
1

The Impact of TLS on SIP Server Performance:
Measurement and Modelling

Charles Shen, Erich Nahum, Henning Schulzrinne, and Charles P. Wright

Abstract—Securing VoIP is a crucial requirement for its
successful adoption. A key component of this is securing the
signaling path, which is performed by SIP. Securing SIP is
accomplished by using TLS instead of UDP as the transport
protocol. However, using TLS for SIP is not yet widespread,
perhaps due to concerns about the performance overhead.

This paper studies the performance impact of using TLS as
a transport protocol for SIP servers. We evaluate the cost of
TLS experimentally using a testbed with OpenSIPS, OpenSSL,
and Linux running on an Intel-based server. We analyze TLS
costs using application, library, and kernel profiling, and use the
profiles to illustrate when and how different costs are incurred,
such as bulk data encryption, public key encryption, private key
decryption, and MAC-based verification.

We show that using TLS can reduce performance by up to
a factor of 17 compared to the typical case of SIP-over-UDP.
The primary factor in determining performance is whether and
how TLS connection establishment is performed, due to the
heavy costs of RSA operations used for session negotiation. This
depends both on how the SIP proxy is deployed (e.g., as an
inbound or outbound proxy) and what TLS options are used
(e.g., mutual authentication, session resumption). The cost of
symmetric key operations such as AES, in contrast, tends to
be small. Network operators deploying SIP-over-TLS should
attempt to maximize the persistence of secure connections, and
will need to assess the server resources required. To aid them, we
provide a measurement-driven cost model for use in provisioning
SIP servers using TLS. Our cost model predicts performance
within 15 percent on average.

Index Terms—Computer networks, Security, Internet tele-
phony, Performance evaluation

I. INTRODUCTION

Securing Voice over IP (VoIP) is a necessary requirement for

enabling its stable, long-term adoption. A key aspect of VoIP

security is securing the signaling path, typically provided by

the Session Initiation Protocol (SIP) [49]. SIP is an application

layer signaling protocol for creating, modifying, and termi-

nating media sessions in the Internet. Major standards bodies

including 3GPP, ITU-T, and ETSI have all adopted SIP as the

core signaling protocol for services such as VoIP, conferenc-

ing, Video on Demand (VoD), presence, and Instant Messaging

(IM). Like other Internet services, SIP-based services may

Manuscript received Feb. 14, 2011; accepted Nov. 3, 2011; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Associate Editor Prof. Z
Morley Mao.
Charles Shen is with AT&T Security Research Center, 33 Thomas St., New

York, NY, 10007 USA (email: see http://www.charleshen.com).
Erich Nahum and Charles P. Wright are with IBM T.J. Watson Re-

search Center, 19 Skyline Dr., Hawthorne, NY 10532 USA (email:
{nahum,cpwright}@us.ibm.com).
Henning Schulzrinne is with Department of Computer Science, Columbia

University, 1214 Amsterdam Ave., New York, NY 10027 USA (email:
hgs@cs.columbia.edu).

be susceptible to a wide variety of security threats including

social threats, traffic attacks, denial of services and service

abuse [7], [12], [34]. One of the main reasons that enable

these threats is the common use of clear text SIP signaling

over any transport that is susceptible to eavesdropping and

replay attacks, such as SIP-over-UDP, which provides no

signaling confidentiality, integrity, or authenticity. Given a

trace of SIP traffic, one can see who is communicating with

whom, when, for how long, and sometimes even what is being

said (e.g., in SIMPLE [13]). It has also been shown that even

commercial VoIP services may be prone to large-scale voice

pharming [60], where victims are directed to fake interactive

voice response systems or human representatives for revealing

sensitive information.
Transport Layer Security (TLS) [20], based on the earlier

Secure Sockets Layer (SSL) [25] specification, is a widely

used Internet security protocol occupying a layer between

the application and the transport layer. SIP specification [49]

lists TLS as a standard method to secure SIP signaling.

Various other organizations and industrial consortiums have

also recommended the use of TLS for SIP signaling. For

example, the SIP Forum [6] mandates TLS for interconnecting

enterprise and service provider SIP networks in its specifica-

tion document.
However, while interest in securing SIP is growing [43],

[59], actual large scale deployment of SIP-over-TLS has not

yet occurred. One important reason is the common perception

that running an application over TLS is costly compared to

running it directly over TCP or UDP. VoIP providers will

be hesitant to deploy TLS until they understand the resource

provisioning and capacity planning required. Thus we need

to understand how much using TLS with SIP actually costs.

TLS works over both UDP (Datagram TLS [46]) and TCP,

we focus our study on using TLS over TCP because it is used

by the majority of TLS implementations today.
This paper makes the following contributions:

• We present an experimental performance study of the

impact of using TLS on SIP servers. Our study is con-

ducted using Open SIP Server (OpenSIPS) [41], which is

one of the de facto open source version of SIP servers,

occupying a role similar to that of Apache for web

server [9], [11], [18], [19], [21], [23], [36], [42], [61].

We use the OpenSSL [4] library in Linux on an Intel-

based server and evaluate the CPU cost of TLS under four

SIP proxy usage modes: proxy chain, outbound proxy,

inbound proxy, and local proxy. We show that using TLS

can reduce performance by up to a factor of 17 compared

to the typical case of SIP-over-UDP.

2

• We use application, library, and kernel profiles to exam-

ine, analyze, and explain performance differences. The

profiles illustrate how costs are incurred under different

scenarios and how they can be reduced, e.g., extra Rivest,

Shamir and Adleman (RSA [48]) overheads observed

when mutual authentication is used and disappeared when

session resumption is performed. They also show some

results that distinguish SIP server from other server

scenarios, e.g., bulk crypto costs of Advanced Encryption

Standard (AES [38]) or Triple Data Encryption Standard

(3DES [37]) are small. In addition, the tests show how

some overheads are due to mechanisms such as kernel

overhead and SSL state management rather than simply

crypto algorithms such as RSA or AES.

• We identify and solve several performance problems in

OpenSIPS. Each is related to connection management

with large numbers of connections under high loads. The

fixes improve performance in some cases from a few

times up to an order of magnitude.

• We provide a measurement-parameterized cost model to

aid network administrators that are considering transition-

ing to SIP-over-TLS. The cost model estimates server

resource costs of TLS to help provisioning and dimen-

sioning of servers. Our cost model accurately predicts

performance within 15 percent on average.

Previous studies on TLS performance have either focused

on TLS for web servers [10], [15], [33], [63] or policy-

based network management [62]. SIP protocol behavior is

different from these protocols. SIP proxy servers can act as

clients to other servers and therefore can incur large client-

side TLS costs. SIP servers also have a much wider range

of connection management behavior than other servers (see

Section III-F), and this connection management is a primary

issue in determining TLS overheads, due to the heavy costs

of RSA operations used for session negotiation. Symmetric

key operations such as AES or 3DES could be trivial in

comparison.

The net result is that the performance cost of deploying

SIP over TLS instead of directly over UDP can be significant,

depending on how the SIP proxy server is used (e.g., as an

inbound or outbound proxy) and how TLS is configured (e.g.,

with or without mutual authentication or session resumption).

Network operators can minimize this cost by attempting to

maximize the persistence of secure sessions, but still need to

be aware of the overhead of utilizing TLS.

The remainder of this paper is structured as follows. Sec-

tion II provides some background on TLS and SIP. Section III

describes the testbed used and how we determine our test

cases. Section IV presents our experimental results. Section V

develops our cost model and Section VI describes related

work.

II. BACKGROUND

A. TLS Operation Overview

We provide a brief description of the TLS protocol. For

more details, please see [20], [45], [51].

TLS

client

TLS

Server

ClientHello

Normal TLS Handshake

time

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

Finished (encrypted)

ChangeCipherSpec

ChangeCipherSpec

Finished (encrypted)

(a)

TLS

client

TLS

Server

ClientHello

Mutual TLS Handshake

time

ServerHello

Certificate

CertificateRequest

Certificate

CertificateVerify

ChangeCipherSpec

ClientKeyExchange

Finished (encrypted)

ServerHelloDone

Finished (encrypted)

ChangeCipherSpec

(b)

TLS

client

TLS

Server

ClientHello

Resumed TLS Handshake

time

ServerHello

ChangeCipherSpec

Finished (encrypted)

Finished (encrypted)

ChangeCipherSpec

(c)

Fig. 1: TLS Handshake Message Flows

TLS operation consists of the handshake phase and the bulk

data encryption phase. The handshake phase allows the parties

to negotiate the algorithms to be used during this TLS session,

authenticate the other party and prepare the shared secrets for

the bulk data encryption phase. All the algorithms used in

a TLS session, including those for key exchange, bulk data

encryption and message digest, are specified by a cipher suite.

As an example, TLS RSA WITH AES 128 CBC SHA is a

cipher suite indicating that RSA public key algorithm is used

for shared secret key exchange and authentication; 128-bit

AES in Cipher Blocking Chaining (CBC) mode is used for

bulk data encryption; and SHA-1 [22] is used as the message

digest algorithm to compute the Message Authentication Code

(MAC).

