An Open Source H.323 / SIP Gateway as Basis for Supplementary Service Interworking

Ralf Ackermann, Vasilios Darlagiannis, Manuel Goertz, Martin Karsten, Ralf Steinmetz

Darmstadt University of Technology
Industrial Process and System Communications (KOM)

Merckstr. 25, D-64283 Darmstadt

Outline

• Motivation

• Gateway Requirements and reached Accordance

• Gateway Redesign
 • Abstraction Layer
 • Rapid Prototyping and Testing using Scripting

• Supplementary Service Interworking
 • Theory
 • Experiences gathered on the SIP side
 • H.450 Integration

• Conclusion and Future Work
Starting Situation and Intentions

Challenges:
• co-existence of at least H.323 and SIP for IP-Telephony
• ongoing development and starting deployment with
 • various building blocks from different developers and vendors
 • demand for interworking in various different scenarios
• gateways (signaling proxies, translators) as a general trend
• robustness and carrier-grade services needs a more formalized development process

⇒ need for a framework for both
 • rapid prototyping of components and services
 • verification testbed
 • deployment
Intentions

- **industry cooperation targeting at practically usable solution**
 - on top of state-of-the-art mechanisms and components
 - benefit from the work of others
 - Kundan Singh / Henning Schulzrinne - last years paper and draft

- **integrate different (emerging) H.323 and SIP stacks**

- **stay open for integrating new or enhanced components / services**
 - high dynamics in development
 - different grade of maturity

- **consider providing gateways for resource-bound devices - PDAs, Networked Appliances ...**
 - theory (and practical experiments) show that H.323 is just too expensive
 - ohphone using about 9 MByte memory footprint on a PDA device (Compaq iPAQ with 32 MB RAM, 16/32 MB Flash is just too much)
 - even C++ SIP applications are currently large
 - using very bare-bone / low-complexity signaling as a future task
H.323 / SIP Interworking - Basic Requirements

Basically:
• connecting RTP media endpoints for both H.323 and SIP-originated calls

In-detail:
• Mapping of protocol elements and sequences
 • alerting, codec and endpoint negotiation, call teardown
 • this is not straight-forward especially due to different protocol semantics and various versions on H.323 side

• Support for different “infrastructure integration” styles
 • end system to end system
 • subscriber based
 • SIP-centric
 • H.323-centric
 • connecting “protocol clouds”

• Support for different address mapping schemes
 • gateway based
 • using interconnected protocol mechanisms (e.g. REGISTER) themselves

• Scalability - Support for multiple calls at a time
Initial Implementation

- stacks have been chosen after evaluating certain criteria
 - see paper for evaluation list
 - OpenH323 / vovida SIP
Redesign using an abstraction layer

- lack of a uniform and stable H.323 or SIP API

- interworking functionality inside a stable system core

- “linkage” to stacks

- OO-abstraction:
 - connection(s)
 - instantiation of multiple threads
Rapid Prototyping and Testing using Scripting

• **(x)oTcl approach:**
 - scripting languages (in contrast to system programming languages) as the key programming means for the 21st century - form the “glue”
 - allow for:
 - fast prototyping using run-time interpretation
 - dynamic extensibility (C-linkage using shared libraries)
 - extensions add object-orientation

• **initially used for simple tasks like comfortable address mapping**

• **adapted for more general tasks (FSM states and operators)**

```
set sip_incoming_TO arg1
set h323_called_party [ lookup $sip_incoming_TO ]
puts $h323_called_party ; ...
```
Supplementary Service Interworking

Connecting Media Streams is comparable straightforward, whereas providing “services” is THE major challenge

- both “Supplementary” as well as “Value Added” Services

- ITU H.450.x - we concentrated on a subset first
 - H.450.1 - Framework
 - H.450.2 - Call Transfer
 - H.450.3 - Call Diversion
 - ...

- in SIP - we have concepts
 - Lennox / Schulzrinne / La Porta “Implementing Intelligent Network Services with SIP”
 - description of implementation mechanisms regarding the “Value Added Services”
 - CPL, SIP CGI, SIP Servlets, implementation A, B, C ...
 - description of protocol mechanisms (targeted at H.450.x like Services)
 - Call Control Framework

- in general - less strict and determined
 - interactions make system approach desirable and even necessary
Supplementary Service Interworking - Concepts

• Unattended / Blind Call Transfer (SIP1 - H.323 1 => SIP 2 - H323 1)
 - whole matrix of possible interactions:
 - SHS
 - HSH
 - ...
 - missing endsystem type awareness
 - even different administrative domains

• individual components exist and can be tested
• integration approach must show to work in practice
Supplementary Services Interworking - SIP side

- implemented and tested
 - benefiting already from the easy FSM extensibility
 - Call Transfer (INVITE / RE-INVITE based - further work using REFER)
 - Call Park and Pickup using an additional Call Park Server and an enhanced Vovida sua SIP user agent

- FSM directly derived from message sequence diagram

- H.450 integration currently under investigation
Conclusion and Future Work

Starting point:
• Industry Project with straight-forward task to fulfill

Results:
• working solution based on Open Source
• Linux as suitable platform with results valuable for transition to other systems (e.g. VxWorks)
• contribution: more general framework for enhancement

Future Work:
• another straight-forward task (make H.450 / SIP interaction real)
• testbed for applying and testing formal approaches

References and related work:
• Singh / Schulzrinne - siph323
• Vovida VOCAL package implementing stacks and protocol translators (OpenH323, vovida SIP) now
Thank you!
Questions, Comments?