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ABSTRACT

Towards Autonomic Computing: Service

Discovery and Web Hotspot Rescue

Weibin Zhao

Autonomic computing is a vision that addresses the growing complexity of computing

systems by enabling them to manage themselves without direct human intervention.

This thesis studies two related problems, service discovery and web hotspot rescue,

which can serve as a building block and a prototype for autonomic networking and

distributed systems, respectively.

Service discovery allows end systems to discover desired services on networks au-

tomatically, eliminating administrative configuration. We made four enhancements

to the Service Location Protocol (SLP): mesh enhancement, remote service discovery,

preference filters, and global attributes. These enhancements improve SLP efficiency

and scalability, and enable SLP to better support new and advanced discovery scenar-

ios. The SLP mesh enhancement (mSLP), remote service discovery, and preference

filters are now experimental RFCs (Request for Comments). We expect that similar

techniques can be applied to other service discovery systems.

During the development of mSLP, we designed selective anti-entropy, a generic

mechanism for high availability partial replication. Traditional anti-entropy only

supports full replication. We enhanced it to support partial replication by allowing

two replicas to selectively reconcile inconsistent data in a session.

Web hotspots are short-term dramatic load spikes. We developed DotSlash, a self-

configuring and scalable rescue system for handling web hotspots effectively. DotSlash



works autonomously. It uses service discovery to allocate resources dynamically from

a server pool distributed globally, and uses adaptive overload control to automate

the whole rescue process. As a comprehensive solution, DotSlash enables a web site

to build an adaptive distributed web server system on the fly, replicate application

programs dynamically, and set up distributed query result caching on demand. Dot-

Slash relieves a spectrum of bottlenecks ranging from access network bandwidth to

web servers, application servers, and database servers.

As part of DotSlash, we developed a prediction algorithm for estimating the upper

bound of future web traffic volume, which is simple and effective for short-term bursty

web traffic. This algorithm provides insight into characterizing traffic of web hotspots,

and is useful for web server overload prevention.
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Chapter 1

Introduction

Autonomic computing [69, 79] is a vision that addresses the growing complexity of

computing systems by enabling them to manage themselves without direct human

intervention. For networking and distributed systems, manual control and configu-

ration are not only time-consuming, expensive, and error-prone, but also difficult in

certain situations. For example, mobile devices need to adapt to new environments

dynamically and web servers need to handle unpredictable dramatic load spikes. As

a result, there is an increasing need to build self-managing systems that self-monitor,

self-configure, self-optimize, self-heal, and self-protect.

While realizing the full potentials of autonomic computing is still a grand chal-

lenge, we start with two important components, service discovery and web hotspot

rescue, which can serve as a building block and a prototype for autonomic networking

and distributed systems, respectively.
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1.1 Problem Statement and Our Approach

This thesis studies two related problems, service discovery and web hotspot rescue.

Service discovery allows end systems to discover desired services on networks auto-

matically, eliminating configuration by system administrators. Web hotspot rescue

enables web sites to scale dynamically as needed, handling short-term dramatic load

spikes autonomously without human intervention.

1.1.1 Service Discovery

Service discovery is a technology that can dynamically map service descriptions into

service access points. It provides a powerful and flexible way for service users to

locate available desired services on networks. Services are of various types, such as

printing services, computational services, and storage services. Service discovery dif-

fers from other resource discovery such as information retrieval by focusing on where

desired services are provided. Traditionally, service users depend on a priori knowl-

edge or manual configuration to learn about desired services on networks, involving

non-trivial administrative overhead as more devices are network enabled and more

services are available on networks. Moreover, administrative configuration becomes

difficult or even impossible in certain situations such as ad-hoc networks. By using

service discovery technology, service users no longer need to know the access points

of desired services via a priori knowledge. Instead, they just need to specify the

characteristics of desired services, which will be mapped into available service access

points automatically in any network that supports service discovery. In summary,

service discovery is a promising technology for building autonomic networking and

distributed systems.

