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SUMMARY

Current formulations of adaptive finite element mesh refinement seem simple enough, but their
implementations prove to be a formidable task. We offer an alternative point of departure which yields
equivalent adapted approximation spaces wherever the traditional mesh refinement is applicable, but
our method proves to be significantly simpler to implement. At the same time it is much more powerful
in that it is general (no special tricks are required for different types of finite elements), and applicable
for some newer approximations where traditional mesh refinement concepts are not of much help, for
instance on subdivision surfaces.

Introduction

Adaptive finite element computations rely on adjustments of the spatial resolution of the domain
discretization to deliver higher accuracy where it is needed. When the domain is discretized into a
finite element mesh, a possible option, albeit somewhat expensive and in some cases complex, is to
create a new mesh with the desired resolution, i.e., remeshing. Another alternative is to adjust the
density of the mesh by performing local refinement (resp. unrefinement) of the existing mesh so that in
some regions finite elements are split to decrease their “size”, in other regions they are merged to reduce
the resolution. Both choices, remeshing and refinement, have their advantages and disadvantages. We
are not going to argue for one or the other option. Rather, we assume that refinement had been
adopted as the method of choice.

What are the desirable properties of a mesh refinement algorithm? It should certainly be efficient
in that it should not become a bottleneck of the adaptive computations; it should generate good
quality geometric meshes, i.e., elements must remain well-shaped on refinement and unrefinement;
and, finally, it must be robust, which is usually expressed as the requirement to terminate with a valid
result in finite time. An additional plus is if it generates nested meshes in the refinement hierarchy,
which simplifies the incorporation of multigrid solvers [2, 20].



NATURAL HIERARCHICAL REFINEMENT 1

State of the art mesh refinement algorithms adopt the viewpoint that the centerpiece of refinement
is the geometric division of finite elements. However, the result of local refinement based on element-by-
element splitting is that it does not in general ensure global compatibility of the modified (refined) mesh.
A number of approaches are being used to resolve this issue (see Reference [4] for a good introduction):
(i) the unknowns of the incompatibly placed nodes are constrained with respect to other nodes so that
compatibility of the resulting approximation is ensured even though the mesh remains incompatible;
(ii) incompatibility is treated with Lagrangian multipliers or penalty methods; (iii) compatibility of
the mesh is achieved by splitting additional elements until the mesh becomes globally compatible by
construction. A number of specialized mesh refinement schemes have been proposed for a variety of
practically important cases, for triangular and quadrilateral meshes in two dimensions [17, 3, 15, 16],
tetrahedral [19, 9, 10, 14, 13, 1], or hexahedral meshes in three dimensions [8]. A critical review of
the existing adaptive algorithms based on mesh refinement leads to the conclusion that they tend
to be quite complex (constraint methods, splitting of neighboring elements), or lead to undesirable
algorithmic features (Lagrange multipliers, penalty methods). A general, flexible, and robust mesh
refinement algorithm that would be at the same time simple to implement is very desirable. However,
there is at least one other motivating factor for research in this area: some recent approximation spaces
used in the mechanics of thin shells (a set of fourth-order partial differential equations) rely on the
notion of a subdivision basis [5]. This basis is constructed by the repeated application of a subdivision
stencil to a control polygon of arbitrary connectivity, which in the limit leads to a C1 basis function
associated with any given control vertex (node), supported on two rings of triangles around the given
node. This enlarged support of the basis functions means that suddenly the traditional concept of
finite element refinement is no longer applicable. In other words, the basis functions do not consist of
isolated pieces over each element incident to the node, and hence it is not possible to split the triangles
in isolation. Therefore, a more general approach is needed to encompass these newer discretization
methods.

To summarize, the question suggests itself whether the mesh refinement issue is viewed from the best
angle if tackled from a traditional perspective, or whether there is possibly an alternative viewpoint
that would lead to the right kind of questions, and hence to better answers.