A typical message flow in the TLS handshake phase is illus-

trated in Fig. 1a. First the client initiates the handshake with a

ClientHello message. This message contains the protocol

version, the cipher suite and compression methods that the

client supports and a random number and timestamp to prevent

replay attacks. The server responds with a ServerHello

message, which specifies the protocol version and the cipher

suite and compression methods that the server chooses to

use among those proposed by the client. The ServerHello

message also contains a timestamp and random number as

part of the keying material, and optionally a session_id

which the client can later use to resume the session. The server

then sends the Certificate message which is the server’s

X.509 certificate containing its public key and optionally a

chain of certificates belonging to the authorities in the certifi-

cate hierarchy. The following ServerHelloDone message

indicates the server has sent all messages in this stage. Upon

receiving the server’s certificate, the client authenticates the

server by verifying its certificate using the Certificate Author-

ity (CA)’s public key. Depending on the key exchange mode,

the client may then generate a pre_master_secret, and

encrypt it using the server’s public key obtained from the

server’s certificate. This encrypted pre_master_secret

is sent in the ClientKeyExchange message to the server.

The server decrypts the pre_master_secret using its

3

own private key. Both the server and client then compute

a master_secret they will share based on the same

pre_master_secret. The master_secret is further

used to generate shared symmetric keys for bulk data en-

cryption and message authentication. In addition, the client

and server also exchange the ChangeCipherSpecmessage,

which indicates that the sender has switched to the newly ne-

gotiated algorithms. Finally, the Finished message contains

a MAC digest of the negotiated master_secret and the

concatenated handshake messages that have been sent to the

other party. The Finished message is used to ensure the

integrity of the handshake.

In normal TLS handshake, only the client authenticates the

server. TLS also offers a mutual authentication mode where the

server can authenticate the client as well as shown in Fig. 1b.

In this mode, sends an additional CertificateRequest

message to request the client’s certificate. The client responds

with a Certificate message containing the client certifi-

cate with the client public key, and a CertificateVerify

message containing a digest signature of the handshake mes-

sages signed by the client’s private key. Since only a client

holding the correct private key can sign the message, the server

can authenticate the client using the client’s public key.

Since public key cryptography is usually more expensive

than secret key cryptography, TLS uses public key cryptogra-

phy to establish the shared secret key in the handshake phase,

and then uses secret key cryptography during the bulk data

encryption phase. To reduce costs during handshake, TLS

also offers a session resumption mode as that allows two

parties to avoid negotiating the pre_master_secret if

it has been done previously within a time threshold. It is

important to distinguish the notion of a connection versus a

session in TLS. A TLS connection corresponds to one specific

communication channel which is typically a TCP connection;

while a TLS session is associated with a negotiated set of

algorithms and the established master_secret based on

the pre_master_secret. Multiple connections may be

mapped to the same session, all sharing the same set of

algorithms and the master_secret, but each with different

symmetric keys for bulk data encryption. The notion of session

resumption indicates the resumption of a previously negotiated

set of cryptographic algorithms and the master_secret.

The handshake message flow for TLS session resumption is

shown in Fig. 1c. The session resumption timeout is config-

urable based on the security assumptions of how long it takes

to break the key by brute-force.

B. SIP Overview

SIP defines two basic types of entities: User Agents (UAs)

and servers. UAs represent SIP end points. SIP servers con-

sist of registrar servers for location management, and proxy

servers for message forwarding. SIP messages are divided into

requests (e.g., INVITE and BYE to create and terminate a

SIP session, respectively) and responses (e.g., 200 OK for

confirming a session setup).

SIP message forwarding, known as proxying, is a critical

function of the SIP infrastructure. This forwarding process

Fig. 2: SIP Stateful Proxying with Authentication

is provided by proxy servers and can be either stateless or

stateful. We focus on stateful SIP proxying because many

standard application functionalities, such as authentication,

authorization, accounting all require the proxy server to keep

different levels of session state information.

Fig. 2 shows a typical message flow of stateful SIP prox-

ying. Two SIP UAs, designated as User Agent Client (UAC)

and User Agent Server (UAS) represent the caller and callee

of a multimedia session. The hashed circle around the proxy

indicates that this is the server that we are measuring (“system

under test”). In this example, the UAC wishes to establish

a session with the UAS and sends an INVITE message

to the proxy. The proxy server enforces proxy authentica-

tion by responding with a 407 Proxy Authentication

Required message, challenging the UAC to provide creden-

tials that verify its claimed identity (e.g., based on MD5 [47]

digest algorithm). This proxy authentication step is optional

but is usually deployed between a UA and its first hop SIP

proxy server. The UAC then transmits a new INVITE mes-

sage with the generated credentials in the Authorization

header. After receiving and verifying the UAC credential, the

proxy sends a 100 TRYING message to inform the UAC that

the message has been received and that it needs not worry

about hop-by-hop retransmissions. The proxy then looks up the

contact address for the SIP URI of the UAS and, assuming it is

available, forwards the message. The UAS, in turn, acknowl-

edges receipt of the INVITE message with a 180 RINGING

message and rings the callee’s phone. When the callee actually

picks up the phone, the UAS sends out a 200 OK. Both the

180 RINGING and 200 OK messages make their way back

to the UAC through the proxy. The UAC then generates an

ACK message for the 200 OK message. Having established

the session, the two endpoints communicate directly, peer-to-

peer, using a media protocol such as RTP [53]. However, this

media session does not traverse the proxy, by design. When the

conversation is finished, the UAC “hangs up” and generates a

BYE message that the proxy forwards to the UAS. The UAS

then responds with a 200 OK which is forwarded back to

the UAC. Note that although Fig. 2 shows a single SIP proxy

server between the two UAs, in real networks it is common to

have multiple proxy servers in the signaling path. The message

4

flow with multiple proxy servers is similar, except that the

proxy authentication is usually only applicable to the first hop.

C. SIP Connection Management over TLS

Our SIP-over-TLS study is conducted on top of TCP trans-

port since TCP is used by most of the TLS implementations

today. In general, a TCP connection is first established between

the endpoints, and then a TLS handshake occurs to negotiate

the TLS session. Once the TLS session is established, the

SIP signaling messages will be passed to the TLS layer and

encrypted.

When a connection oriented transport such as TCP is used,

the connection management policy needs to be defined. In a

multi-hop SIP server network scenario, it is usually preferable

to maintain a single long-lasting connection between two

interconnected proxy servers [28]. Having all SIP messages

between the two proxy servers go through the same existing

connection can avoid the per-session connection handshake

overhead. In contrast, if the proxy server is connected with a

SIP UAC or UAS directly, the proxy server typically has to

establish separate connections with each of them since they

are located on separate hosts.

III. TESTBED AND METHODOLOGY

A. OpenSIPS SIP Server

The SIP server we evaluated is OpenSIPS version 1.4.2 [41],

a freely-available, open source SIP proxy server. OpenSIPS is

a fork of OpenSER, which in turn is a fork of SIP Express

Router (SER) [32]. All these proxy servers are written in the

C language, considered to be highly efficient and represent the

de facto open source version of SIP servers.

We made several modifications to OpenSIPS in order to sup-

port all of our test cases. In particular, we added a connection

mode where OpenSIPS will establish a new connection to a

UAS upon a new call, even if the UAS has the same IP address.

This is needed to test the multiple connection mode between

the proxy server and UAS using a limited number of UAS

machines. We also added OpenSIPS options to request TLS

session resumption when it is acting as the TLS client, and

OpenSIPS options to request for TLS mutual authentication

when it is acting as the TLS server.

One unexpected parameter that initially prevented us from

running high load tests with SIP proxy authentication is

the “nonce index” value in OpenSIPS. It turns out that the

default MAX_NONCE_INDEX value used to create nonce for

proxy authentication is too small and could exhaust easily

at high load. When the nonce could no longer be generated,

authentication cannot proceed and the server will simply reject

calls. We increased the default MAX_NONCE_INDEX value

from 100, 000 to 10, 000, 000. This change eliminated the

abnormal call rejection behavior and it alone increased the

throughput results dramatically, e.g., in the proxy chain mode

the peak throughput with SIP proxy authentication is increased

by close to an order of magnitude.

In configurations involving proxy authentication where a

user database is required, we used MySQL-5.0.67 [2], which

we populated with 10, 000 unique user names and passwords.

The MySQL server runs on the same machine as the OpenSIPS

server.

B. SIPp Client Load Generator

For SIP traffic generator, we use the open-source SIPp [26]

tool which allows a wide range of SIP scenarios to be tested.

We also added additional functionality to SIPp to accommo-

date all our test cases, including the SIPp options to request

TLS session resumption when it is acting as the TLS client and

to request TLS mutual authentication when it is acting as the

TLS server. The TLS support library for SIPp is a statically-

compiled version based on OpenSSL [4] release 0.9.8i, which

is the latest release at the time of the compilation.