Challenges. A major challenge in service discovery is scalability. Currently,
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service discovery is often performed at small scales via multicast [130] or within

specific domains such as administrative domains [59] or application domains [129] via

service registries. Generic service discovery is still an open issue. Another challenge

is to support new discovery scenarios effectively. One discovery scenario not well

supported so far is to discover the best matching service for a request, such as finding

a printer that has the shortest queue or a server that has the minimum load. Another

discovery scenario not well addressed yet is to discover services that are provisioned

in complex ways, such as services that have multiple access points or services that

are replicated at multiple locations.

Our approach. To leverage existing efforts in service discovery and make our

proposed techniques more likely to be used in real applications, we choose to enhance

an existing service discovery system instead of designing a new system from scratch.

We select the Service Location Protocol (SLP) [59] as our base system since SLP is an

IETF (Internet Engineering Task Force) proposed standard for service discovery in IP

networks, and it is flexible, lightweight, and powerful. We made four enhancements

to SLP: mesh enhancement (mSLP) [156], remote service discovery [158], preference

filters [157], and global attributes [152]. These enhancements improve SLP scalability

and efficiency, and enable SLP to better support new and advanced discovery sce-

narios. Although our techniques for service discovery are developed in the context of

SLP, they can be generally applied to other service discovery systems.

During the development of mSLP, we designed selective anti-entropy [147], a

generic mechanism for high availability partial replication. Traditional anti-entropy

[96, 54] only supports full replication. We enhanced it to support partial replica-

tion by allowing two replicas to selectively reconcile inconsistent data in a session.

As a generalization of traditional anti-entropy, selective anti-entropy is flexible and

applicable to both full replication and partial replication.
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1.1.2 Web Hotspot Rescue

Web hotspots, also known as flash crowds or the Slashdot effect [4], are short-term

dramatic load spikes that can seriously degrade the service quality of affected web

sites. When a web site experiences a hotspot, its request rate increases dramatically.

But the peak load often lasts for a short period, and is usually a one-time event like

“15 minutes of fame”. To effectively handle web hotspots, researchers are actively

seeking solutions such as extending server capacity, adding more network bandwidth,

deploying various caches [135, 126], employing commercial Content Delivery Networks

(CDNs) [5, 45], reducing content complexity under heavy load [1], performing adaptive

admission controls [140], and replicating contents and redirecting client requests [77].

Challenges. For web hotspots, over-provisioning is not only inefficient but also

difficult since the peak load is hard to predict [74]. This calls for an automated system

that can dynamically extend a web site’s capacity as needed to handle dramatic load

surges. There are three major challenges here. The first one is how to discover

and allocate needed resources dynamically because static configuration is insufficient.

The second challenge is how to automate the hotspot handling process so as to react

quickly to load spikes and improve a web site’s availability during critical periods. The

third challenge is how to address different bottlenecks in the web server infrastructure.

For static content, the access network bandwidth tends to be the most common

bottleneck [92]; but for dynamic content, different applications may have different

bottlenecks [7, 33], including web servers, application servers, and database servers.

Consequently, we need to migrate workloads across wide area networks and we need

a comprehensive solution to relieve different bottlenecks.

Our approach. Based on the framework outlined in [38], we designed DotSlash

[150, 151, 154, 144], a self-configuring and scalable rescue system for handling web
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hotspots effectively. DotSlash supports dynamic collaboration among different web

servers, using spare capacity in a mutual-aid community to relieve web hotspots ex-

perienced by any individual site. DotSlash provides an automated rescue process,

including rescue server discovery, workload monitoring, request redirection, dynamic

virtual hosting, and rescue relationship management. DotSlash enables a web site to

build a distributed web server system across wide area networks on the fly, effectively

removing the bottlenecks at access network bandwidth and web servers. To han-

dle hotspots at dynamic content web sites, DotSlash supports dynamic replication of

application programs, eliminating the application server bottleneck. To relieve the da-

tabase server bottleneck, DotSlash allows a web site to set up on-demand distributed

query result caching.