As we show in this paper there is an approach which is at the same time much simpler and much
more general than current techniques. This alternative approach exploits refinement of basis functions
rather than refinement of elements. It is in spirit much closer to some recent developments in the design
of meshless methods. Our approach meets the above desiderata of mesh refinement ab initio, in any
number of spatial dimensions, and for a much wider variety of finite element types than any standard
mesh refinement algorithm.

1. Adaptive Basis Function Refinement

Consider a set of linearly independent scalar basis functions {φi(x)} with span X ,

X =

{
v(x) : v(x) =

∑
i

φi(x)vi

}
, (1)

with x ∈ Rn, v(x) ∈ Rm, vi ∈ Rm (n ≥ 1, m ≥ 1), and φi(x) ∈ R.
For the moment, take a one-dimensional (n = 1) finite element mesh M , with linear nodal basis

functions φi(x), where i is the node index. The finite element approach dictates that the function
φi(x) is constructed piecewise over individual finite elements that share node i. In this setting, the
concept of uniform refinement is well understood. For example, a uniform bisection refinement of the
mesh M produces another mesh, M ′. The set of functions φ′

i(x) constructed on mesh M ′ constitutes
a basis for the finer space X ′, which is related to the coarser space X by inclusion:

X ⊂ X ′ . (2)

Now let us progress to general finite element meshes, in any number of dimensions (n > 0), and
of any approximation order. Let us assume that given a coarser mesh M with the associated basis
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Figure 1. Hierarchy with (left) uniform/stationary or (right) non-uniform/non-stationary refinement.

functions φi(x) it is possible to construct a finer mesh M ′ and associated basis functions φ′
i(x) such

that the nesting relation (2) holds. Recursive application of this one level uniform refinement results

in a hierarchy of approximation spaces X (j). The coarsest space in the hierarchy is X (0), progressively
finer spaces have increasing indices X (1), X (2). . . , and this sequence may be either infinite or finite.
In this setting, the analogy to (1) is

X (j) =

{
v(x) : v(x) =

∑
i

φ
(j)
i (x)v

(j)
i

}
. (3)

By repeated composition of (2) we arrive at the hierarchical nestedness relation

X (0) ⊂ X (1) ⊂ X (2) ⊂ . . . ⊂ X (m) ; (4)

in other words, the spaces X (j) are part of a nesting hierarchy. Is the assumption that it is possible
to construct the hierarchy (4) realistic? In many practically important cases (4) follows trivially, e.g.,
uniform bisection of line segments and quadrisection of triangles. If the basis function pieces over finite
elements are constructed through the master element in the parametric space which is then mapped to
the physical space, the natural choice for refinement is uniform division in the parametric space. For
instance, consider the quadratic 8-noded quadrilateral element in Figure 2 (isoparametric mappings
are indicated by (I), and refinement is indicated by (R)).

Notice that the interiors of the finite elements on level j may be triangulated arbitrarily on level
j +1, but the (n−1)-dimensional faces (edges in two dimensions, faces in three dimensions, etc.) need
to be triangulated compatibly. In other words, if two n-dimensional finite elements on level j share an
(n − 1)-dimensional face, its triangulation on level j + 1 has to be shared by the n-dimensional finite
elements on level j + 1.

The one-dimensional example with linear basis functions discussed above is illustrated in Figure 1.
On the left side of the figure, the refinement is uniform (each element is divided), and stationary (each
level is divided in the same way). However, that is not the only way the hierarchy could be constructed.
As shown on the right side, the refinement may be neither uniform nor stationary. In general, uniform
and stationary division will lead to the simplest algorithms, but it is not required in general. There
may be advantages to applying non-stationary division, for instance when performing several levels of
anisotropic refinement in a limited subregion (say, to resolve a boundary layer), followed by isotropic
refinement. Different applications will require different division strategies.

1.1. Refinement equation

The hierarchical nestedness relation (4) opens the door to our refinement strategy: since X (j) ⊂ X (j+1),

any basis function φ
(j)
i (x) on level j may be exactly resolved in the finer basis {φ(j+1)

i (x)}:
φ

(j)
i (x) =

∑
k

a
(j+1)
ik φ

(j+1)
k (x) , (5)

where a
(j+1)
ik are the coefficients of the linear combination. We shall assume that the sum in (5) has a

finite number of terms with non-zero coefficients a
(j+1)
ik . It is possible to construct functions such that

the sum is infinite, but we do not consider these rather exotic functions here.
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Figure 2. Refinement of quadratic quadrilaterals in the parametric space.