C. Hardware and Connectivity

Our server hardware has 2 Intel Xeon 3.06GHz processors

with 4GB RAM and 34GB disk drives. However, for our

experiments, we only use one processor because SIP perfor-

mance under multiple processors or a multi-core processor is

itself a topic that requires separate attention [61]. We use 10

client machines, six of which have 2 Intel Pentium 4 3.00GHz

processors with 1GB RAM and 80GB hard drives. The

other four have 2 Intel Xeon 3.06GHz processors with 4GB

RAM and 36GB hard drives. The server and client machines

communicate over copper Gigabit or 100Mbit Ethernet. The

round trip time measured by the ping command from the

client to the server is around 0.15ms. A longer round trip

time should not have much impact on our evaluation as long

as it does not exceed the 500ms SIP-over-UDP retransmission

threshold. Typical network round trip times are usually well

below 500ms [1] unless the connection includes satellite links,

for example.

D. Software Platform

The server uses Ubuntu 8.04 with Linux kernel 2.6.24-

19, OpenSSL 0.9.8.g, and oprofile 0.9.3 [5]. The clients

use Ubuntu with either a 2.6.22 kernel or a 2.6.24 kernel.

We encountered an SSL library failure at the SIPp load

generator side when generating high loads. After examining

the OpenSSL error queue in more detail, we found the cause

and the bug fix [24]. This fix was submitted in 2003 but had

not been incorporated into the OpenSSL release. We therefore

recompile SIPp using OpenSSL version 0.9.8i source with this

fix included. The OpenSIPS server machine uses the existing

OpenSSL version 0.9.8g. The bug does not manifest itself

there and keeping the original OpenSSL on the server makes

profiling more convenient.

E. Workload and Performance Metrics

The workload is a standard SIP call flow the same as in

Fig. 2. There is no call hold time. A call is completed when all

messages (from the initial INVITE to the 200 OK in response

to the BYE) are correctly delivered. Our main metrics include

server throughput which counts the number of successfully

completed calls per second (cps) as reported by SIPp, and

server CPU events profile as reported by oprofile. We also

5

(a) proxy chain (b) outbound proxy

(c) inbound proxy (d) local proxy

Fig. 3: SIP Proxy Operation Modes

measure server CPU utilization. Our test runs last for 120

seconds after a 30-second warm-up time. The results are the

average of three consecutive test runs.

F. Test Matrix and Evaluated Test Cases

We first group SIP server connection management config-

urations into four different deployment modes as shown in

Fig. III-F.

1) Fig. 3a shows the proxy chain mode, where the proxy

server interconnects two other proxy servers in a chain

fashion. This is intended to model, e.g., how two

core SIP proxy servers of different service providers

communicate. Only one connection is needed for each

neighboring proxy server in this case.

2) Fig. 3b shows the outbound proxy mode, where the

proxy accepts multiple connections from UACs but only

establishes a single outgoing connection with another

proxy server. This configuration models how phones in

an enterprise SIP deployment would make calls external

to the organization.

3) Fig. 3c is the inbound proxy mode, where the proxy

server under test accepts a single connection from an up-

stream proxy server and establishes multiple connections

to individual UASes. This is the mirror of the outbound

proxy configuration above, where incoming SIP traffic

is routed to phones.

4) Fig. 3d, is the local proxy mode, where the proxy server

under test connects UACs and UASes directly, and

therefore accepts both incoming connections and creates

outgoing connections simultaneously. This configuration

is intended to model how phones in an enterprise deploy-

ment would communicate with each other.

The above four modes describe the full range of connection

management behavior for SIP proxy servers, from completely

persistent connections among proxy servers (the proxy chain

mode) to non-persistent connections where each call requires

a connection setup and teardown (the local proxy mode). In

addition, the inbound and outbound cases distinguish where

connections are passively accepted (the inbound proxy mode)

vs. those that are actively created (the outbound proxy mode).

Real proxy servers usually support all these operation modes,

and operate in a mode somewhere in the middle of these four

UACL UASRUASL UACR

Left
Path

Right
Path

Fig. 4: Logical Component Graph of SIP Testbed

extremes. Thus this mode characterization is more logical than

physical, but it helps us explore the design space fully.

To prepare the applicable test matrix, we list the five main

configuration variables in our SIP-over-TLS tests along with

the four operation modes in Table I.

To relate connection management with other configuration

parameters, we draw a unified logical component graph of

the testbed as in Fig. 4. The proxy server in the middle

represents the server under test. The whole testbed is split into

the left path and the right path, which consists of the left pair

and the right pair of the logical UAC and UAS components,

respectively. The applicable configuration options in each

of the four connection management modes can then all be

mapped into Table I, where N/A indicates “Not Applicable”.

Directly expanding the whole test space in Table I results in

numerous configuration scenarios which are both intractable

and unnecessary. We make the following decisions to narrow

down the numer of cases. First, we focus only on two TLS

cipher suites, which are specified by the SIP standard [49]

as mandatory (TLS_RSA_WITH_AES_128_CBC_SHA,

abbreviated as TLS-AES) and as recommended

(TLS_RSA_WITH_3DES_EDE_CBC_SHA, abbreviated

as TLS-3DES). Since the impact differences between these

two cipher suites are mainly on the bulk data encryption

phase, we test both cipher suites only in the proxy chain

mode which is specifically meant to examine the cost of TLS

bulk data encryption. For all other three proxy modes, we test

TLS-AES only. Second, we enable SIP proxy authentication

only in the outbound proxy and local proxy modes, which is

a common setting. Third, we test the TLS session resumption

and TLS mutual authentication separately to understand each

of their impacts. We configure appropriate certificates on both

servers and clients in the experiments which require them.

Fourth, when both the left path and the right path can apply

TLS session resumption or TLS mutual authentication, both

paths are configured to have the same setting. These decisions

reduce our test space for TCP and TLS to 16 configurations.

Adding the two UDP with and without proxy authentication

settings, we have a total of 18 test configurations.

G. Limitations and Scope

Note that the performance measurements we obtained are,

by practical necessity, limited to one implementation and

platform and may not be directly applicable to other SIP

server implementations and platforms. However, we believe

that we chose a mature and commonly-deployed SIP server

architecture on a fairly typical hardware platform, so these

6

TCP/TLS TLS TLS TLS SIP
Multiple Session Mutual Cipher Proxy

Configuration Connections Resumption Authentication Suite Auth.
Left Path Right Path Left Path Right Path Left Path Right Path

Proxy Chain N/A N/A N/A N/A N/A N/A any Yes/No
Outbound Proxy Yes N/A Yes/No N/A Yes/No N/A any Yes/No
Inbound Proxy N/A Yes N/A Yes/No N/A Yes/No any Yes/No
Local Proxy Yes Yes Yes/No Yes/No Yes/No Yes/No any Yes/No

TABLE I: Overall Test Matrix

UDP TCP TLS AES TLS 3DES UDP TCP TLS AES TLS 3DES
NoAuth NoAuth NoAuth NoAuth Auth Auth Auth Auth
2400 1139 695 534 462 361 276 244

TABLE II: Peak Throughput: Proxy Chain

Fig. 5: CPU Profile Cycle Costs: Proxy Chain (50 cps)

measurements will provide a good indication of the kind of

performance trade-offs that can be expected.

IV. RESULTS AND ANALYSIS

Different proxy modes and configuration scenarios can incur

significantly different overheads and result in very different

limits on performance. We start with the relatively simple

proxy chain mode and then examine the more complex modes

of outbound proxy, inbound proxy, and local proxy. For each

of the 18 scenarios, we measure peak throughput and then use

CPU profiling to understand and explain the processing costs.

A. Proxy Chain

Table II lists the peak throughput (T) in cps in the proxy

chain mode. Each number is for a different configuration. The

first four configurations have SIP proxy authentication disabled

(NoAuth) and the next four have SIP proxy authentication

enabled (Auth). The tests include UDP, TCP only, TLS with

the TLS-AES cipher suite, and TLS with the TLS-3DES cipher

suite. Recall that in this mode, no connection setup overheads

are incurred. The average CPU utilization ranges from 95%

to 100% in all the peak test cases except for the UDP and

TCP without authentication cases, which is about 70% and

85%, respectively. Although not all the tests could reach full

CPU utilization because there is not always quite enough client

machines to fully load the testbed, we take this factor into

account in our cost model analysis in Section V by scaling

on CPU utilization appropriately.

It can be seen that the peak throughput using TCP achieves

about 47% of the throughput using UDP, when SIP proxy

authentication is not used. When the authentication is enabled,

TCP provides 78% of the corresponding UDP throughput.

Adding TLS to the scenario results in even more substantial

performance reductions. When SIP proxy authentication is

not enabled, TLS-AES achieves 60% of the corresponding

TCP throughput, and TLS-3DES achieves 47% of the TCP

throughput. When proxy authentication is enabled, TLS-AES

achieves 76% of the corresponding TCP throughput and TLS-

3DES achieves 68% of the TCP throughput.

While it would be convenient to simply attribute the extra

overheads to the corresponding encryption algorithms, it turns

out the reality is more complex. To better understand the

overheads, we turn to the CPU profiles generated by oprofile.

Our approach is to obtain a CPU profile of each configuration

run at the same load level of 50 cps so that results across

configurations can be compared meaningfully. As components

are added (e.g., TLS vs. no TLS) or changed (AES vs.

3DES), the attendant CPU costs will manifest themselves in

the profiles. This assumes costs scale relatively linearly with

load and exhibit the same proportions at the peak as they do

at 50 cps, which might not always be the case. To test the

accuracy of this assumption, we compare the observed peak

throughputs with the ones extrapolated based on the CPU cycle

costs observed later in Section V-B.

