mSLP - Mesh-enhanced Service Location Protocol

Weibin Zhao, Henning Schulzrinne
{zwb,hgs}@cs.columbia.edu
Department of Computer Science
Columbia University

Erik Guttman
erik.guttman@germany.sun.com
Sun Microsystems

October 18, 2000
Introduction

- Service Discovery Systems
 - Goals
 * automatically discover available network services and devices
 - Applications
 * mobile, wireless, ad-hoc, home network
 - Typical systems
 * SLP, Jini, UPnP, Bluetooth, INS, SDS, Salutation, etc.
 - Models
 * directory-centric: registration/lookup
 * peer-to-peer: multicast
Service Location Protocol

- IETF standard for IP networks
 - supports both directory-centric and peer-to-peer models
- Components
 - Service Agent (SA), User Agent (UA), Directory Agent (DA)
- DA discovery
 - active
 - Multicast SrvRqst (service:directory–agent)
 - Unicast DAAdvert
 - passive
 - Multicast DAAdvert
SLP Architecture

- Scalability
 - DAs
 - service scopes

- Reliability
 - multiple DAs for each scope
SLP Deployment

- (1) small, (2) mid-size, (3) large
mSLP - Mesh-enhanced Service Location Protocol

- Interactions of SLP DAs
 - DAs within the same scope: registration forwarding (mSLP)
 - DAs in different scopes: query routing (open)

- mSLP motivations
 - improve reliability and consistency of SLP directory services
 - simplify SA registrations
 - SLPv2: SA registers with ALL DAs
 - mSLP: SA registers with ONE mesh-enhanced DAs; registrations are propagated automatically
 - scalability: thin-client SAs
 - compatibility: incremental deployment
mSLP Architecture

- Peer DAs
 - share some service scopes
 - maintain same data for common scopes (forwarding registrations)

- Peering connection
 - persistent TCP connection
 - closing: terminates a peer relationship

- Fully-meshed connection
 - greatly facilitates message exchange among peer DAs
 - a small peering DA set (sufficient to achieve high reliability)
Message Forwarding

- Mesh-forwarding extension (ID = 6)
 - used by service registration messages (SrvReg/SrvDeReg)
 - forwarding flag: on/off

- Peer DAs
 - exchange existing data when setting up a peer relationship
 - forward new registrations and updates

- Forwarding rules
 - explicit forwarding (default is not)
 - one-hop forwarding (full mesh)
Peer Relationship Management

- Three stages
 - peering setup
 - peering maintenance
 - peering tear-down

- Peer information (peer-table)
 - URL, scopes, reference to peering connection, mesh-flag, etc.

- Mesh-control message (MeshCtrl, ID = 12)
 - Pconn_Indication: peering connection indication
 - Peers_Indication: peers indication
 - Data_Get_Rqst: request for getting data
 - Data_Put_Done: done with putting data
 - Peer_Keepalive: peer keepalive
Learning about New Peers

- Configuration file
- DHCP
- DA advertisement multicast
 - mesh-enhanced DA advertisement (“mesh-enhanced” keyword)

 Mesh–enhanced DA
 Multicast DAAdvert (Attr = "mesh–enhanced")
 DA/UA/SA

- DA advertisement forwarding
 - from a new/rebooted non-mesh-enhanced peer
 - forwarded to mesh-enhanced peers
 - forwarded only once
 * forwarded DAAdvert: sending DA and advertised DA are different

- Peer information exchange in peering setup stage
Peering Setup

- Setup procedure
 - get peer’s advertisement
 - establish peering connection

(1) "Pconn_Indication" MeshCtrl
(2) Unsolicited DAAdvert

- exchange information about peers
- exchange data if needed
- handling new peers
Peering Setup (2)

- Exchanging information about peers

- CPL: common peer list

- Two purposes
 * learn about new peers from known peers
 * decide which scopes of data are needed to exchange
Peering Setup (3)

- Exchanging data

1. SrvReg (data of requested scopes)
2. "Data_Put.Done" MeshCtrl

Example

- DA1 (a, b)
- DA2 (a, c)
- DA3 (b, c)
- DA4 (a, b, c)
Peering Maintenance and Tear-down

- **Peering maintenance**
 - boot timestamp
 - peering connection keepalive
 - stay synchronized

- **Peering tear-down**
 - peering connection was closed
 - DAAdvert boot timestamp = 0
 - "Peer_Keepalive" MeshCtrl is timeout
Implementation and Example

- Implementation
 - extends DA functionality
 * peer relationship management
 * message forwarding control
 - simplify SAs: thin-client

- Example
 - (1) normal operation, (2) DA failure, (3) recovering from a failure

Diagram:

- DA1 (a, b)
- UA / SA
- DA2 (a, c)
- DA3 (b, c)
Conclusions

- mSLP summary
 - a fully-meshed peering DA architecture
 - improve reliability and consistency of SLP directory services
 - peer relationship management; message forwarding control
 - simplify SA registrations
 - fully compatible with SLPv2
 - mesh-enhanced DA can be deployed incrementally

- Future work
 - synchronization in peering setup with multiple peers simultaneously
 - bulk data exchange in peering setup
 - advance to RFC
 - interactions of DAs in different scopes: query routing