In many practical applications, a small set of finer basis functions on level j′ > j is sufficient to

reconstruct the coarser basis function; this refinement set of the coarser function φ
(j)
i on level j′ is

denoted by C(j′)[φ
(j)
i ], and consists of those basis functions that contribute to the right-hand side of

the refinement equation with a non-zero coefficient:

C(j′)[φ
(j)
i ] =

{
φ

(j′)
k | a

(j′)
ik �= 0

}
. (6)

Note that recursive application of (5) yields a more general formulation: any function φ
(j)
i (x) may be

written in terms of a finite number of functions from various finer levels.
We now introduce some terminology that will aid us in the next section. If φ

(j′)
k belongs to C(j′)[φ

(j)
i ],

we say that “φ
(j)
i is a parent of φ

(j′)
k ,” and “φ

(j′)
k is a child of φ

(j)
i .” Below we will see that refinement

of our approximation space locally around a parent may create a new space in which the parent has
been replaced by its children. Note that a function may have multiple parents as well as multiple
children.

Equation (5) is an instance of the well-known refinement equation (also known under the name
of dilation or multiresolution equation) [18]. The refinement equation is the key to our adaptivity

approach: Given an approximation space X (j) with basis B(j), one can derive a custom space X ,
with basis B whose resolution is locally finer, by replacing one or more parent basis functions from

B(j) by children functions from B(j′) on levels j′ > j. In this sense, the refinement equation may be
viewed as two statements: Firstly, the approximation properties of the basis function set B preserve
and enhance those of B(j) if the children basis functions are substituted for the parent basis function.
Secondly, the continuity of the children functions is greater than or equal to the continuity of the parent
function (since any finite linear combination of Ck functions is Ck). To put this into context, recall the
discussion in the Introduction: existing mesh refinement techniques have to constantly wrestle with
continuity because the refinement operations are applied to isolated pieces of basis functions.

1.2. Construction of adaptive spaces

1.2.1. Two-level refinement How should we adapt an approximation space? We choose to interpret
the refinement equation (5) as “the left-hand side (the coarser parent function) is equivalent to the
right-hand side (combination of functions from its refinement set).” The result will have at least
the approximation properties of the coarser function, and since the children functions have narrower
supports, the spatial resolution will be enhanced.
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For the sake of the argument, let us consider first the case where a single, arbitrary function φ
(j)
i

on level j is replaced by a linear combination of functions on level j′ = j + 1 as given in Eq. (5). The
adapted basis of space X may be written as

B =
(
B(j)\φ(j)

i

) ⋃
C(j+1)[φ

(j)
i ] . (7)

The basis set B consists of functions from two sets, B(j) and B(j+1). Since we have replaced function

φ
(j)
i exactly, we obtain X (j) ⊂ X ⊂ X (j+1). Briefly, we have produced a “richer” set from B(j) by

replacing a given function by an equivalent set of functions with finer spatial resolution. We could also
view this construction as activation (or deactivation) of selected functions from B(j+1) (or B(j)).

We shall use the term active function for functions selected from a given basis set, and the symbol

B̂(k) will be used for the set of active functions from basis set B(k). With this notation, Eq. (7) may
be rewritten as

B = B̂(j)
⋃

B̂(j+1) , (8)

where
B̂(j) = B(j)\φ(j)

i and B̂(j+1) = C(j+1)[φ
(j)
i ] .

Of course, the above argument is readily extended for the replacement of multiple functions from B(j).
Note that in many applications we require that B consists of linearly independent functions. In these
applications we must pay special attention every time we activate a function; a detailed discussion of
this issue follows in Section 2.

We choose to name the basis function set constructed in the above fashion the quasi-hierarchical
basis, because it assumes a hierarchical character in those parts of the domain where functions from
two or more levels are active at the same point. This feature is absent where only a single level of
functions is activated, in which case an ordinary finite element approximation is recovered; hence the
prefix “quasi.”