Fig. 5 shows the number of non-idle CPU cycles consumed

by the server in the proxy chain mode for each configuration

during the test. To facilitate understanding, we also group

the individual functions into several major categories. For

example, the OpenSIPS server costs consist of basic core func-

tions (OpenSIPS-Core) and those functions implemented as

modules (OpenSIPS-Module) such as for stateful transactions,

record route, and etc. For the detailed function vs. category

mapping table please refer to Appendix C of our technical

report [55]. From Fig. 5 we see that the total cost of the

baseline UDP case without SIP authentication is about 144K

CPU cycles. The most significant cost components are kernel

(68K) which accounts for 47%, and the sum of OpenSIPS-

Core and OpenSIPS-Module (54K), which contributes another

38% of the total cost. When TCP is used instead of UDP,

the total costs increase 152K cycles or over 100%. Again

most of the increase belongs to Kernel (60K) and the sum

of OpenSIPS-Core and OpenSIPS-Module (71K).

We see that adding TLS-AES introduces another 50% of

additional overhead, roughly 450K cycles vs. 300K cycles for

the TCP case. TLS-3DES is similar, with roughly 525K cycles,

7

UDP TCP TLS TLS MutualAuth TLS SessionResume
462 268 151 122 181

TABLE III: Peak Throughput: Outbound Proxy

Fig. 6: CPU Profile Cycle Costs: Outbound Proxy (50 cps)

and as would be expected, the differences in total cost between

TLS-AES and TLS-3DES are almost solely contributed by the

cost difference in cryptographic operations.

Half of the 150K cycles of increase from TCP to TLS-AES

is directly contributed by TLS operations, and most of the

remainder is relatively evenly shared by increases in Kernel

and OpenSIPS-Core. Since 128 bits AES is less expensive

than SHA-1, AES itself only adds about 19K cycles in cost;

MAC overheads are higher at 25K cycles. MAC overheads are

incurred by the bulk encryption algorithm, since each message

is verified for authenticity using the MAC algorithms. MAC

overheads are roughly equivalent regardless of the choice of

AES or 3DES since we use SHA-1 in both cases. While 3DES

is over four times as expensive as AES (93K vs. 19K cycles),

the relative difference between the two complete software

stacks is only about 17% (525K vs. 450K). We expect AES to

be faster since it is a more recent cipher than 3DES and was

designed for performance. Other TLS overheads come from

other components in the OpenSSL library. For example, in

the TLS-AES case, there are other libcrypto functions (10K)

and libssl (11K). Thus a non-trivial component of OpenSSL

overheads is from using the OpenSSL mechanisms, such as

allocating, freeing, maintaining, and looking up OpenSSL

session state.

A major cost increase in scenarios with SIP proxy authen-

tication compared to those scenarios without it is the database

cost incurred when the SIP server accesses the records in

the MySQL server during the authentication. This cost ranges

from 16−29% of the total cost in each case. When the database

overhead is included, TCP will introduce 32% overhead over

UDP. TLS-AES and TLS-3DES will incur an additional 30%

and 44% overhead over TCP, respectively. The rest of the

cost contributions are similar to when SIP authentication is

not enabled, because the authentication database functions are

orthogonal to the TLS functions.

B. Outbound Proxy

Table III shows peak throughputs of the outbound proxy

mode in different configurations, namely UDP, TCP, TLS,

TLS with mutual authentication, and TLS where session

resumption. Each configuration has SIP authentication en-

abled. Since the choice of AES or 3DES only affects the

bulk data encryption overheads, which we have examined in

Section IV-A, for simplicity we restrict our experiments with

TLS to use only AES for the remainder of this paper. The

average CPU utilization in each case is around 90%.

Recall that in the TCP or TLS cases of this mode, each

call results in a new connection being established with the

server, as opposed to the proxy chain mode above. We see

that the peak throughput in the TCP case is around 58% of

the baseline UDP case. The TLS case is approximately 56%

of the TCP case. Within the TLS cases, adding TLS mutual

authentication reduces throughput about 20%, while enabling

session resumption increases throughput about 20%.

Fig. 6 shows the CPU profiles for different outbound proxy

configurations, again at the 50 cps load level. Using TCP

introduces about 47% more or 271K of overheads compared

to using UDP. Within this increase, Kernel costs contribute

144K, while OpenSIPS-Core and OpenSIP-Module contribute

102K. The remaining 25K is contributed by libc and other

functions.

The use of TLS introduces 75% additional overhead com-

pared to the TCP case. TCP consumes about 840K cycles

whereas TLS costs about 1,470K cycles. Much of this in-

crease comes from RSA (233K) because in this configu-

ration the proxy needs to perform one of the most costly

operations in the TLS handshake: RSA decryption of the

pre_master_secret using its private key. Another major

component of the increase is from MAC processing (65K),

which is not only used to verify the encrypted messages

but also to verify the server certificate and construct the

master_secret. Other OpenSSL overheads such as libssl

(34K) and other libcrypto functions (36K) also contribute.

Enabling TLS mutual authentication incurs about 1,790K

cycles or an additional 330K cycles over the baseline TLS,

most of which comes from increased RSA costs (160K). Re-

call in this case the server requests the client’s certificate which

the server verifies using RSA public key decryption [27].

In addition, the server performs another RSA public key

decryption for the client’s certificate verification message and

also verifies the certificate using the MAC algorithm. Indeed,

we see MAC costs increase by 10K cycles when mutual au-

thentication is used. Kernel costs also increase by 45K cycles,

presumably due to additional network packets transmitted and

context switches between user and kernel space.

However, enabling TLS session resumption reduces the

overhead by 200K cycles compared to the baseline TLS case.

Most of this overhead is explained by the reduction in RSA

costs, which shrink from 233K cycles to only 10K cycles. This

is because in the session resumption case, no key exchange

and certificate verification is required. MAC costs remain,

however, since new cryptographic keys are still computed for

data encryption.

It is worth noting that the TLS mutual authentication test

above also includes SIP proxy authentication. While TLS

mutual authentication is used to authenticate and authorize

“client systems”, SIP proxy authentication is more used to

8

Config UDP TCP TLS TLS MutualAuth TLS SessionResume
Original 2400 200 125 80 130
W/TOfix 2400 583 161 115 326

TABLE IV: Peak Throughput: Inbound Proxy

Fig. 7: CPU Profile Cycle Costs: Inbound Proxy (with Timeout

Fix)

authenticate and authorize “users”.

C. Inbound Proxy

Table IV shows the peak throughput of the inbound proxy

mode, where SIP proxy authentication is not enabled. The ta-

ble shows two versions of OpenSIPS: the original version and

one with a modification we developed, denoted as “W/TOfix”.

We start by explaining the performance problem we discovered

and how we solved it.

We examined the original OpenSIPS CPU profile under the

peak throughput for TCP and TLS. Surprisingly, 50% of the

CPU cycles in the TCP case and 20% of the CPU cycles in the

TLS case are spent in two functions called tcp_main_loop

and tcp_receive_loop. More detailed profiling revealed

that the overheads in the two functions are primarily the cost

of two timeout mechanisms used to close the TCP connections

which are no longer in use. In the inbound proxy case,

the timeout mechanism becomes prominent because the UAS

in our tests does not close the TCP/TLS connection when

the call is over. There can be thousands of simultaneous

TCP connections existing in the TCP connection table. The

existing server code calls a timeout function every time the

epollmechanism returns when events are detected. Since the

connection expiration time is not linked to the corresponding

hash key, during each call to the timeout function, the entire

TCP connection hash table is traversed. Therefore, at high

loads when the hash table has thousands of entries, the time

spent in the timeout function becomes much larger than that

of the case under lower load.

We applied a fix to the OpenSIPS TCP connection timeout

mechanism. Observing that the timeout is based on a time

tick with one second resolution, it makes no sense to enter

the timeout function more than once per second. We therefore

added a time tick check before calling the timeout function. If

the program has already called the timeout function during the

current time tick value, it will not enter the timeout function

until the time tick value is advanced. This simple fix turned

out to have a significant impact on performance involving TCP

and TLS, as shown in Table IV.

As can be seen, the TCP case and the TLS with session

resumption scenario enjoy the most obvious boosts in through-

put, by about 200% and 150% respectively. For example, in

the TCP inbound proxy test case, the contribution of the two

timeout functions to the total overhead reduces from 50% to a

negligible 0.6%, and the total cost drops by 73%. In addition,

kernel costs shrink by 43%. CPU utilization at the 200 cps

load level reduces from 95% to 20%. The CPU utilizations at

the peak throughput values with the timer fix are in the range

of 80% to 90%.

In the TLS and TLS with mutual authentication, the propor-

tion of cryptographic overheads takes a greater part of the total

cost. Therefore, although they also see performance increases

from the timeout fix, the differences are less dramatic.

From Table IV, we see that the peak throughput with TCP

is about 24% of the UDP case. The peak throughput of TLS

is approximately 28% of the TCP case. Within the TLS cases,

adding TLS mutual authentication reduces throughput by 29%,

while enabling session resumption increases throughput by

100%.