As part of DotSlash, we developed a prediction algorithm for estimating the upper

bound of future web traffic volume [148]. We employ a multiple-time-scale approach

by using traffic information at a smaller time scale to forecast traffic volume at a

larger time scale. Moreover, we utilize traffic statistical properties other than curve

fitting to forecast traffic volume.

1.2 Thesis Contributions

This thesis research makes the following contributions.

• Enhancements to the Service Location Protocol. We made four en-

hancements to the Service Location Protocol (SLP): mesh enhancement that

simplifies Service Agent registrations and improves the consistency of peer Di-

rectory Agents, remote service discovery that enables SLP users to discover

services at remote DNS domains, preference filters that facilitate processing of

search results at SLP servers, and global attributes that allow using a single
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query to search services across multiple types. These enhancements [145, 153]

improve SLP efficiency and scalability, and enable SLP to better support new

and advanced discovery scenarios. The SLP mesh enhancement (mSLP), remote

service discovery, and preference filters are now experimental RFCs (Request for

Comments) [157, 156, 158]. We expect that similar techniques can be applied

to other service discovery systems as well.

• Selective anti-entropy. We developed selective anti-entropy [147], a generic

mechanism for high availability partial replication. Traditional anti-entropy [96,

54] only supports full replication. We enhanced it to support partial replication

by allowing two replicas to selectively reconcile inconsistent data in a session.

As a generalization of traditional anti-entropy, selective anti-entropy is flexible

and applicable to both full replication and partial replication.

• DotSlash—an automated web hotspot rescue system. We developed

DotSlash [150, 151, 154, 144], a self-configuring and scalable rescue system for

handling web hotspots effectively. DotSlash works autonomously. It uses service

discovery to allocate resources dynamically from a server pool distributed glob-

ally, and uses adaptive overload control to automate the whole rescue process.

DotSlash is a cost-effective mechanism for small to medium-sized web sites to

handle short-term dramatic load spikes. As a comprehensive solution, DotSlash

enables a web site to build an adaptive distributed web server system on the

fly, replicate application programs dynamically, and set up distributed query

result caching on demand. These techniques relieve a spectrum of bottlenecks

ranging from access network bandwidth to web servers, application servers, and

database servers.

• Web traffic prediction for overload prevention. We developed a pre-
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diction algorithm for estimating the upper bound of future web traffic volume

[148], which is simple and effective for short-term bursty web traffic. We em-

ploy a multiple-time-scale approach, and utilize traffic statistical properties to

forecast traffic volume. Our prediction algorithm provides insight into charac-

terizing traffic of web hotspots, and is useful for web server overload prevention.

1.3 Thesis Outline

The rest of this thesis is organized as follows. We describe the four enhancements we

made to the Service Location Protocol in Chapter 2, and discuss selective anti-entropy

for high availability partial replication in Chapter 3. Then, we present DotSlash—an

automated rescue system for handing web hotspots effectively: we focus on hotspot

rescue for static content in Chapter 4, and address hotspot rescue for dynamic content

in Chapter 5 and 6. After a discussion of our web traffic prediction algorithm for

overload prevention in Chapter 7, we summarize the thesis in Chapter 8.
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Chapter 2

Enhancements to the Service

Location Protocol

In this chapter, we first introduce service discovery technology and the motivation for

enhancing the Service Location Protocol (SLP) [59]. We then give a brief overview of

service discovery, related systems, and SLP. The main body of this chapter describes

the four enhancements we made to SLP: mesh enhancement [156], remote service

discovery [158], preference filters [157], and global attributes [152]. These enhance-

ments improve SLP scalability and efficiency, and enable SLP to better support new

and advanced discovery scenarios [153]. After presenting our implementation and

evaluation for these enhancements, we discuss related work and give a summary.

