Internet telephony or what’s hard about replacing 600 million telephones

Henning Schulzrinne
Internet Real-Time Lab
Columbia University
hgs@cs.columbia.edu

NAE Frontiers of Engineering Symposium, Bremen, April 13-15, 2000

(Joint work with Jonathan Lennox, Gautam Nair, Ping Pan, Jonathan Rosenberg, Kundan Singh, Xin Wang, Elin Wedlund, and Jianqi Yin)
Overview

- what is Internet telephony?
- why replace the existing phone system?
- components of Internet telephony
- differences between IP telephony and traditional telephony
- quality of service
- programmability
- reliability
Historical perspective

1876 invention of telephone
1915 first transcontinental telephone (NY–SF)
1920’s first automatic switches
1956 TAT-1 transatlantic cable (35 lines)
1962 digital transmission (T1)
1965 1ESS analog switch
1974 real-time packet voice (USC/ISI and MIT/L)
1977 4ESS digital switch
1980s Signaling System #7 (out-of-band)
1991 DARTnet voice experiments
1992 first IETF audiocast
Internet telephony

- Internet telephony = use of Internet technologies to provide telephony services
- can use “public” Internet, LANs or intranets
- also called Voice-over-IP, although video and application sharing are included
- examples: Microsoft NetMeeting, dialpad.com
Data vs. Voice Traffic

![Graph showing worldwide traffic (Gb/s) from 1996 to 2002]

- **Data** (green line)
- **Voice** (blue dashed line)
The phone works — why bother with VoIP?

<table>
<thead>
<tr>
<th>user perspective</th>
<th>carrier perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin can to broadcast quality</td>
<td>silence suppression ⇒ traffic ↓</td>
</tr>
<tr>
<td>security through encryption</td>
<td>in-band signaling ⇒ higher speed</td>
</tr>
<tr>
<td>caller, talker identification</td>
<td>shared facilities ⇒ management, redundancy</td>
</tr>
<tr>
<td>better user interface</td>
<td>advanced services</td>
</tr>
<tr>
<td>TAT cable = $0.03/hr</td>
<td>cheaper switching (9c vs. $100s)</td>
</tr>
<tr>
<td>no local access fees (3.4c)</td>
<td>fax as data</td>
</tr>
<tr>
<td>no address scarcity</td>
<td></td>
</tr>
<tr>
<td>programmability</td>
<td></td>
</tr>
<tr>
<td>end-system capability labeling</td>
<td></td>
</tr>
<tr>
<td>easy: video, whiteboard, . . .</td>
<td></td>
</tr>
</tbody>
</table>
Differences: Internet telephony ↔ POTS

- separate control, transport (UDP) ➔ no triangle routing
- separate connectivity from resource availability
- separate services from bit transport
- trust model
- physical location of end system?
- features “network” → end system: distinctive ringing, caller id, speed dialing, number translation, . . . ➔ scaling
- features: intra-PBX = inter-LATA and general
- protocols: user-network = network-network signaling
VoIP Architecture

circuit-switched voice (POTS, ISDN)

- RTP
- circuit-switched voice
- SIP
- H.323
- Megaco/MGCP/MDCP
Internet multimedia protocol stack
Telephone vs. Radio and TV

- now: separate infrastructure, technologies, regulation, ...
- Internet: mostly the same, except

<table>
<thead>
<tr>
<th>VoIP</th>
<th>media on demand</th>
<th>radio/TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>small groups</td>
<td>small groups</td>
<td>IP multicast “channels”</td>
</tr>
<tr>
<td>invitation, “ringing”</td>
<td>VCR commands</td>
<td>invitation by third parties</td>
</tr>
<tr>
<td>database</td>
<td>web page</td>
<td>web page, mc announcement</td>
</tr>
<tr>
<td>real-time</td>
<td>near real-time</td>
<td>delay tolerant</td>
</tr>
<tr>
<td>usually private</td>
<td>private or public</td>
<td>mostly public</td>
</tr>
</tbody>
</table>

- many hybrids: distributed couch, lectures, ...
- longer term: single shared transport, wired and wireless
PSTN legacies to avoid

- telephone numbers → email addresses as universal communications identifier?
- tones (e.g., failure indications)
- in-band signaling (“touch tones”)
- voice-only orientation
- integration of bit transport and services

→ confine PSTN knowledge to edge of network
Invisible Internet telephony

- currently: stand-alone application or PSTN phone
- chat applications
- distributed games
- virtual reality environments
- web pages and applets
- links in email messages
Principal IETF VoIP Protocols

RTP/RTCP: data transport and QoS feedback

SIP: call setup

SDP: session/media description

enum: (DNS) E.164 \(\rightarrow\) URLs

TRIP: finding “cheap” PSTN gateways, BGP-like

RTSP: voice mail, announcements
Session Initiation Protocol (SIP)

- call setup protocol
- support for user and terminal mobility
- genetically related to HTTP
- mechanisms: proxying (“forking”) and redirection
- feature negotiation mechanisms
- multicast and unicast signaling
- caller preferences: “no voice mail, please”, “Spanish-speaking operator, please”
- establish security and QoS preconditions for call
SIP operation in proxy mode