Fig. 7 shows the CPU profiles for the inbound proxy

configurations where the timeout fix has been applied. In

general, using TCP incurs 174% (250K) of additional overhead

compared to using UDP, 118K of which comes from increase

in Kernel and 94K from increases in OpenSIPS-Module and

OpenSIPS-Core. The remainder comes from libc (8K) and

other functions (30K). The use of TLS introduces over 233%

of additional overhead compared to the TCP case (1,315K

cycles vs. 394K). 212K cycles are contributed by RSA, 173K

by other libcrypto processing, 93K by MAC processing, 44K

by libssl, and 23K by AES. Kernel overheads increase by 150K

and OpenSIPS-Core by 110K.

Enabling mutual authentication incurs an additional 42%

overhead (550K cycles) over the baseline TLS. The majority

of that increase comes from RSA (260K). MAC processing is

also increased by 310K.

Enabling TLS session resumption reduces costs by 46%

compared to the base TLS case, with total costs falling from

1,315K to 710K cycles. Reduced RSA processing contributes

200K of those reductions; other libcrypto costs drop by 135K;

MAC overheads are reduced by 40K; libssl costs shrink by

20K.

In this configuration, the main RSA costs in the normal TLS

case come from the proxy verifying the UAS’s certificate and

the proxy encrypting the pre_master_secret to be sent

to the UAS. The additional increase in RSA overheads in the

mutual TLS configuration is mainly because the proxy needs

to sign the client authentication message using its private key.

An interesting observation from Fig. 7 is the cost of MAC

functions, which are substantially higher than in the previous

proxy scenarios. This is because the proxy in the inbound

mode acts as TLS client and needs to verify the certificates

presented by the UAS, which was not present in the outbound

mode. In addition, in the mutual TLS case, the inbound

proxy needs to perform RSA encryption using its own private

key and to sign the certificates using the MAC algorithm.

9

Config UDP TCP TLS TLS MutualAuth TLS SessionResume
Original 462 136 65 60 100
W/TOfix 462 247 91 61 151

TABLE V: Peak Throughput: Local Proxy

Fig. 8: CPU Profile Cycle Costs: Local Proxy (with Timeout

Fix)

These overheads are exhibited in the profiles. Furthermore,

in the TLS with session resumption case, the MAC costs are

significantly reduced, indicating that a large amount of the

MAC cost is associated with the RSA key exchange phase,

rather than during the bulk data encryption.

Comparing Table IV and Table III, we also notice that in

the UDP, TCP and TLS with session resumption cases, the

throughputs in the outbound proxy mode are much higher than

those in the inbound proxy mode. Fig. 7 and Fig. 7 reveal

that this is mainly due to the additional database lookup cost

during user authentication in the outbound proxy mode. In the

other two cases, TLS and TLS with mutual authentication,

the TLS associated costs take a larger part and flatten out the

impact of the additional database cost, therefore the throughput

differences of these two modes are not as noticeable. It is

worth noting that using a more efficient database module such

as an in-memory database is expected to significantly reduce

the database cost.

D. Local Proxy

Table V shows the peak throughputs of various config-

urations in the local proxy mode with SIP authentication

enabled, and both with and without the timeout fix described

in Section IV-C. We see that the timeout fix has a substantial

impact on performance for both the baseline TCP case and

for TLS when session resumption is enabled, where TCP

overheads are significant. The timeout fix makes less of an

impact on the other TLS cases because in those cases the

TLS overheads account for a larger proportion of the total

cost. For the remainder of this Section, we focus our analysis

on the configurations where the timeout fix is applied.

The average CPU utilizations in the four configurations with

the timeout fix are between 80% to 90%. We see that the

peak throughput with TCP is around 53% of the UDP case,

while the peak throughput with TLS is approximately 37%

of the TCP case. Within the TLS cases, adding TLS mutual

authentication reduces throughput by 33%, while enabling

session resumption increases throughput by 66%.

Fig. 8 shows the CPU profile results for the local proxy

mode with the timeout fix. In general, the use of TCP incurs

58% additional overhead compared to the baseline UDP case.

186K of this is contributed by Kernel, 108K by OpenSIPS-

Core and OpenSIPS-Module, 10K by libc and 30K by other

functions. Using TLS introduces over 166% of additional

overhead compared to the TCP case. Total cycles increase by

1,500K from 900K to 2,400K. RSA contributes 434K to that

increase, followed by kernel overheads 240K, MAC processing

219K, other libcrypto functions 174K, OpenSIPS-Core 140K,

libssl 67K, and AES 36K.

Enabling TLS mutual authentication incurs an additional

32% overhead over the baseline TLS, increasing total costs

about 800K from 2,400K to 3,170K. Additional RSA over-

heads contribute 375K of the increase, 125K from kernel,

100K from MAC, 70K from libcrypto, 45K from OpenSIPS-

Core, and 5K from libssl.

Enabling TLS session resumption reduces the cost relative

to the baseline TLS case by 38%. Cycles shrink by 900K

from 2,400K to 1,500K. RSA savings contribute 415K to the

difference, followed by MAC 130K, other libcrypto functions

110K, kernel 80K, OpenSIPS 50K, libssl 25K.

The MAC cost is significantly reduced in the TLS with

session resumption case, indicating that a large amount of the

MAC cost is associated with the RSA public key exchange

phase, as discussed in the inbound proxy case in Section IV-C.

V. A COMPONENT COST MODEL

In this section we present a measurement-driven cost model

derived from results of all the 18 test scenarios in Section IV.

The model shows the overall cost relationship among the

different configuration parameters. While clearly performance

will vary across systems, our model helps network adminis-

trators in provisioning their systems by providing an intuitive

way to estimate where the overheads in deploying SIP-over-

TLS are and gives guidance on relative performance across a

single system with and without TLS. Thus, if an administrator

understands how much server resources are required to support

a SIP subscriber base using UDP, the cost model helps them

estimate the capacity relative to that required to support TLS.

A. Constructing the Cost Model

Our model is based on decomposing the costs from each

scenario into basic building blocks. Costs are derived from

the number of CPU events, as measured by oprofile, that a

particular proxy mode configuration incurs at a load of 50 cps.

This 50 cps is a load level that can be sustained by all the

test configurations. The decomposition of costs is enabled by

our characterization of the four SIP server connection modes

(chain, outbound, inbound, local proxy) as in Section III-F

because each of the first three connection modes allows us to

examine a different aspect of the system in terms of TLS cost.

For the proxy chain mode, since there is no additional con-

nection establishment cost once the first connection has been

ready, it allows us to solely evaluate the cost impact incurred

10

Fig. 9: Functional Components Cost Model

in TLS bulk data encryption. The outbound and inbound proxy

modes include per-session connection management, therefore

allowing us to assess the additional cost impact associated with

the TLS handshake phase, where the proxy server acts as the

TLS client side and the TLS server side, respectively. Finally,

the local proxy mode gives us an overall view combining all

the aspects involved in the first three modes.

In deriving the model, we start from the CPU event cost

of the baseline configuration in proxy chain mode with UDP.

This cost is shown in the first bar in Fig. 5 we normalize it as

one cost unit and use it as the base for computing other costs.

For example, the second bar in Fig. 5 indicates a cost of 2.1

units for the proxy chain mode with TCP. Then, the difference

of these two costs, 1.1, gives us the incremental overhead of

using TCP for data transfer. Similarly, the TLS case in the

proxy chain mode adds TLS bulk data encryption overhead

to the plain TCP case. By subtracting the cost in the plain

TCP case from the TLS case, we can obtain the cost of bulk

data encryption. As long as the same cipher suite is used, this

cost of bulk data encryption should be the same in all other

scenarios. Next, if we look at the inbound proxy mode, the cost

difference between the plain TCP inbound proxy mode and the

plain TCP proxy chain mode is caused by the per-call TCP

handshake overheads. Subtracting these two, we can calculate

the per-call handshake cost, which would be applicable also

in the TLS inbound proxy mode. Following this approach,

we can obtain the modular costs of all other components for

the proxy chain, inbound proxy and outbound proxy mode

configurations. These costs are plotted in Fig. 9. Below we

explain in more detail each of the functional components in

Fig. 9 and compare them in difference scenarios.

The UDP Data cost represents the base processing cost

over UDP transport. Its main components are OpenSIPS-Core,

OpenSIPS-Module, related kernel and libc costs. These costs

are the minimum costs that will incur in any other scenarios.

Therefore, it is used as the base for our cost normalization.

The TCP Data Transfer cost stands for the additional

processing cost incurred when TCP is used instead of UDP.

At a cost of 1.1, it is a little larger than the base UDP cost.

Using TCP thus more than doubles the cost of SIP processing

with UDP.

TLS Encryption cost is the cost for bulk data encryption

Fig. 10: Impact of TLS Client Side Fix on Inbound Proxy

and decryption in any scenario involving TLS. This cost is

determined by the encryption/decryption algorithm in the TLS

cipher suite. In the majority of our tests, we used the AES

cipher suite that the SIP RFC mandates with a 128-bit key

size. The normalized cost of bulk data encryption using AES

is 1.1, representing a similar amount of cost increase as the

additional TCP data transfer cost. Adding bulk data encryption

and TCP thus triples the cost of UDP with non-encrypted data.

