Signaling for Networked Appliances

Henning Schulzrinne
Dept. of Computer Science
Internet Real-Time Laboratory (IRT)
Columbia University
New York, New York
schulzrinne@cs.columbia.edu

Panasonic (Princeton, New Jersey)

December 8, 2000

With Jonathan Rosenberg, Jonathan Lennox, Kundan Singh, Adam Roach and other participants in the SIP WG
Overview

- networked appliances
- requirements for control
- the Session Initiation Protocol (SIP)
- generic event notification
- instant messaging & presence
- programming services
Networked appliances

- household devices: “home automation” light switches, thermostats, IR presence detectors, door alarms, thermometers, …

- entertainment systems: video cameras, CD changers, (MP3) radios, …

- industrial control: sensing and controlling environment, machinery

- may be built into other devices, e.g., Internet telephone
Observations

- Single-valued (light-switch) to complex (CD changer) to multi-valued (temperature samples)
- Both built-in and mediated (X10)
- Often combined with audio/video in same system: security, industrial control, home entertainment
- Notification rates vary → gradual transition to continuous media

<table>
<thead>
<tr>
<th>IR detector</th>
<th>temperature sensor</th>
<th>process control</th>
<th>packet audio/video</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Events (packets) / second

January 2001
Current options for control

- OSGi (http://www.osgi.org)
- HAVi (http://www.havi.org)
- UPnP (http://www.upnp.org)
- Jini (http://www.jini.org)
- X.10 (http://www.x10.org): very low command rate, few bits/packet, bidirectional, 256 addresses/home, but very cheap
- Bluetooth (http://www.bluetooth.com)
- Salutation (http://www.salutation.org)
Requirements for control

- work both in local network and across Internet
- security ➤ don’t assume trusted network
- human-friendly naming: A10 ➔ bedroom lamp
- integrate with continuous media
- control not just through web browser, but also master controllers ➤ not just built-in web browser
- small footprint
- language-neutral
- buy-and-use, without (network) configuration
“Mobile” appliances

- most appliances don’t walk around
- but they do move in the network: different BlueTooth base stations, lend to friend, ...
- more importantly, notification target moves around: home, work, security monitoring station, ...
Architecture proposal

- Integrate into common architecture for Internet-wide notification and messaging

New basic internet service:

<table>
<thead>
<tr>
<th>Service</th>
<th>Protocol(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous messaging with pickup</td>
<td>SMTP + POP/IMAP</td>
</tr>
<tr>
<td>Data retrieval</td>
<td>HTTP, ftp, tftp</td>
</tr>
<tr>
<td>Export computer UI</td>
<td>telnet, ssh, X11, vnc</td>
</tr>
<tr>
<td>Synchronous messaging</td>
<td>SIP</td>
</tr>
</tbody>
</table>
The largest signaling network is not running SS7

- AT&T: 280 million calls a day
- AOL: 110 million emails/day, total about 18 billion/day
- total > 1 billion instant messages a day (AOL: 500 million)
- signaling effort of call ≈ IM
Session Initiation Protocol (SIP)

- IETF standards-track protocol (RFC 2543)
- request-response (message) protocol
- runs over UDP, TCP, SCTP, . . .
- message header + MIME body
- now widely used for Internet telephony: phones, gateways, soft clients, proxy servers, . . .
Example SIP exchange (simplified)

INVITE sip:bob@pc42.macrosoft.com SIP/2.0
To: Alice <sip:alice@wonderland.com>
From: Bob <sip:bob@macrosoft.com>
Call-ID: 17548xw@wonderland.com
CSeq: 1 INVITE

v=0 ...
c=IN IP4 128.59.16.1
m=audio 47192 RTP/AVP 0

SIP/2.0 200 OK
To: Alice <sip:alice@wonderland.com>
From: Bob <sip:bob@macrosoft.com>
Call-ID: 17548xw@wonderland.com
CSeq: 1 INVITE

v=0 ...
c=IN IP4 152.1.2.4
m=audio 16922 RTP/AVP 0
SIP features

Naming: user@host or device@home

Security: authenticate callers, encrypt content ➔ basic, digest, PGP, S/MIME

Forking: multiple destinations with same name, ACD

Content-neutral: any attachment, multi-part

Extensible: common base, negotiate features, add headers
SIP forking

INVITE sales@macrosoft.com
carol@c.macrosoft.com
INVITE bob@b.macrosoft.com
200 OK
INVITE carol@c.macrosoft.com
carol@c.macrosoft.com
CANCEL bob@c.macrosoft.com
200 OK
BYE carol@c.macrosoft.com
200 OK

macrosoft.com

bob@b.macrosoft.com

a.wonderland.com
SIP mobility

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>terminal</td>
<td>cross-provider</td>
<td>REGISTER, re-INVITE</td>
</tr>
<tr>
<td>personal</td>
<td>different terminals, same address</td>
<td>REGISTER</td>
</tr>
<tr>
<td>service</td>
<td>different terminals, same services</td>
<td>upload</td>
</tr>
<tr>
<td>session</td>
<td>move sessions across terminals</td>
<td>REFER</td>
</tr>
</tbody>
</table>
SIP personal mobility

alice17@yahoo.com
alice@columbia.edu
7000@columbia.edu
Alice.Cary@columbia.edu
yahoo.com
columbia.edu
 alice@columbia.edu
(also used by bob@columbia.edu)
tel: 12128541111
tel: 12015551234
alice@host.columbia.edu

January 2001
Example SIP system
Invisible Internet telephony

VoIP technology will appear in . . .