2.1 Introduction

As computing continues moving towards a network-centric model, automatically dis-

covering available services on networks becomes increasingly important. Services are

of various types, such as printing services, computational services, and storage ser-
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vices. Service discovery differs from other resource discovery such as information

retrieval by focusing on where desired services are provided, that is, discovering ser-

vice access points. In IP networks, a service access point can be encoded as a URL

(Uniform Resource Locator) or specified by a tuple consisting of IP address, port num-

ber, and transport protocol. Traditionally, service users depend on a priori knowledge

or manual configuration to learn about the access points of desired services, involving

non-trivial administrative overhead as more devices such as personal digital assis-

tants, cellular phones, and digital cameras are network enabled and more services are

available on networks. Moreover, administrative configuration becomes difficult or

even impossible in certain situations such as ad-hoc networks. Consider the following

application scenarios. In pervasive computing, mobile devices are peripheral-poor due

to portability considerations and power consumption constraints. Thus, they often

rely on services provided by other devices. When a mobile device moves to a new

network, it needs to discover and make use of available services in the new environ-

ment. In ad-hoc networks such as a disaster rescue setting, devices need to learn

about each other dynamically and cooperate, where administrative configuration is

unlikely to be possible and effective. For home networking, low cost and ease of use

are dominant design considerations, making administrative configuration unsuitable.

In recognizing the need to reduce administrative configuration as much as possi-

ble and enable automated discovery of desired services, many companies, standards

bodies, consortia, and research institutions are actively developing service discovery

technology. As a result, various service discovery systems, protocols, and research

prototypes are emerging in recent years, such as the Service Location Protocol (SLP)

[59], Jini [134], Universal Plug and Play (UPnP) [130], Universal Description Dis-

covery and Integration (UDDI) [129], Bonjour [25], the Bluetooth Service Discovery

Protocol (SDP) [24], the Berkeley Service Discovery Service (SDS) [41], the Inten-
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tional Naming System (INS) [3], and VIA [31].

We can categorize the existing service discovery systems along a number of di-

mensions. In terms of running platforms, Jini runs on Java platforms whereas SDP is

for Bluetooth access technology. With respect to application domains, UPnP targets

home networking applications whereas UDDI targets web services applications. Re-

garding design goals, SLP is designed for discovering different types of local services

within one administrative domain, whereas UDDI is designed for discovering a single

type of web services across different administrative domains. As to discovery mecha-

nisms, UPnP uses multicast, UDDI uses registries, and SLP uses both mechanisms.

Despite their differences, all service discovery systems support the same basic ser-

vice discovery functionality, namely dynamically mapping service descriptions into

service access points. Service discovery provides a powerful and flexible way for lo-

cating services on networks. By using this technology, service users no longer need

to know the access points of desired services via a priori knowledge. Instead, they

just need to specify the characteristics of desired services, which will be mapped

into available service access points automatically in any network that supports ser-

vice discovery. In summary, service discovery is a promising technology for building

autonomic networking and distributed systems.

SLP is a widely used service discovery protocol, and an IETF (Internet Engineer-

ing Task Force) proposed standard for service discovery in IP networks. As more

applications [68, 87, 14, 101] employ SLP for various discovery purposes, we saw a

need to improve SLP efficiency and scalability, and enhance it to support new dis-

covery scenarios such as discovering multi-access-point services and multi-function

devices. In this chapter, we present four new mechanisms for SLP: mesh enhance-

ment, remote service discovery, preference filters, and global attributes. The SLP

mesh enhancement (mSLP) simplifies Service Agent (SA) registrations and improves
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consistency among Directory Agents (DAs) by defining an interaction scheme for DAs

and supporting automatic registration distribution among peer DAs. Remote service

discovery enables SLP users to discover services at remote DNS domains. Preference

filters facilitate processing of search results such as finding the best match at SLP

servers, either DAs or SAs, to reduce the amount of data transferred to service users

for saving network bandwidth. Global attributes allow using a single query to search

services across multiple types.

