Engineering the Internet for Internet Telephony and Internet TV

Henning Schulzrinne
Dept. of Computer Science
Columbia University
New York, New York
schulzrinne@cs.columbia.edu

NSF Workshop on Networks and Quality

February 25/26, 2000
Internet Telephony

- VoIP = signaling (SIP, H.323) + transport (RTP) + QoS (RSVP, YESSIR, Diffserv, …)
- not just PCs, but Ethernet telephones
- SS7 “end of life” in about ten years?

voice traffic \ll data traffic
⇒ design network based on “data” traffic → IP as common transport
Internet Telephony QOS Issues

- 99.999% reliability (5 min/year)
- lifeline powering
- automatic configuration: just plug in the phone
- 911 services
- denial-of-service attacks
- security
- user programmability
- packet QOS
System Reliability

- signaling servers (thousands, not 140)
- network: fiber, routers, DNS servers
- no good reporting and accountability mechanism
- what does IP reliability mean?
Lifeline Power

- mainly a residential issue
- need to power whole infrastructure: DSL/cable modems, phones, hubs, ...
- Ethernet phantom power?
- local battery may be sufficient
Automatic Configuration

- Users can’t be asked to “configure” their phone: plug’n’talk
- Configure IP-layer
- User identities
- 911 information?
Master-Slave Denial-of-Service (MS-DOS) Attacks

- today, 50-100 compromised workstations send SYN, ICMP, ...
- often, spoofed source addresses
- hard to detect: looks like legitimate traffic
- imagine Melissa II: send one packet an hour to single destination
- DNS (root servers) and routing also vulnerable
- also: RTP flooding
Security

- can’t assume that everyone has a public key certificate
- *negative identity*: email/VoIP addresses are cheap
- no single trusted entity
- want role certification: “licensed stock broker”, “registered to solicit for charity”, “gas company employee”
Programmable Services

- instead of telco feature sets
- users, administrators can program phone behavior: time-of-day and other call routing, call blocking, voice mail, …

- for example, Columbia/IETF Call Processing Language (CPL)
- feature interaction

- remedies: simulation, explicitness
Packet-Level QoS

<table>
<thead>
<tr>
<th>scheduling</th>
<th>admission state</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>flow class</td>
</tr>
<tr>
<td>flow</td>
<td>IntServ doesn’t make sense</td>
</tr>
<tr>
<td>class</td>
<td>proposed DiffServ</td>
</tr>
</tbody>
</table>

- DiffServ does not prevent overload
- no biling, charging, settlements
- need QoS reporting and feedback for SLA enforcement, fault detection (RTCP?)
Internet Television/Radio

- basically similar to Internet telephony
- difference: signaling (SAP instead of SIP), large-scale multicast
- large-scale multicast not likely to be deployed
- thus, AS-size multicast
Conclusion

- reliability expectations much higher: replace existing, mature services
- little measurement of e2e or component reliability
- packet QoS is probably the easier of the problem