1. INVITE henning@columbia.edu
2. henning
3. hgs@play
4. INVITE hgs@play
5. play
6. 200 OK
7. 200 OK
8. ACK
9. ACK hgs@play

media stream
Integrating VoIP with the web

Everything linked together:

- telephone URLs: tel:+1-212-555-0100
- email: send SIP via email, redirect calls to email
- web: links to and actual content (HTML, XML, audio clips, ...)
- chat and presence
- media streaming
Calling legacy phones

Internet telephony gateways – mostly local numbers
Charging model

- can’t replicate existing $/minute PSTN model
- abolishes service monopoly by bit provider
- variable bit rate, not necessarily reserved
- service-independent to avoid masquerading
- advertising supported: 0.6 to 6 US cents/impression
- fixed charges or congestion-adaptive?
Quality of service

<table>
<thead>
<tr>
<th>scheduling flow</th>
<th>admission state</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow</td>
<td>IntServ</td>
<td>doesn’t make sense</td>
</tr>
<tr>
<td>state</td>
<td>class</td>
<td>ietf-diffserv-rsvp, BGRP DiffServ</td>
</tr>
</tbody>
</table>

- best effort → classes → classes with reservation → adaptive reservations → fixed per-flow reservation
- modest gain for QoS routing
- connection-oriented Internet through back door?
Coupling of signaling and QoS

• traditional (H.323) approach: use signaling to set up QoS
• but: separation of signaling and data flow
• SIP approach: security and QoS
 preconditions
Reliability

- need “5 nines” reliability = 5 minutes/year
- currently have maybe 99.5%
- reasons: protocol design?
- lots of independent entities for DNS, routing, servers, OS, ...
- lack of in-service software upgrades
- configuration problems
Feature interaction

- amateur feature designers
- cooperative and adversarial interactions
- request forking (voice mail)
- camp-on and call forward on busy
- outgoing call screening and call forwarding
- incoming call screening and polymorphic identity
- incoming call screening and anonymity
Internet phone “appliances”

- need small, cheap end systems (cf. PBX: $550/seat)
- *Ethernet phone* ⇒ no PBX for switching
- only DSP for voice coding and signaling ⇒ limited memory
- minimal IP stack (IP, UDP, RTP, DHCP, SIP, DNS, IGMP)
- downloadable software (tftp)
- no TCP needed
- multicast & MP3 radio
- must be self-configuring
- personalize by user identification (i-button)
- interface to the physical world
e*phone
Mobile Internet telephony

- user and terminal mobility are related
- mobile applications: mostly UDP (DNS, multicast) or short TCP transactions (SMTP, POP, IMAP)
- should make applications restartable
- little mobile-IP deployment
- use SIP to support mobile multimedia applications
- mobile IP and SIP mobility are complementary
Programmable services

- fixed service menu → programs
- equipment vendor → administrator, user, service providers
- several models:
 - APIs (Parlay, Jain)
 - SIP servlets
 - sip-cgi
 - dedicated languages: CPL
 - mobile code
- related to active networks and agents
Sample services

- voice mail on busy/no answer
- intelligent user location
- call routing based on caller’s language
- consult telemarketer database and reject
- only allow call-backs from those we have called before
- calendar – “please try again after 3 pm”
sip-cgi

- similar in spirit to cgi-bin scripts for web servers
- full access to all signaling functionality
- language-independent, typically scripting (Perl, Tcl, …)
- uses environment variables and stdin/stdout to communicate
- *reasonably* safe, but not for casual user
CPL

- safe: bounded run-time, no system access, provable
- creatable and editable by simple graphical tools
- independent of signalling protocol
- XML-based language, but not usually visible by user
- composable from building blocks
- minimize feature interaction by explicit specification
CPL example

Call

String-switch
field: from
match:
 *@example.com
otherwise

proxy
timeout: 10s

location
url: sip:jones@example.com

location
url: sip:jones@voicemail.example.com
merge: clear

redirect

busy
timeout
failure
CPL example

```xml
<subaction id="voicemail">
  <location url="sip:jones@voicemail.example.com">
    <redirect />
  </location>
</subaction>

<incoming>
  <address-switch field="origin" subfield="host">
    <address subdomain-of="example.com">
      <location url="sip:jones@example.com">
        <proxy>
          <busy> <sub ref="voicemail" /> </busy>
          <noanswer> <sub ref="voicemail" /> </noanswer>
          <failure> <sub ref="voicemail" /> </failure>
        </proxy>
      </location>
    </address>
    <otherwise> <sub ref="voicemail" /> </otherwise>
  </address-switch>
</incoming>
```
Signaling and event notification

- traditional signaling: probe for availability
- event notification: presence, alarms, “auction in progress”, …
- SIP extensions via SUBSCRIBE and NOTIFY
- allows proxying/forking of events and subscriptions
- unify recording and filtering
Conclusion

- major protocol pieces in place
- operational issues: “911”, anonymity, billing, OSS for services, …
- not just replicating existing architecture and service
- programmability key – but how to make grandma a programmer?
- should become an invisible service
- need to keep low-end devices in mind