SIP Status and Directions

Henning Schulzrinne
Dept. of Computer Science
Columbia University
New York, New York
schulzrinne@cs.columbia.edu

VON Developer’s Conference Fall 2000 (Boston)
July 18, 2000 – The Road Ahead

(with material from Jonathan Rosenberg)
Overview

- SIP – what’s it good for (and not)
- SIP IETF standardization work
- SIP products and bake-offs
- SIP-H.323 interworking
What is SIP good at?

- session setup = “out of band”
- resource location via location-independent identifier (“user@domain”, tel)
- particularly if location varies rapidly or filtering is needed (i.e., is inappropriate for DNS and LDAP)
- real-time: faster than email
- reach multiple end point simultaneously or in sequence = forking
- possibly hide end-point location
- delayed final answer (“ringing”) ↔ RTSP
What is SIP not meant for?

- bulk transport: media streams, files, pictures, ...
- asynchronous messaging ("email")
- resource reservation
- high-efficiency general-purpose RPC
Current SIP working group status

- nearly 200 attendees at IETF 47 in Adelaide (March 2000)
- 31 active Internet drafts
- of which about 20 are WG work items
- design teams focusing on security, home networks, SIP-H.323, …
- want to finish all of this this year…
Current SIP efforts

- SIP to Draft Standard
- QoS and security preconditions
- inter-domain AAA and billing
- session timer for liveness detection
- early media (PSTN announcements)
- SIP for presence / instant messaging
- SIP-H.323 interworking
- SIP MIB
- reliable provisional responses
- DHCP configuration for finding SIP servers
- SIP for firewalls and NATs
- caller preferences
- services (transfer, multiparty calls, third-party, home)
- ISUP carriage
- “911”
Management and auto-configuration

- **SIP MIB**
 - management of proxy, redirect, registrar and user agents
 - based on existing early MIBs
 - monitoring status, ports, URI types, statistics (transactions, requests, responses), pending transactions, ...

- **DHCP option for SIP servers**
 - user agent learns where to register and find outbound proxy
 - easily added to existing DHCP servers
 - in IESG review
Management and auto-configuration

- Service Location Protocol (SLP) templates
 - SLP allows clients to find local servers matching criteria
 - SLP template for SIP:
 * IPsec and TLS transport support
 * CPL support
 * caller preferences
- Template already registered with IANA
SIP-T

- ISUP transparency
- INFO method for mid-call messages
- ISUP ↔ SIP conversion
- MIME definition for ISUP payload
- overall architecture document
SIP extensions: reliable provisional responses

- SIP provisional (180, 183, ...) responses are not reliable
- sometimes needed for ringing and queueing status
- particularly for transparent PSTN bridging
- extension requests acknowledgement (PRACK)
- also used by SIP QoS extension

in WG last call
SIP extensions: session timer

- there are no SIP messages during a session → can’t detect whether other side is still alive
- gateways can/should use media activity
- needed for firewalls and billing
- session timer asks for periodic invitation refreshes
- also allows recovery from callee system crashes
SIP extensions: caller preferences

- generic address: alice@wonderland.com
- caller may want to restrict destination selection
 - home or work
 - fax, audio, video, text, ... call
 - mobile or landline
 - language spoken
 - secretary or voicemail
 - avoid re-visiting old locations
- rules carried in INVITE request
SIP extensions: SIP and resource reservation

• problem:
 – resource reservation and call signaling are separate
 – separate machinery, path
 – call setup needed to get IP addresses
 – avoid successful call, failed reservation

• couple at end systems
 – pre-conditions for call setup (also: security)
 – COMET indicates success
SIP distributed state

- HTTP “cookies” store server state on client
 - server asks client to store data
 - client inserts data into requests
 - cookie opaque to client
- also useful for SIP sessions:
 - session management
 - fault tolerance (“fail over”)
 - scalability
- for SIP:
 - proxies create data, UAs store
 - repeat for same call
SIP third-party call control

- some services require a third party to create a session between users
 - IVR services
 - click-to-dial
 - prepaid calling
- 3rd party call control
 - needs no SIP extensions
 - just copies SDP from one “leg” to another
SIP 911 service