1.2.2. Multiple-level refinement At this point we are ready to generalize the algorithm to an
arbitrary number of refinement levels and arbitrarily complex selections from the levels. The basis B
of a refined space X may be defined as

B =

∞⋃
j=0

B̂(j) . (9)

Recall that the sets B̂(j) consist of functions activated on level j. If no functions are activated on level

j, B̂(j) is an empty set. For the moment we assume that the selections B̂(j) are such that B consists
of linearly independent functions; we shall discuss an algorithm that ensures this below.

1.2.3. Construction of a hierarchical basis Now let us consider an alternative construction.

Instead of completely replacing the coarse function φ
(j)
i by the linear combination of the finer functions∑

k a
(j+1)
ik φ

(j+1)
k , we combine the coarse function with a subset of the finer functions. For definiteness,

assume function φ
(j+1)
p , with a

(j+1)
ip �= 0, is omitted from the sum of the finer functions, and the basis

function set obtained in this way is

B = B(j)
⋃ (

C(j+1)[φ
(j)
i ]

∖
φ(j+1)

p

)
. (10)

The result is a hierarchical adapted basis set B. Again, the conditions for B to consist of linearly
independent functions are discussed below.

Note that the difference between the sets of (7) and (10) is only in which functions are active on
levels j and j + 1. Therefore, we may write Eq. (10) as

B = B̂(j)
⋃

B̂(j+1) , (11)
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with sets B̂(j) and B̂(j+1) defined as

B̂(j) = B(j) and B̂(j+1) =
(
C(j+1)[φ

(j)
i ]

∖
φ(j+1)

p

)
.

We choose to use the term hierarchical for the adapted basis constructed in (11) because the coarse
level functions are not deleted (replaced), and the added functions on finer levels therefore represent
finer details added onto coarser approximation scales.

As an illustration, consider Figure 3. Basis function φ
(0)
j on level zero is being refined by the

two functions φ
(1)
j−1 and φ

(1)
j+1 on level one. Note that this is the classical “dyadic” hierarchical

refinement [21]. It is certainly not the only choice: Out of the three functions φ
(1)
j−1, φ

(1)
j , and φ

(1)
j+1 that

may be used to replace function φ
(0)
j we could have chosen any single function, or any pair of functions

to refine it. The two functions selected in Figure 3 are just one possible choice. For comparison, Figure 4

also shows how the refinement would proceed using our quasi-hierarchical method. The function φ
(0)
j

would be replaced by all three functions φ
(1)
j−1, φ

(1)
j , and φ

(1)
j+1.

N
(0)
j

M
(1)

M
(0)

N
(0)
j

NN

M

M

j−1
(1)

j+1
(1)

(0)

(1)

Figure 3. Example of true hierarchical refinement.
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Figure 4. Example of quasi-hierarchical refinement.

To summarize: The representation (9) of the quasi-hierarchical basis may also be used for the
hierarchical basis function set. The differences are limited only to the construction of the active sets

B̂(j): using the quasi-hierarchical route we replace coarse-level functions, while following the true
hierarchical route we add fine-level details on top of coarser functions. This argument is illustrated
further in Figure 5 where the quasi-hierarchical and the true hierarchical refined bases constructed
from the mesh hierarchy of Figure 1 (on the left) are compared. Note that the spans of the two basis
functions sets are identical. The hat functions represent the active functions; the inactive functions
are not shown.

2. Refinement and unrefinement

For many applications, it is imperative that the active functions constitute a basis, i.e. they have to
be linearly independent. We call this requirement the linear independence requirement. In this
section we describe algorithms which activate and deactivate functions from the nesting hierarchy
and guarantee the linear independence of the active function set. Many alternative strategies seem
possible; here we outline two: quasi-hierarchical refinement and hierarchical refinement.