2.2 Background

2.2.1 Service Discovery

In a service discovery system, a common service description framework is needed for

service providers, referred to as servers, and service users, referred to as clients, to

describe service characteristics so that they can understand each other properly. In

general, a service can be described using a set of attribute-value pairs, with each

attribute-value pair specifying one property of the service. There are two ways to

organize attributes: a flat structure where all attributes are at the same level, and a

hierarchical structure where attributes can be at different levels. For example, SLP

[59] simply puts attribute-value pairs into a list, whereas UPnP [130] and UDDI [129]

use XML to describe a hierarchy of attributes. Although the Resource Description

Framework (RDF) [106] has been proposed as the service description format for in-

teroperability among different service discovery systems [107] and for global service

discovery [11], so far there is no service description standard.

While service advertisements from servers usually include all attributes of services,

service search requests from clients only include attributes of interest, which may just
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specify a desired service type, such as “printer”, or give additional desired service

properties, such as “speed = 15 ppm”. In general, any service search request can be

specified by a search filter such as those used in SLP and the Lightweight Directory

Access Protocol (LDAP) [61], which is a logical expression about attributes of interest

and their desired values. The matching of a service search request with a service

advertisement leads to a discovery.

Multicast and service registries (also known as directory services) are two widely

used mechanisms for service discovery. In multicast-based discovery, servers and

clients all listen to a well-known multicast address, and services are discovered in a

peer-to-peer fashion in two ways. In passive discovery, servers periodically multicast

their service advertisements, and clients listen to these advertisements. A client

compares received service advertisements with its desired service requirements to

determine matching services. In active discovery, clients multicast their service search

requests, and servers listen to these requests. A server compares received service

search requests with its service advertisement, and if there is a match, the server

unicasts its service advertisement to the client. Multicast-based service discovery

is simple, and multicast can enable a device to be fully auto-configured [35] in a

network segment. However, multicast usually cannot scale to a large number of

devices, and it is not generally supported in wide area networks. One reason is that

when a client multicasts a request, it may face a response implosion problem if a

large number of servers all answer its request within a very short period of time. In

order to scale well, registry-centric discovery is needed, where registries accept service

advertisements from servers, and answer service search requests from clients. Servers

register their services with registries and clients search services at registries, all using

unicast. To discover service registries, multicast can be used for an intranet [59, 134],

but well-known registries are often assumed for the Internet [129]. In addition, the



13

Dynamic Host Configuration Protocol (DHCP) [46] can be used to obtain registry

information in local area networks [95], and DNS SRV [56] can be used to obtain

registry information for given DNS domains [158].

2.2.2 Systems Related to Service Discovery

Web search engines. Service discovery systems are similar to web search engines

[55] in that they both provide matches for search requests. However, they are de-

signed for different purposes and work differently. First, service discovery is used for

finding services on networks whereas web search is used for finding documents on

the Internet. Secondly, service discovery uses attribute-based matching whereas web

search often performs full-text matching. Consequently, a match in service discovery

has a specific meaning, but a match in web search may have different meanings in

different contexts, and a ranking algorithm is needed to rank web search results. Fi-

nally, service registries rely on service providers to register information whereas web

search engines use crawlers to collect information automatically.

LDAP. The Lightweight Directory Access Protocol (LDAP) [133] is a widely used

general-purpose directory service, which organizes directory entries into a hierarchical

structure to scale well. Although LDAP directories can serve as back-end service

registries [67], they need a native discovery system to serve as the front-end because

LDAP does not provide a mechanism such as multicast discovery for clients to discover

directories. Moreover, LDAP directories are often updated by administrators whereas

service registries are intended for service providers to publish information themselves.