Internet-based emergency call service

- uniform emergency “number”
- locate nearest public safety answering point (PSAP)
- convey user location to PSAP
Status

- Proposed Standard, Feb. 1999 – RFC2543
- bakeoffs every 4 months → cross-vendor interoperability tests

<table>
<thead>
<tr>
<th>host</th>
<th>when</th>
<th>companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Columbia University</td>
<td>April 1999</td>
</tr>
<tr>
<td>2</td>
<td>pulver.com</td>
<td>August 1999</td>
</tr>
<tr>
<td>3</td>
<td>Ericsson</td>
<td>December 1999</td>
</tr>
<tr>
<td>4</td>
<td>3Com</td>
<td>April 2000</td>
</tr>
<tr>
<td>5</td>
<td>pulver.com</td>
<td>August 2000</td>
</tr>
<tr>
<td>6</td>
<td>Sylantro</td>
<td>December 2000</td>
</tr>
<tr>
<td>7</td>
<td>ETSI</td>
<td>April 2001</td>
</tr>
</tbody>
</table>
SIP implementations

Roughly in order of maturity:

- proxies and redirect servers for service creation
- PC-based user agents – Windows and other OS
- Ethernet phones
- softswitches (Megaco/MGCP/...) “crossbar”
- protocol analyzers
- firewall and NAT enhancements
- SIP-H.323 gateways
- unified messaging
On-going SIP implementations

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Com</td>
</tr>
<tr>
<td>AudioTalk Networks</td>
</tr>
<tr>
<td>Broadsoft</td>
</tr>
<tr>
<td>Catapult</td>
</tr>
<tr>
<td>Cisco</td>
</tr>
<tr>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Columbia University</td>
</tr>
<tr>
<td>Delta Information Systems</td>
</tr>
<tr>
<td>dynamicsoft</td>
</tr>
<tr>
<td>Ellemtel</td>
</tr>
<tr>
<td>Ericsson</td>
</tr>
<tr>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td>Hughes Software Systems</td>
</tr>
<tr>
<td>Indigo Software</td>
</tr>
<tr>
<td>Iwatsu Electric</td>
</tr>
<tr>
<td>Komodo</td>
</tr>
<tr>
<td>Lucent</td>
</tr>
<tr>
<td>MCI Worldcom</td>
</tr>
<tr>
<td>Mediatrix</td>
</tr>
<tr>
<td>Microappliances</td>
</tr>
<tr>
<td>Netergy</td>
</tr>
<tr>
<td>Netspeak</td>
</tr>
<tr>
<td>Nokia</td>
</tr>
<tr>
<td>ObjectSoftware</td>
</tr>
<tr>
<td>Nortel</td>
</tr>
<tr>
<td>Nuera</td>
</tr>
<tr>
<td>Pingtel</td>
</tr>
<tr>
<td>RaveTel</td>
</tr>
<tr>
<td>Siemens</td>
</tr>
<tr>
<td>Telogy</td>
</tr>
<tr>
<td>Ubiquity</td>
</tr>
<tr>
<td>Vegastream</td>
</tr>
<tr>
<td>Vovida</td>
</tr>
</tbody>
</table>
SIP-H.323 interworking

- media translation – not necessary → much better scaling
- signaling translation – easier as H.323 version increases...
- user registration:
 - enum (DNS) – per host only, requires awareness
 - export registrations in either direction
- advanced services – not yet clear
SIP-H.323 interworking

(a) Signaling gateway contains SIP proxy

(b) Signaling gateway contains an H.323 gatekeeper

(c) Signaling gateway is independent of proxy or gatekeeper

SIP message

H.323 message

LRQ = Location request

RRQ = Registration request
Conclusion

- SIP is ready for large-scale deployment
- wide diversity of implementations, rapidly moving from bake-off to buyable
- focus on interoperability
- emphasis on one core version with negotiated extensions – no SIP versioning, profiles, ... → goal: every SIP-powered device and software can interwork with any other
- extensions for QoS, ISUP carriage, events
- some services, such as transfer, need finishing up
- leverage event model for remote pick-up and other advanced services
For more information...

SIP: http://www.cs.columbia.edu/sip

RTP: http://www.cs.columbia.edu/~hgs/rtp

Papers: http://www.cs.columbia.edu/IRT