Let us delimit, by a set of assumptions, the types of finite element approximations that we wish
to consider. Our focus in this section is not general (e.g., non-interpolating spline approximations
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Figure 5. The two refinement strategies, quasi-hierarchical and hierarchical, compared side by side.

are excluded from consideration), instead we choose an important, practical set of approximations,
which are amenable to simple refinement/unrefinement algorithms. In particular, we consider only
approximations which satisfy these assumptions:

1. On each level j of the nesting hierarchy, the basis functions φ
(j)
i verify the Kronecker delta

property, i.e.,

φ
(j)
i (xk) = δik , (12)

where xk is the location of the node associated with function φ
(j)
k . In other words, we assume

that an approximation built of basis functions from any single level interpolates the nodal
values. This assumption is not very restrictive for traditional finite element approximations.
Indeed, they are as a rule constructed in this way: consider classical FE bases constructed
on meshes of triangular, quadrilateral, tetrahedral, or hexahedral cells. This assumption
also accommodates approximations using interpolating subdivision basis functions; however,
for an important class of approximations, including non-interpolating splines and also non-
interpolating subdivision surfaces, this assumption must be lifted [11, 22]. The application of
the present refinement methodology to the modeling of thin-shells by the subdivision element
method has been discussed in Reference [6].

2. Vertices, edges, (all topological entities with smaller dimension than the domain) on level j are
covered with corresponding entities on level j + 1. Consequently, a cell on level j is a disjoint
union of cells on level j + 1.

The eager reader may wish to explore a corollary to these assumptions: no basis function support
is entirely enclosed by the support of another basis function, i.e.,

supp
[
φ

(j)
k

]
�⊆ supp

[
φ

(j)
i

]
for k �= i and ∀j ≥ 0 . (13)

Consider two functions on the same level; consequent to the corollary, the refinement set of either
must contain a function not present in the refinement set of the other.

Now that we have described the set of approximations on which we will focus, we are nearly ready
to describe algorithms for refining/unrefining these approximations. Since there are many possible
algorithms for building adapted bases, we simplify our algorithmic design by adhering to three rules:

1. The refining/unrefining of a function on level j may activate or deactivate that function or any
of its children on level j + 1; no other function may be affected.

2. A function on level j + 1 (j + 1 ≥ 1) may be refined only when all its parents on level j have
been refined.

3. A function on level j may be unrefined only if (i) it was previously refined and (ii) all its
children on level j + 1 are not refined.

Int. J. Numer. Meth. Engng 2002; 00:0–0
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The reader may note that if the basis functions are completely supported by one ring of elements
around a node, then rules 2 and 3 enforce the common rule of one-level-difference refinement of
neighbors; commonly referred to as the “restriction criterion,” this rule has been applied to finite
element meshes, as well as to quadtrees and octrees in various contexts (graphics, mesh generation,
spatial searches, etc.).

We now describe two approaches to atomic operations that produce adaptive basis function sets.
We show that if our (un)refinement operation is applied in an atomic fashion (i.e., either it is entirely
executed or not at all) then the linear independence requirement is preserved. Furthermore, our
algorithms ensure that the refinement step is lossless; the span of the resulting set includes the span
of the original set. Lossless refinement means that the refined basis allows for any function in the
original basis to be reproduced exactly. In contrast, unrefinement cannot be lossless: some information
is always going to be lost, since the goal of unrefinement is to decrease the span of the approximation
space.

2.1. Quasi-hierarchical basis

Let us begin by exploring the quasi-hierarchical refinement strategy. We first describe the refinement
operation, and show that it preserves the linear independence requirement and is lossless; we
then describe the unrefinement operation, and show that it too preserves the linear independence
requirement.

2.1.1. Refinement Given an initial basis function set, B, which contains φ
(j)
i , and satisfies the

linear independence requirement, we choose to produce another function set B’ by deactivating φ
(j)
i

and activating all of its children C(j+1)[φ
(j)
i ]. We refer to this algorithm, which maps B to B’, as

quasi-hierarchical refinement.

Proposition: We claim that quasi-hierarchical refinement (i) preserves the linear independence
requirement and (ii) is lossless.