DNS. The Domain Name System (DNS) [82, 83] is a crucial infrastructure of the

Internet. It can be extended by supporting new Resource Records (RRs). DNS SRV

[56] has been defined to facilitate locating services. Multicast DNS and DNS service
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discovery have been proposed in Bonjour [25]. However, DNS servers do not support

service filtering via search filters [61], meaning that all relevant service information

needs to be sent to the client who performs service selection. This is inefficient if

many services match the search request.

Discovery in P2P systems. Recently, discovery in peer-to-peer (P2P) sys-

tems has attracted great interest. In centralized P2P systems such as Napster [86],

registries are used for discovery. In distributed P2P systems such as Gnutella [53],

guided depth-first searches or restricted breadth-first searches are used for discovery.

Recent P2P systems such as JXTA [138] and KaZaA [66] organize nodes into a hier-

archy by using specialized nodes called hubs or supernodes, which provide a middle

ground between the decentralized Gnutella model and the centralized Napster ap-

proach. Second generation P2P systems such as Chord [125], Pastry [109], Tapestry

[143], and Content Addressable Networks (CAN) [104] use Distributed Hash Tables

(DHTs) to build scalable and symmetric systems that have no centralized control or

hierarchical organization. Current DHT-based P2P systems retrieve data based on a

unique identifier, which is good for discovering files with a unique name. However,

it is an open issue whether DHTs can efficiently support attribute-based searches for

generic service discovery.

2.2.3 Service Location Protocol

The Service Location Protocol (SLP) [59] provides a flexible framework for service

discovery in IP networks. It supports both registry-centric and peer-to-peer discovery

models, and enables powerful service filtering and browsing. SLP uses general URLs

[21] and the “service:” URL scheme [58] to specify service locations (also known as

service access points). Each service has a service type, e.g., ftp://ftp.example.com is
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Figure 2.1: SLP system architecture: User Agents (UAs) initiate service discovery
on behalf of service users by querying all SAs via multicast or a DA (if available)
via unicast; Service Agents (SAs) work on behalf of service providers by responding
directly to UA queries, and registering with DAs (if exist); and Directory Agents
(DAs) serve as centralized information repositories by accepting SA registrations and
answering UA queries.

an FTP service, and service:printer:lpr://printer.example.com is a printing service.

Service properties are described via a list of attribute-value pairs, such as “speed =

15 ppm, resolution = 1200 dpi” for a printing service. SLP uses service scopes to

arrange services into groups, which can indicate geographic locations such as “New

York”, administrative groupings such as “Law School”, or other categories such as

“Emergency”. Each service registration is valid only for its specified service lifetime

such as 2 hours, and will be removed from service registries when it has expired.

In other words, SLP service registrations are soft states, and need to be refreshed

periodically.

SLP has three types of entities: User Agents (UAs), Service Agents (SAs), and

Directory Agents (DAs). Figure 2.1 illustrates their relationships.

User Agents. UAs initiate service discovery on behalf of service users by query-

ing all SAs via multicast or a DA (if available) via unicast. UAs use three

types of SLP messages: a service type request (SrvTypeRqst) message to get

a list of available service types in a service type reply (SrvTypeRply) mes-

sage, an attribute request (AttrRqst) message to get a list of attributes for
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a given service type or service instance in an attribute reply (AttrRply) mes-

sage, and a service request (SrvRqst) message with a search filter (or attribute

predicate) specifying characteristics of the desired service to get a list of URLs

giving the locations of matching services in a service reply (SrvRply) message.

SrvTypeRqst, SrvTypeRply, AttrRqst and AttrRply messages allow a client

to browse available service types and their attributes, which can be used to

construct service queries in SrvRqst messages. Given the desired service type,

and a set of attributes describing the service, SLP derives the service access

points (URLs) for clients.

Service Agents. SAs work on behalf of service providers by responding directly to

UA queries, and registering with DAs (if exist) via service registration (SrvReg)

messages. SAs can also deregister services from DAs using service deregistration

(SrvDeReg) messages.

