encryption with PKCS#1
 - random padding prevents guessing from known messages
 - random padding prevents $e = 3$, multiple-recipient attack
 - cube root decryption ➤ longer than 21 bytes ($> 11 + \text{data}$)
- signing with PKCS#2
 - large padding ➤ not smooth
 - include digest algorithm ➤ prevent spoofing
PKCS #1 – RFC 2313

Also X.509:

RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
}

Encryption block = 00|BT|PS|00|D with padding PS of \(k - 3 - |D| \) octets.

0 private-key 00
1 private-key FF (large!)
2 public-key pseudo-random
PKCS #1 Signature

DigestInfo ::= SEQUENCE {
 digestAlgorithm DigestAlgorithmIdentifier,
 digest Digest
}

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL
}

md5 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) US(840) rsadsi(113549)
 digestAlgorithm(2) 5 }

Digest ::= OCTET STRING
Diffie-Hellman Key Exchange

- shared key, public communication
- no authentication of partners
- p prime, ≈ 512 bits, public
- $g < p$, public
- Alice, Bob choose random, secret S_A, S_B
- transmit $T_A = g^{S_A} \mod p$, $T_B = g^{S_B} \mod p$
- Alice computes $T_B^{S_A} \mod p = (g^{S_B})^{S_A} \mod p$
- both get same number = key
- would need to compute discrete logs to get S_A from g^{S_A}
- not secure against bucket-brigade attacks
• public numbers instead of invention
Bucket Brigade Attack

- “man-in-the-middle”
- X establishes security association with Alice, Bob
- can read/write from/to both
- relays messages, passwords between them
- prevention: make $g^{SA} \mod p$ public ↳ can’t be replaced
Diffie-Hellman: Offline

- Bob publishes $\langle p_B, g_B, T_B \rangle$
- Alice computes $K_{AB} = T_B^{S_A} \mod p_B$
- Alice sends $g_B^{S_A} \mod p_B$ to Bob
El Gamal Signatures

- D-H: public: \(\langle g, p, T \rangle\); private: \(S; g^s \mod p = T\)
- new public/private key for each message
- compute \(T_m = g^{S_m} \mod p\) for random \(S_m\) for each msg. \(m\)
- digest \(d_m = m | T_m\)
- signature = \(X = S_m + d_m S \mod (p - 1)\)
- transmit \(m, X, T_m\)
- verification: \(\frac{g^X}{=? T_m T^{d_m} \mod p}\)

\[g^X = g^{S_m + d_m S} = g^{S_m} g^{S_d m} = T_m T^{d_m} \mod p \]
El Gamal Properties

Exercises:

- message modification \Rightarrow signature won’t match
- signature does not divulge S
- don’t know $S \Rightarrow$ can’t sign
Digital Signature Standard (DSS)

- related to El Gamal, but some computations \(\mod q, q = 160 \text{ bits} < |p| = 512 \text{ bits} \)
- speeded up for signer rather than verifier: chip cards
DSS Algorithm

1. generate public p (512 bit prime) and q (160 bit prime)

 $$p = kq + 1$$

2. generate public g

 $$g^q = 1 \pmod{p}$$

3. choose long-term (T, S) with random S

 $$T = g^S \mod p \text{ for } S < q$$

4. choose (T_m, S_m) with random S_m

 - $T_m = ((g^{S_m} \mod p) \mod q$
 - calculate $S_m^{-1} \mod q$

5. calculate $d_m = \text{SHS}(\text{message})$
6. signature \(X = S_m^{-1}(d_m + ST_m) \mod q \)

7. transmit \(m, T_m, X \)

8. verify based on \(d_m \): \(z \overset{?}{=} T_m \\
\begin{align*}
x &= d_m \cdot X^{-1} \mod q \\
y &= T_m \cdot X^{-1} \mod q \\
z &= (g^x \cdot T^y \mod p) \mod q
\end{align*}
DSS Algebra

\[v = (d_m + ST_m)^{-1} \mod q \]
\[X^{-1} = (S_m^{-1}(d_m + ST_m))^{-1} = S_m(d_m + ST_m)^{-1} \]
\[= S_m v \mod q \]
\[x = d_m X^{-1} = d_m S_m v \mod q \]
\[y = T_m X^{-1} = T_m S_m v \mod q \]
\[z = g^{x\cdot y} = g^{d_m S_m v} g^{ST_m S_m v} \]
\[= g^{(d_m + ST_m)S_m v} = g^{S_m} = T_m \mod p \mod q \]

any multiple of \(q \) in exponent drops out
RSA vs. DSS

- fixed moduli
- \(\langle p, q, g \rangle \) \(\rightarrow \) pick one \(\rightarrow \) juicy target
- trapdoor primes
- slower than RSA\((e = 3)\), but signatures can be done ahead of time
- needs per-message random secret
- patent (Schnorr)
Zero-Knowledge Proofs

- prove knowledge without revealing it
- RSA signatures
- graph isomorphism: rename vertices
- Alice: graph A and $B \sim A$
- public key: graphs A, B
- private key: mapping between vertices
- Alice: create G_i and sends to Bob
- Bob \rightarrow Alice: how did A or $B \rightarrow G_i$?
- zero-knowledge: Bob knows some G_i’s
- Fred can create G_i from either A or B, but not both
Zero-Knowledge Proofs: Fiat-Shamir

- Alice: public key $\langle n, v \rangle$, $n = pq$

- v: Alice knows secret $s = \sqrt{v} \pmod{n}$

1. Alice chooses k random numbers r_1, \ldots, r_k

2. Alice sends $r_i^2 \pmod{n}$

3. Bob chooses a random subset S_1 of r_i^2
 - subset 1
 - Alice sends $sr_i \pmod{n}$
 - Bob checks $(sr_i)^2 = vr_i^2$
 - subset 2
 - Alice sends $r_i \pmod{n}$
 - Bob checks $(r_i)^2 = (r_i)^2$

4. Fred checks $(r_i)^2$ (easy)

4. finding square roots is hard
5. Fred gets some $\langle r_i^2, sr_i \rangle$

6. can use these for subset 1, pick own for subset 2

7. Carol picks which she wants

much faster than RSA: 45 multiplies for Alice, Bob