Proof (i): Assumption 2 guarantees that there is some xj+1
i covering xj

i . Further, assumption 1

guarantees that on level j only φ
(j)
i is non-zero at xj

i , and on level j + 1 only φ
(j+1)
i is non-zero

at xj+1
i ; consequently φ

(j+1)
i belongs only to C(j+1)[φ

(j)
i ]. φ

(j+1)
i , a “private child” of φ

(j)
i , may

be introduced into the adapted basis function set only through the refinement of φ
(j)
i . Therefore,

activating functions in C(j+1)[φ
(j)
i ] cannot produce a complete refinement set of another function on

level j, for the other function too has a private child not present in C(j+1)[φ
(j)
i ]. It also cannot produce

a redundant representation of φ
(j)
i , since this coarser function is deactivated. Furthermore, by force of

rule 2, none of the functions φ
(j+1)
k from the refinement set C(j+1)[φ

(j)
i ] is currently present through its

complete refinement set, C(j+2)[φ
(j+1)
k ]; therefore, activation of any function from C(j+1)[φ

(j)
i ] cannot

introduce linear dependencies with functions on levels finer than j + 1.

Proof (ii): since we have activated all members of C(j+1)[φ
(j)
i ], then (5) and (6) guarantee that B’ still

spans φ
(j)
i , the only function removed from B.

2.1.2. Unrefinement Given an initial basis function set, B, that satisfies the linear independence

requirement, and given a previously refined φ
(j)
i , not in B and eligible (under rule 3) for unrefinement,

we choose to produce another function set B’ by activating φ
(j)
i and deactivating those children of φ

(j)
i

which have no other currently refined (i.e., inactive) parent. Expressed mathematically, the members

Int. J. Numer. Meth. Engng 2002; 00:0–0
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of the following set are deactivated:
φ(j+1)

m :

φ
(j+1)
m is in

refinement set of φ
(j)
i︷ ︸︸ ︷

φ(j+1)
m ∈ C(j+1)[φ

(j)
i ] ∧

it may only be in refinement sets
of active (non-refined) nodes on level j︷ ︸︸ ︷

∀ r �= i φ(j+1)
m ∈ C(j+1)[φ(j)

r ] → φ(j)
r ∈ B̂(j)


. (14)

We refer to this algorithm, which maps B to B’, as quasi-hierarchical unrefinement.
Proposition: We claim that quasi-hierarchical unrefinement preserves the linear independence
requirement.

Proof: By rule 3, function φ
(j+1)
i is not present in B through its refinement set, C(j+2)[φ

(j+1)
i ]. It follows

from assumption 1 that φ
(j+1)
i may be introduced only through the refinement of φ

(j)
i . Therefore, φ

(j+1)
i

is certainly member of set (14), and since at least φ
(j+1)
i is deactivated, the refinement set of φ

(j)
i is

guaranteed not to be complete at the end of the unrefinement step. Hence, activating φ
(j)
i cannot

introduce a linear dependency: the linear independence requirement is preserved.

2.2. Hierarchical basis

We have completed our overview of quasi-hierarchical refinement, which treats refinement as the
replacement of coarse-level functions by finer-level functions (Figure 4). Let us turn to an alternative
strategy for constructing adapted bases: hierarchical refinement treats refinement as the addition
of finer-level “detail functions” to an unchanged set of coarse-level functions (Figure 3). Before we
continue, let us formalize the concepts of a detail function and a detail (function) set.

Definition: Given a function φ
(j)
i , construct the set of all functions φ

(j+1)
k ∈ C(j+1)[φ

(j)
i ] such that

they vanish at the location xi of node i

G(j+1)[φ
(j)
i ] =

{
φ

(j+1)
k | φ

(j+1)
k ∈ C(j+1)[φ

(j)
i ] and φ

(j+1)
k (xi) = 0

}
. (15)

The set G(j+1)[φ
(j)
i ] is the detail set of φ

(j)
i . Functions that belong to at least one detail set are called

detail functions.