The Authentication cost represents the cost of the SIP proxy

authentication mechanism. The values are 3 for UDP, 3.2 for

TCP and 3.6 for TLS, respectively, which are over three times

the base UDP data transfer cost. The authentication cost over

TLS is more expensive than the cost of TCP due to additional

TLS overheads. The sheer majority of the authentication cost

is contributed by database lookup for credential verification.

It should be possible to significantly reduce the database cost

by replacing it with an in memory database.

The TCP Client Handshake cost represents the overhead

when the proxy needs to open a TCP connection to the next

hop on a per-call basis, as is the case in the inbound and

local proxy modes. Similarly, the TCP Server Handshake cost

represents the cost when the proxy must accept and establish a

new TCP connection from the previous hop. Our experiments

show that the costs at the TCP client and server side are

similar, at between 60% and 70% of the base UDP Transfer

cost.

The TLS Client Handshake cost represents the overhead

when the proxy needs to open a TLS session for a call, such

as in the inbound and local proxy modes. The TLS Server

Handshake cost represents the overhead when the proxy needs

to accept a TLS session, as in the outbound and local proxy

modes. The actual overheads depend on how TLS operates.

Surprisingly, we originally observed that the TLS client side

cost is 90% higher than its server side cost in both the TLS

and TLS mutual authentication scenarios, which is contrary

to the common wisdom [45]. We looked into the code and

found an OpenSSL-related redundant code path traversal in

the OpenSIPS server. After applying another fix, Fig. 10 shows

the new CPU cycle cost as opposed to the original cost in the

inbound proxy TLS mode. As can be seen, the CPU costs

shrink in virtually all categories except AES encryption cost,

which should not be affected anyway. To further verify the

TLS library cost associated with establishing TLS connections

(as TLS client) and accepting TLS connections (as TLS

server), we compare the corresponding cost incurred in the

SIP proxy with that incurred in a simple HTTPS client server

11

Fig. 11: CPU Scaling Error within Each Proxy Configuration

application [44], assuming a similar number of connections are

being set up. Results indicate a 10% to 15% reasonably close

crypto costs match between the complex SIP proxy server

and the simple HTTPS server. Therefore, the numbers we list

in Fig. 9 are values with our TLS client side connection fix

applied. With the normal TLS handshake, the cost at the client

side and server side are 2.7 and 2.9 respectively. When TLS

mutual authentication is enabled, the cost at the client and

server side nearly doubles at 4.2 and 5.1 respectively. With

TLS session resumption, the TLS client side cost reduces by

90% to 0.26 and the TLS server side cost shrinks by 50% to

1.4. These numbers represent a TLS client side cost reduction

of 50%, 55% and 73% in TLS, TLS mutual authentication

and TLS session resumption cases compared with the origi-

nal unpatched server. In other words, it means considerable

throughput improvements in those operation modes.

B. Validating the Component Cost Model

We took two steps to validate that our component cost model

derived at a particular load point of 50 cps can be scaled to

higher load values as well.

The first step is to validate that, within a particular proxy

mode configuration, the peak throughputs are close to what

we would “expect” them to be. In other words, given a

throughput of 50 cps for some configuration, we estimate the

peak throughput to be a linear extrapolation based on the

CPU utilization at the 50 cps load level. For example, if for

a particular configuration, we see 10% CPU at 50 cps, we

expect the peak throughput to be close to 500 cps. Since

different peak throughputs exhibit different CPU utilizations,

we scale the estimates based on the utilization seen at the peak.

We calculate the percentage error between the extrapolated

estimate and the actual observed peak throughput in Fig. 11.

Although there are a few cases where the difference is up

to 35% to 45% percent, the majority of the scenarios have

much smaller errors. The overall average error is less than

15% percent. This indicates the CPU scaling assumption is

reasonably effective.

The second step to validate the model is to check that the

relationship between CPU events and CPU utilization is also

linear, because we want to use the cost model to predict peak

Fig. 12: CPU Events vs. CPU Utilization Across Proxy Con-

figurations

throughput relationships across different scenarios. From our

experience we know that the number of CPU events is a

more stable estimate than CPU utilization, which has higher

variability, particularly at low loads. If the events and CPU

utilization across different scenarios exhibit a linear relation-

ship, and since we know from above that the throughput scales

linearly with CPU utilization, we can similarly scale the event

cost within each scenario. This lets us obtain a predicted peak

throughput relationship across different scenarios by taking the

inverse of the cost for each scenario at the 50 cps load level.

Fig. 12 shows the number of CPU events vs. CPU utilization

across all 18 of our peak throughput measurements. The Y-

axis presents the CPU events as measured by oprofile. The X-

axis is the corresponding CPU utilization for that experiment.

We also plot a fitted trend line, which shows a clear linear

relationship. There are a few outlier points which are relatively

farther away from the trend line, and as was expected, these

are exactly the points which have the largest CPU utilization

scaling error observed in step one of the validation.

C. Using the Component Cost Model

Our component cost model can be used in at least two

ways. First, given the component costs of a baseline scenario

on a target system, the model offers a simple approach to

approximate the relative cost of the SIP server operating

at different modes. For example, the local proxy mode can

be considered as a combination of the inbound proxy and

outbound proxy mode. Given the costs of the inbound and

outbound proxies, we can then derive the projected cost of the

local proxy mode from this model. After comparing the model-

derived costs and the actual measured costs in the local proxy

mode, we found that the two sets of costs differ within 3% to

13%, indicating a close match. Similarly, if we choose to use a

different bulk data encryption algorithm in any of the scenario,

we can substitute the cost of the encryption component with

that of the new algorithm and keep the remainder the same.

The second and more common use of the functional cost

model is to approximate the peak throughput of different

scenarios. Since the CPU cost and utilization scale relatively

linearly according to the load as we have seen in our model

validation, the peak throughput should be inversely propor-

tional to the cost. Therefore, if we know the peak throughput

of the baseline UDP proxy chain mode configuration, we will

12

be able to project the peak throughput of other scenarios with

different configuration combinations.

For example, from Fig. 9, we know that depending on

whether SIP proxy authentication is enabled, the use of TCP

reduces throughput by 51% or 24% over UDP in the proxy

chain mode. When TCP connection handshake and mainte-

nance costs are incurred as in other scenarios, the throughputs

drop by 64% in the inbound mode and 32% to 40% in the

outbound and local proxy modes compared to UDP. When

comparing normal TLS versus plain TCP, if only bulk data

encryption is used as in the proxy chain mode, the model

suggests that TLS with AES reduces throughput by 34%

to 22% depending on whether SIP proxy authentication is

enabled. When both bulk data encryption and TLS handshake

costs are incurred as in the other proxy modes, the use of TLS

reduces throughput by 58% to 52% in the inbound and local

proxy modes and 43% in the outbound proxy mode. Within

the TLS cases, TLS mutual authentication may reduce the

throughput from 18% to 22% depending on the proxy mode.

When TLS session resumption is enabled, the throughput is

increased by 16% in the outbound proxy mode and by 40%

to 60% in the inbound and local proxy modes.

VI. RELATED WORK

SSL/TLS performance has been studied by a number of

researchers. However, almost all these studies are based on

SSL/TLS Web servers. Apostolopoulos et al. [10] found that

the overhead due to TLS can reduce the number of HTTP

transactions handled by up to two orders of magnitude. Kant

et al. [33] investigated the architectural impact of SSL, and

concluded that the use of SSL increases the compositional

cost of transactions by a factor of 5 − 7. Zhao et al. [63]

provided an oprofile-based anatomy of SSL processing for

an SSL Web server. They found that about 70% of the total

processing time of an HTTP-over-SSL transaction is spent in

SSL processing. Coarfa et al. [15] measured the difference of

TLS server throughput by selectively replacing TLS operations

with no-ops, instead of using a CPU profiler. Their results

show that RSA computations are the single most expensive

operation in TLS, which accounts for 13 − 58% of the total

time spent under different available server CPU cycles and

workload conditions.

Zeng and Cherkaoui [62] studied the performance of TLS

on a Common Open Policy Service (COPS) over TLS envi-

ronment. Their results showed that the cost of establishing a

COPS-over-TLS session took about a thousand times what is

needed for a plain COPS connection without TLS.

Many researchers have studied SIP server performance, al-

beit without TLS. Schulzrinne et al. presented SIPstone [54], a

suite of SIP benchmarks for measuring SIP server performance

on common tasks. Cortes et al. [17] measured the performance

of four different stateful SIP proxy server implementations

over UDP and reported throughput results from 90− 700 cps.

Nahum et al. [21], [36] showed experimental performance

results of the OpenSER SIP server under different scenar-

ios including stateful and stateless proxying, TCP and UDP

transport, with and without SIP proxy authentication. Their

results indicate that any of these configurations can affect

performance by a factor of 2 − 4. Their evaluated SIP-over-

TCP scenario corresponds to the TCP single connection in the

proxy chain mode of this paper. Ono and Schulzrinne [40]

studied the performance of the SIPd [52] SIP server over

the UDP and TCP transports. Their TCP tests include the

multiple connection mode between the SIP proxy and the

UA similar to the local proxy mode of this paper. Ram et

al. [42] provided more understanding of the impact of TCP on

SIP server performance using OpenSER. They showed that a

substantial component of the performance loss from using TCP

is due to the process architecture in OpenSER and provided

improvements. Wright et al. [61] studied the performance

of SIP servers on multi-core systems. They proposed and

evaluated several optimizations to improve scalability up to

eight cores. In addition, a number of researcher have looked

into the SIP server performance over UDP or TCP under

overload conditions, such as Shen et al. [56], [57], Hilt et

al. [30], [31], Noel et al. [39] and Abdelal et al. [8].