- Internet appliances
- home security cameras, web cams
- 3G mobile terminals
- fire alarms
- chat/IM tools
- interactive multiplayer games
- 3D worlds: proximity triggers call
Signaling and events

Signaling: “do this” (push) – Events: “this just happened”
Commonalities between signaling and events

- presence is just a special case of events: “Alice just logged in” \approx “temperature in boiler exceeds 300° F”
- need to locate mobile end points
- may need to find several different destinations (“forking”)
- same addressing for users
- presence often precursor to calls
- may replace call back and call waiting
- likely to be found in same devices
- events already in VoIP: message alert, call events
SIP as a presence & event platform

- requires minimal extensions to SIP: `SUBSCRIBE` to ask to be alerted, `NOTIFY` when event occurs
- `MESSAGE` for sending text messages ("IM")
- with forking, can easily register `MESSAGE` recorder
- true “chat” is voice (+ video)
- services such as reaching mobile phone while in meeting
- types of events:
 - inside existing call leg
 - within call, but outside call leg
 - unrelated to call leg
SIP presence architecture

NOTIFY
example.com
alice@macrosoft.com

SUBSCRIBE

REGISTER

UA

macrosoft.com

presence server

PA

registrar

PUA

presentity

bob

PA

PUA

PUA

January 2001
SIP presence components

Presentity: logical entity being subscribe to, e.g., alice@wonderland.com, with several agents

Registrar: receives REGISTER requests

Presence user agent (PUA): generates REGISTER, but no SUBSCRIBE or NOTIFY ➔ any non-presence-aware SIP software

Presence agent: receive SUBSCRIBE, generate NOTIFY

Presence server: SIP proxy + PA

Presence client: SIP UA + PA
SIP presence protocol

```
<table>
<thead>
<tr>
<th>subscriber</th>
<th>presentity, PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>alice</td>
<td>bob</td>
</tr>
</tbody>
</table>
```

- SUBSCRIBE bob
 - Event: presence
 - From: alice
 - To: bob

- 200 OK

- NOTIFY alice

- bob available

- 200 OK

- NOTIFY alice

- bob not available

- 200 OK

January 2001
SIP SUBSCRIBE example

SUBSCRIBE sip:bob@macrosoft.com SIP/2.0
Event: presence
To: sip:bob@macrosoft.com
From: sip:user@example.com
Contact: sip:user@userpc.example.com
Call-ID: knsd08alas9dy@3.4.5.6
CSeq: 1 SUBSCRIBE
Expires: 3600
Content-Length: 0

- Forked to all PUAs that have REGISTERed with method SUBSCRIBE.
- 200 (OK) response contains current state.
SIP NOTIFY example

NOTIFY sip:user@userpc.example.com
To: sip:user@example.com
From: sip:alice@wonderland.com
Call-ID: knsd08alas9dy@3.4.5.6
CSeq: 1 NOTIFY
Content-Type: application/xpidf+xml

<?xml version="1.0"?>
<!DOCTYPE presence
 PUBLIC "-//IETF//DTD RFCxxxx XPIDF 1.0//EN" "xpidf.dtd">
<presence>
 <presentity uri="sip:alice@wonderland.com;method="SUBSCRIBE">
 <atom id="779js0a98">
 <address uri="sip:alice@wonderland.com;method=INVITE">
 <status status="closed"/>
 </address>
 </atom>
 </presentity>
</presence>
Model for control and events

- SIP name high-level entity that’s indivisible: lamp, stereo, … can be done differently
- multiple such entities per networked device
- finer-grained control ("variables") for buttons, switches, and events via XML description
Example home architecture

(Work with Telcordia)
Programmable Internet telephony

<table>
<thead>
<tr>
<th>Feature</th>
<th>APIs</th>
<th>servlets</th>
<th>sip-cgi</th>
<th>CPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language-independent</td>
<td>no</td>
<td>Java only</td>
<td>yes</td>
<td>own</td>
</tr>
<tr>
<td>Secure</td>
<td>no</td>
<td>mostly</td>
<td>no, but can be</td>
<td>yes</td>
</tr>
<tr>
<td>End user service creation</td>
<td>no</td>
<td>yes</td>
<td>power users</td>
<td>yes</td>
</tr>
<tr>
<td>GUI tools w/portability</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Call creation</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Multimedia</td>
<td>some</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Example: integration with iCal → automatically export personal calendar to call handling
CPL textual representation

<incoming>
 <address-switch field="origin" subfield="host">
 <address subdomain-of="example.com">
 <location url="sip:jones@example.com">
 <proxy>
 <busy> <sub ref="voicemail" /> </busy>
 <noanswer> <sub ref="voicemail" /> </noanswer>
 <failure> <sub ref="voicemail" /> </failure>
 </proxy>
 </location>
 </address>
 </address-switch>
</incoming>
Challenges for programmable services

- integration of authentication information
- handling of SUBSCRIBE, NOTIFY
- integration of JavaScript and CPL?
- modifiable
- model for program generation: flow charts? menus?
- end-system programming: abstracted user interface?
Efforts at Columbia

- integrate into sipc: lamp is just another address-book entry
- SIP + virtual worlds
- enhance call processing language with subscription and notification handling capability
Conclusion

- basic IETF-based architecture in place
- SIP as foundation for services – see http://www.cs.columbia.edu/sip
- new Internet service: synchronous messaging
- common infrastructure for Internet telephony, conferencing, IM, presence and device control true integrated services