2.2.1. Refinement Given an initial basis function set, B, which contains φ
(j)
i , and satisfies the linear

independence requirement, we choose to produce a refined set B’ by activating G(j+1)[φ
(j)
i ]. We refer

to this algorithm, which maps B to B’, as hierarchical refinement.
Proposition: We claim that hierarchical refinement (i) preserves the linear independence requirement
and (ii) is lossless.

Proof (i): The detail set of function φ
(j)
i vanishes at xi by definition. Furthermore, by assumption 1,

the detail set of any other function φ
(j)
m , m �= i, vanishes at xi. Consequently, activating an arbitrary

number of detail functions on level j + 1 cannot produce the complete refinement set of φ
(j)
i (there

has to be at least one function that is non-zero at xi, and that function is not a member of any detail
set). Therefore it may be concluded that activating detail functions preserves the invariant.
Proof (ii): we do not remove functions from B during refinement; its span cannot shrink.

2.2.2. Unrefinement Given an initial basis function set, B, that satisfies the linear independence

requirement, and given a previously refined φ
(j)
i , also in B and eligible for unrefinement (rule 3), we

choose to produce another function set B’ by deactivating functions φ
(j+1)
m ∈ G(j+1)[φ

(j)
i ] that are

absent from all the refinement sets of currently refined functions on level j. We refer to this algorithm,
which maps B to B’, as hierarchical unrefinement.
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Proposition: We claim that hierarchical unrefinement preserves the linear independence requirement.
Proof: Unrefinement does not involve the activation of any function, hence a linear dependence cannot
be introduced.

3. Examples

For the sake of brevity, we will refer to our approach as CHARMS in this section. The acronym stands
for “Conforming Hierarchical Adaptive Refinement Methods.”

The grids in this section have been used in Galerkin finite element solutions of the partial
differential equation of linear diffusion. Unless stated otherwise, the grids are displayed as a collection
of “integration cells”. Those are the “smallest” finite elements that support an active function at a
given location in the domain. The integration cells are being used to evaluate the weak form terms
(note that they tile the domain).

CHARMS has been applied to the implementation of finite element refinement in an
experimental computer code. The code has been designed and debugged for one-dimensional adaptive
approximations. The power of CHARMS became apparent during the next step, two-dimensional mesh
refinement for quadrilateral finite elements (the geometric refinement is performed by quadrisection
in the bi-unit master coordinates). The implementation took the first author little less than three
hours! Figure 6 shows the adapted grid; Figure 7 illustrates the hierarchies of finite elements: the
quasi-hierarchical basis on the left, the true hierarchical basis on the right. The balls at certain
nodes indicate the presence of an active function associated with that node. Notice that the active
functions vanish on the interior boundary of the patches of finite elements that support them. That is
a consequence of our use of the refinement equation (and a visual explanation of why the compatibility
is a non-issue with CHARMS).

Figure 6. Adapted grid on a square domain with “crack”, composed of quadrilateral finite elements.
Integration cells are shown by white edges.

CHARMS has been subsequently exercised in the implementation of adaptive refinement on 8-
node hexahedral meshes (octa-section in the master coordinates). Because the hexahedron element
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10 P. KRYSL, E. GRINSPUN AND P. SCHRÖDER

Figure 7. Finite element hierarchy for the problem of Figure 6.

Figure 8. Hierarchy of finite element grids for a quasi-hierarchical basis.

Figure 9. Hierarchy of finite element grids for a true hierarchical basis.

represents a direct extension of the bilinear quadrilateral to three dimensions, the implementation
was now even easier, and was completed in a couple of hours. Importantly, no special tricks were
required when going from two to three dimensions. Figures 8 (quasi-hierarchical basis) and 9 (true
hierarchical basis) display the hierarchy of the finite elements that support active functions at one of
three refinement levels.

Figure 10 shows an adapted grid of the human brain tissue composed of linear-precision tetrahedra
with four refinement levels. The tetrahedron is a more complex element type to refine because of its
space-tiling properties. We have used the Kuhn triangulation of the cube which guarantees constant
tetrahedron shape quality upon octa-section for any number of refinement levels [12]. As expected,
the implementation of the refinement proper presented no difficulties whatsoever.