Cha et al. [14] described a study of SIP with TLS, DTLS

and IPsec over TCP, UDP and SCTP. The work is based

on ns-2 [3] simulation and the scope of the evaluation is

on call setup delay in a two-hop SIP proxy scenario with

background traffic. Thus the focus is on delay as a function of

packet exchanges rather than server CPU overheads. Kim et

al. [35] measured the call setup delay (along with voice quality

metrics such as mean option score) on a SIP-based VoIP

system which contains both TLS and S-MIME. The paper

indicates that the testbed was built by the authors although

it is not clear what the exact software and hardware used

are, or what the call request rate during the measurement

is. Gurbani et al. [29] proposed a different SIP-over-TLS

approach with cryptographically transparent SIP proxy servers.

They use a newly defined SIP CONNECT method to establish a

TCP overlay between the SIP UAs directly and allow them to

then establish a TLS session directly. Thus, intermediate proxy

servers merely forward encrypted messages which protects

the signaling privacy. Their empirical results also showed

noticeable latency and significant CPU cost compared to

existing SIP-over-TLS usage, due to reduced overhead in

session renegotiation and cryptographic operations. On another

study, Subramanian and Dutta [58] conducted an experimental

study of SIP proxy server performance with TLS based on

CISCO SIP proxy server and CISCO Camelot call generators.

Their testbed comprises two servers acting as outbound and

inbound proxy servers, respectively. They reported call setup

delay, overall CPU utilization, average queue size and memory

cost of the testbed at a 1,000 cps load. In contrast, our

study considered a more comprehensive set of SIP proxy

configurations, different possible TLS operation modes, and

detailed server CPU profiling. Yet another relevant work in

SIP-over-TLS performance is from Salsano et al. [50] who

measured the throughput and processing cost of SIP proxy

server over UDP, TCP and also TLS. Their test cases for

stateful SIP proxy servers represent four of the 18 scenarios

that we look at, essentially the UDP NoAuth, UDP Auth, TCP

Auth, and TLS Auth configurations, all in the proxy chain

mode. The total cost ratios of these four scenarios in their

13

work are 1:1.44:1.52:1.54, while the corresponding ratios from

our results are 1:4:5.2:6.7. These numbers are not directly

comparable because of the different software and hardware

platforms used in the two sets of experiments. Salsano et

al. used their own open-source SIP server implemented in

Java with 300 MHz Pentium machines running either Linux

or Windows 98/2000. We use contemporary hardware and

standard open-source software implemented in C. As a result,

the peak performance of the two testbeds are also dramatically

different. For example, in the basic UDP NoAuth scenario,

the peak throughput on their testbed is 21 cps, compared to

2,400 cps on ours, a factor of 100 difference in performance.
One approach to reducing security overheads is to use a

hardware crypto accelerator, e.g., Sun’s Crypto 6000 card [16].

While this can improve performance (e.g., the card claims

13,000 1024-bit RSA operations per second), the cards tend to

be expensive (e.g., the list price for the board was $9,950 at the

time of this writing). More importantly, in many cases, much

of the overhead we observed was in the OpenSSL software

libraries themselves (e.g., libssl, libssl-other), rather than the

crypto algorithms (libcrypto). Crypto acceleration hardware

will not help with these overheads.

VII. CONCLUSIONS

Insecure UDP-based signaling is one major reason that

exposes SIP-based services to many common security threats.

We have evaluated and analyzed the impact of using TLS as

a transport on SIP server performance versus the standard ap-

proach of SIP-over-UDP. Using an experimental testbed with

the OpenSIPS server, OpenSSL, Linux, and an Intel-based

server, we show that TLS can reduce SIP server performance

significantly. We use application, library, and kernel profiling

to illustrate where different costs are incurred (e.g., extra RSA

overheads when mutual authentication is used) and how they

can be avoided (i.e., RSA costs are nearly eliminated when

session resumption is effective).
In the best case, the baseline UDP performance is about

three times that with TLS (proxy chain); in the worst case,

UDP is 17 times the performance than with TLS (local

proxy with TLS mutual authentication). The performance

results depend primarily on whether and how frequent TLS

connection establishment is performed, since TLS session

negotiation incurs expensive RSA public key operations. In

turn, session negotiation depends on how the SIP proxy is

deployed (as an inbound, outbound, or local proxy) and how

TLS is configured (with mutual authentication or session

resumption). Bulk encryption costs such as 3DES or AES,

in contrast, are minimal, typically no more than 7 percent.
Implementation plays a role as well. We found several

performance issues with OpenSIPS and OpenSSL, despite the

fact that they have mature code bases and large numbers of

users. These issues were usually overlooked because they only

manifest themselves in high-load, multiple-connection scenar-

ios. The fixes to these problems range from straightforward

adjustment of default parameter values, to more complicated

code path optimization and rather subtle library bug patches.

When these fixes are applied, performance improved in some

cases from a few times up to an order of magnitude.

Network operators considering deploying SIP over TLS will

need to consider the extra resources required to provide the

same service quality as would be the case with UDP. Costs

can be reduced by maximizing the potential for persistent TLS

sessions, which avoid heavy connection setup costs. These

lessons may be appropriate for other protocols that use TLS,

especially if they tend to have short messages. We provide

a measurement-driven cost model for operators to use in

provisioning SIP servers with TLS. Our cost model predicts

performance within 15 percent on average.

REFERENCES

[1] Global IP network latency. http://ipnetwork.bgtmo.ip.att.net/pws.
[2] MySQL. http://www.mysql.org.
[3] ns-2 simulator. http://www.isi.edu/nsnam/ns/.
[4] OpenSSL. http://www.openssl.org.
[5] OProfile. http://oprofile.sourceforge.net.
[6] SIP forum. http://www.sipforum.org.
[7] VoIP security alliance. http://www.voipsa.org.
[8] A. Abdelal and W. Matragi. Signal-based overload control for SIP

servers. In Proc. 7th Annu. IEEE Consumer Commun. and Networking

Conf., Las Vegas, Nevada, Jan. 2010.
[9] A. Acharya, X. Wang, and C. Wright. A programmable message

classification engine for Session Initiation Protocol (SIP). In Proc. 3rd

ACM/IEEE Symp. Architecture for networking and commun. syst., pages
185–194, Orlando, FL, Dec. 2007.

[10] G. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How
much does it really cost? In Proc. 18th Annu. Joint Conf. IEEE Comput.

and Commun. Soc., New York, NY, Mar. 1999.
[11] V. Balasubramaniyan, A. Acharya, M. Ahamad, M. Srivatsa, I. Dacosta,

and C. Wright. Servartuka: dynamic distribution of state to improve SIP
server scalability. In Proc. 28th International Conference on Distributed

Computing Syst., pages 562–572, Beijing, China, Jun. 2008.
[12] D. Butcher, X. Li, and J. Guo. Security challenge and defense in VoIP

infrastructures. IEEE Trans. Syst., Man, and Cybern., Part C: Applicat.

and Reviews, 37(6):1152–1162, Nov. 2007.
[13] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitima, and D. Gurle.

Session Initiation Protocol (SIP) extension for instant messaging. RFC
3428, Dec. 2002.

[14] E. Cha, H. Choi, and S. Cho. Evaluation of security protocols for
the Session Initiation Protocol. In Proc. 16th Int. Conf. on Comput.

Commun. and Networks, Honolulu, HI, Aug. 2007.
[15] C. Coarfa, P. Druschel, and D. Wallach. Performance analysis of TLS

Web servers. In Proc. Internet Soc. Symp. on Network and Distributed

Syst. Security, San Diego, CA, Feb. 2002.
[16] Oracle Corporation. Sun crypto accelerator 6000 PCIe card. http://www.

oracle.com/us/products/servers-storage/networking/031146.htm.
[17] M. Cortes, J. Ensor, and J. Esteban. On SIP performance. IEEE Network,

9(3):155–172, Nov. 2004.
[18] I. Dacosta, V. Balasubramaniyan, M. Ahamad, and P. Traynor. Improving

authentication performance of distributed SIP proxies. In Proc. 3rd

Int. Conf. Principles, Syst. and Applicat. of IP Telecomm, pages 1–11,
Atlanta, GA, Jul. 2009.

[19] I. Dacosta and P. Traynor. Proxychain: Developing a robust and efficient
authentication infrastructure for carrier-scale VoIP networks. In Proc.

USENIX Annu. Tech. Conf., Boston, MA, Jun. 2010.
[20] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol

version 1.2. RFC 5246, Aug. 2008.
[21] E. Nahum and J. Tracey and C. Wright. Evaluating SIP server

performance. ACM SIGMETRICS Performance Evaluation Review,
35(1):349–350, Jun. 2007.