It is not surprising that CHARMS is also easily applied to meshes composed of quadratic-precision
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Figure 10. Cut through the grid of human brain tissue adapted to a point source.

finite elements. As an example, Figure 11 shows an adapted solution to a source/sink problem on the
square obtained with 6-node triangles. The triangles are isoparametric, and the geometric division
(quadrisection) is applied in the parametric space ξ, η. Because of the higher number of interacting
nodes, the refinement connectivity is more tedious to program than for the linear-precision elements,
but otherwise no special treatment is required.

Figure 11. Solution to a two-dimensional diffusion equation with a source/sink pair obtained with
quadratic triangles.
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Conclusions
We have presented a general mesh refinement approach. Its beauty is its extreme simplicity. Our only
assumption is that it is possible to construct an infinite hierarchy of meshes of increasing spatial
resolution such that a given function at an arbitrary level may be replaced exactly by a linear
combination of functions on some finer level. Said differently, we propose to interpret the well-known
refinement equation as a tool for refinement and unrefinement. We show that we can construct a refined
set of basis functions by selectively deactivating coarse functions, replacing them with finer functions
which become active in the process. We choose to label this refined set “quasi-hierarchical”, because
it assumes a hierarchical character in those regions of the mesh where two or more levels of functions
are active at the same time. Elsewhere in the domain there is no difference between the character
of a refined basis function set, and a single-level finite element basis. We also present an alternative
refinement strategy: Not all the finer functions are activated, and the coarse function is kept instead
of being replaced by the finer functions. The resulting approximation spaces are hierarchical in the
classical sense: the finer functions are associated with “details,” while the coarser functions define
the “global” variation. The constructions of the two refined basis function sets, quasi-hierarchical
and true hierarchical, are completely equivalent in the sense that both proceed by activating and
deactivating certain functions from the virtual hierarchy of nested approximation spaces. Therefore,
it is also perfectly feasible to mix these two strategies in the construction of the approximation basis:
parts of the domain may be covered by a true hierarchical basis, parts by the quasi-hierarchical basis.

It is well known that state-of-the-art mesh refinement based on isolated element splitting is trivial in
one dimension, and becomes much harder in multi-dimensional settings. However, note that nowhere
we had to worry about preserving the compatibility of the refined basis. As a consequence of our use
of the refinement equation, the resulting refined basis is conforming by construction. This removes one
of the major headaches that accompanies traditional mesh refinement approaches, and makes it much
easier (or trivial) to preserve or enhance the shape quality of the finite elements across all refinement
levels.

Moreover, the refinement equation holds without any mention of the number of dimensions of the
ambient space, or of the order of the basis functions. Therefore, it is equally easy to apply to piecewise
linear approximation on the line as to trilinear approximation on hexahedral meshes, or piecewise
cubic tensor-product approximation in three dimensions. In fact, we show in Reference [6] that the
present technique renders adaptivity for subdivision surfaces not only feasible, but easy.

Note that our formulation may under certain conditions yield approximation basis function sets
equivalent in terms of their span to those generated with other approaches, for instance when degrees of
freedom associated with hanging nodes are eliminated via constraints. Indeed, we do not claim to have
a method for constructing better approximations in those cases. Rather, our claim is that we formulate
an alternative algorithm for constructing adaptive approximation spaces, which in some cases may
be equivalent to those resulting from other methods. One of the most appealing characteristics of
our method is that it makes it so much easier to formulate methods whose implementations have
traditionally been very tedious and error-prone.

At the same time, our method is more general than existing approaches, and provides a consistent
and robust path towards formulations of adaptive approximations where none have been available so
far: a practically important example are Loop subdivision surfaces [11].

The finite elements at finer levels are nested within finite elements of coarser levels. Therefore, the
road towards the exploration of multilevel solvers (multigrid) is open. For some subdivision schemes,

such as the
√

3-subdivision [7], nestedness is not available, but CHARMS are still applicable, and
hierarchical preconditioning and multigrid apply as well.

Finally, our approach is linked to wavelets through the refinement equation, which is one of the
pillars of wavelet theory; this is a clear avenue to explore.
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