[22] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHA1). RFC
3174, Sep. 2001.

[23] J. Fabini, N. Jordan, P. Reichl, A. Poropatich, and R. Huber. “IMS
in a bottle”: initial experiences from an OpenSER-based prototype
implementation of the 3GPP IP multimedia subsystem. In Proc. Int.
Conf. Mobile Bus., page 13, Copenhagen, Denmark, Jun. 2006.

[24] RT for openssl.org. Ticket no. 598. http://rt.openssl.org/Ticket/Display.
html?id=598\&user=guest\&pass=guest.

[25] A. Freier, P. Karlton, and P. Kocher. The SSL protocol ver-
sion 3.0. Internet draft, Netscape Communications, Nov. 1996.
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

14

[26] R. Gayraud and O. Jacques. SIPp. http://sipp.sourceforge.net.
[27] V. Gurbani, S. Lawrence, and A. Jeffrey. Domain certificates in Session

Initiation Protocol (SIP). RFC 5922, Jun. 2010.
[28] V. Gurbani, R. Mahy, and B. Tate. Connection reuse in the Session

Initiation Protocol (SIP). RFC 5923, Jun. 2010.
[29] V. Gurbani, D. Willis, and F. Audet. Cryptographically transparent

Session Initiation Protocol (SIP) proxies. In Proc. IEEE Int. Conf. on
Commun., pages 1185 –1190, Jun. 2007.

[30] V. Hilt, E. Noel, C. Shen, and A. Abdelal. Design considerations for
Session Initiation Protocol (SIP) overload control. RFC 6537, Aug.
2011.

[31] V. Hilt and I. Widjaja. Controlling overload in networks of SIP servers.
In Proc. IEEE Int. Conf. on Network Protocols (ICNP), Orlando, Florida,
Oct. 2008.

[32] IPTel.org. SIP Express Router (SER). http://www.iptel.org/ser.
[33] K. Kent, R. Iyer, and P. Mohapatra. Architectural impact of secure

socket layer on Internet servers. In Proc. Int. Conf. Comput. Design,
pages 7–14, Austin, TX, Oct. 2000.

[34] A. Keromytis. Voice over IP: Risks, threats and vulnerabilities. In Proc.

Cyber Infrastructure Protection Conf., New York, NY, Jun. 2009.
[35] J. Kim, S. Yoon, H. Jeong, and Y. Won. Implementation and evaluation

of SIP-based secure VoIP communication system. In Proc. IEEE/IFIP
Int. Conf. Embedded and Ubiquitous Computing, Shanghai, China, Dec.
2008.

[36] E. Nahum, J. Tracey, and C. Wright. Evaluating SIP proxy server
performance. In Proc. 17th Int. Workshop Networking and Operating

Syst. Support for Digital Audio and Video, Urbana-Champaign, IL, Jun.
2007.

[37] NIST. Data Encryption Standard (DES), Dec. 1993. http://www.itl.nist.
gov/fipspubs/fip46-2.htm.

[38] NIST. Advanced Encryption Standard (AES), Nov. 2001. http://www.
csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[39] E. Noel and C. Johnson. Novel overload controls for SIP networks. In
Proc. 21st Int. Teletraffic Congr., Paris, France, Sep. 2009.

[40] K. Ono and H. Schulzrinne. One server per city: using TCP for very
large SIP servers. In Proc. 2nd Int. Conf. Principles, Syst. and Applicat.
of IP Telecomm, pages 133–148, Heidelberg, Germany, Oct. 2008.

[41] OpenSIPS. The open SIP server. http://www.opensips.org.
[42] K. Kumar Ram, I. Fedeli, A. Cox, and S. Rixner. Explaining the impact

of network transport protocols on SIP proxy performance. In Proc.
IEEE Int. Symp. Performance Anal. of Syst. and Software, pages 75–84,
Austin, TX, Apr. 2008.

[43] Light Reading. VoIP security: vendors prepare for the inevitable. VoIP
Services Insider, 5(1), Jan. 2009.

[44] E. Rescorla. openssl-examples. http://www.rtfm.com/openssl-examples.
[45] E. Rescorla. SSL and TLS: designing and Building Secure Systems.

Addison Wesley, 2000.
[46] E. Rescorla and N. Modadugu. Datagram transport layer security. RFC

4347, Apr. 2006.
[47] R. Rivest. The MD5 message digest algorithm. RFC 1321, Apr. 1992.
[48] R. Rivest, A. Shamir, and L. Adleman. Cryptographic commun. syst.

and method. Technical Report TR-212, MIT Lab for Computer Science,
Jan. 1979.

[49] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261, Jun. 2002.

[50] S. Salsano, L. Veltri, and D. Papalilo. SIP security issues: the SIP
authentication procedure and its processing load. IEEE Network,
16(6):38–44, Nov. 2002.

[51] B. Schneier. Applied Cryptography (2nd Edition). John Wiley and Sons,
New York, NY, 1996.

[52] H. Schulzrinne. SIPd. http://www.cs.columbia.edu/IRT/cinema.
[53] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a

transport protocol for real-time applications. RFC 3550, Jul. 2003.
[54] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle. SIPstone -

benchmarking SIP server performance. http://www.sipstone.com.
[55] C. Shen, E. Nahum, H. Schulzrinne, and C. Wright. The impact of TLS

on SIP server performance. Technical Report cucs-022-09, Columbia
Univ. Computer Science Dept., 2009.

[56] C. Shen and H. Schulzrinne. On TCP-based SIP server overload control.
In Proc. Principles, Syst. and Applicat. of IP Telecomm, pages 71–83,
Munich, Germany, Aug. 2010.

[57] C. Shen, H. Schulzrinne, and E. Nahum. Session Initiation Protocol
(SIP) server overload control: design and evaluation. In Proc. Principles,

Syst. and Applicat. of IP Telecomm (IPTComm). Services and Security
for Next Generation Networks, volume 5310/2008, pages 149–173, Oct.
2008.

[58] S. V. Subramanian and R. Dutta. Comparative study of secure vs.
non-secure transport protocols on the SIP proxy server performance:
an experimental approach. In Proc. Int. Conf. Advances in Recent

Technologies in Commun. and Computing, pages 301–305, Kottayam,
India, Oct. 2010.

[59] V. Tzvetkov and H. Zuleger. Service provider implementation of SIP
regarding security. In Proc. 21st Int. Conf. Advanced Inform. Networking
and Applicat. Workshops, volume 1, pages 30–35, Niagara Falls, Canada,
May 2007.

[60] X. Wang, R. Zhang, X. Yang, X. Jiang, and D. Wijesekera. Voice
pharming attack and the trust of VoIP. In Proc. 4th int. conf. Security
and privacy in commun. netowrks, pages 1–11, Istanbul, Turkey, Sep.
2008.

[61] C. Wright, E. Nahum, D. Wood, J. Tracey, and E. Hu. SIP server
performance on multicore systems. IBM J. Research and Develop.,
54(1), Feb. 2010.

[62] Y. Zeng and O. Cherkaoui. Performance study of COPS over TLS and
IPsec secure session. In Proc. 13th IFIP/IEEE Int. Workshop Distributed
Syst.: Operations and Manage., pages 133–144, Montreal, Canada, Oct.
2002.

[63] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan. Anatomy and perfor-
mance of SSL processing. In Proc. Int. Symp. Performance Anal. of
Systems and Software, pages 197–206, Austin, TX, Mar. 2005.

Charles Shen holds Ph.D. and M.S. degrees from
Columbia University in the City of New York, as
well as M.Eng. and B.S. degrees from National
University of Singapore and Zhejiang University
of China. He is a Senior Member of Technical
Staff at AT&T Security Research Center in New
York City. Prior to AT&T, he conducted research at
Columbia University Computer Science Department,
IBM Watson Research Center, Telcordia Technolo-
gies, Samsung Advanced Institute of Technology,
and Institute for InfoComm Research of Singapore.

Dr. Shen’s research interests include next generation IP telecommunications,
mobile applications and services, and the Internet of Things. Dr. Shen is
also an active contributor to international standardization bodies such as the
Internet Engineering Task Force (IETF).

Erich Nahum is a research staff member at the IBM T.J. Watson Research
Center. He received his Ph.D. in Computer Science from the University of
Massachusetts, Amherst in 1996. He is interested in all aspects of performance
in experimental networked systems.

Henning Schulzrinne , Levi Professor of Computer
Science at Columbia University, received his Ph.D.
from the University of Massachusetts in Amherst,
Massachusetts. He was an MTS at AT&T Bell
Laboratories and an associate department head at
GMD-Fokus (Berlin), before joining the Computer
Science and EE departments at Columbia University.
He served as chair of the Department of Computer
Science from 2004 to 2009 and as Engineering Fel-
low at the US Federal Communications Commission
(FCC) in 2010 and 2011.

Protocols co-developed by him, such as RTP, RTSP and SIP, are now
Internet standards, used by almost all Internet telephony and multimedia
applications. His research interests include Internet multimedia systems,
ubiquitous computing, and mobile systems. He is a Fellow of the IEEE.

Charles P. Wright is a research staff member at the IBM T.J. Watson
Research Center.