Directory Agents. DAs serve as centralized information repositories by accepting

SA registrations and answering UA queries. DAs can be discovered in two

ways. For passive DA discovery, UAs and SAs simply listen for unsolicited

DA advertisement (DAAdvert) messages sent periodically by DAs to an admin-

istratively scoped multicast address [81]. UAs and SAs can actively discover

DAs by multicasting a DA discovery SrvRqst message whose service type is

“service:directory-agent”. DAs answer each DA discovery request with a uni-

cast DAAdvert message.

SLP achieves scalability by using DAs and service scopes, and thus efficiently

supports service discovery in systems of different scales. In small SLP deployments,

DAs are usually not needed. UAs multicast requests to all SAs, and SAs respond via

unicast. Since this multicast-based discovery cannot scale to a large number of SAs
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and UAs, DAs are introduced in medium-sized SLP deployments, where SAs register

services with DAs, and UAs search services at DAs, all using unicast. In large SLP

deployments, DAs are arranged into different scopes to provide further scalability,

e.g., services in the Law School and Business School of Columbia University can be

assigned to different scopes.

2.3 Mesh Enhancement

2.3.1 Motivation

DAs allow SLP to scale to large deployments that may span large geographic regions.

To avoid a single point of failure, each scope needs to have multiple DAs. However,

SLP DAs do not interact with each other, thus SAs are required to register services

with all DAs in their scopes. This simple approach has two disadvantages. First, it

places too heavy a burden on SAs since they not only need to discover and register

with all existing DAs, but also need to re-register when new DAs are discovered or old

DAs are found to have rebooted. In other words, an SA needs to constantly monitor

all DAs in its scope. This burden becomes an issue of efficiency and scalability

when many devices provide services and each of them uses an SA. Secondly, in large

deployments it is hard to guarantee that all SAs can discover all DAs in their scopes,

leading DAs in the same scope to have inconsistent registrations.

To remedy this situation, we designed the SLP mesh enhancement (mSLP) [156,

155]. The rationale behind mSLP is that distributing registrations to multiple DAs

should be taken care of by DAs instead of by SAs because there are far fewer DAs

than SAs. It is more efficient and scalable for SLP to have a smaller number of

powerful DAs but many lightweight SAs.
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Figure 2.2: An example of the mSLP scope-based fully-meshed peering DA architec-
ture for four DAs (DA1 to DA4) and three scopes (S1 to S3), where an edge between
two DAs means that they are peers.

2.3.2 Design Overview

mSLP defines a scope-based fully-meshed peering DA architecture, which has two

major components: peer relationship management and registration propagation con-

trol. In mSLP, DAs that share one or multiple scopes are peers. Each pair of peer

DAs maintain a single peering connection between them no matter how many scopes

they share. A peering connection is a persistent connection (e.g., TCP) that pro-

vides reliable and ordered transfers between two peers. For each scope, all DAs that

serve the scope form a fully-meshed peer relationship, similar to the Internal Border

Gateway Protocol (IBGP) [105]. Figure 2.2 shows an example of this peering DA

architecture for four DAs (DA1 to DA4) and three scopes (S1 to S3), where an edge

between two DAs means that they are peers. To keep consistent registrations for their

shared scopes, two peer DAs exchange new registrations via their peering connection

by using direct forwarding and anti-entropy; these two mechanisms will be described

further in Section 2.3.4.

For simplicity and reliability, mSLP employs a full-mesh topology for its peering

DA architecture. We anticipate that each scope has a small number of DAs, thus

mSLP should be sufficient for a mesh size on the order of tens or below. Moreover,
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large DA meshes can be avoided by splitting scopes. For example, if scope S has n

DAs and n is too large, we can split S into two finer scopes S1 and S2, with n1 DAs

for S1 only, n2 DAs for S2 only, n3 DAs for both S1 and S2, and n1 + n2 + n3 = n. In

this way, instead of having a large full mesh of size n, now we have two smaller full

meshes of size n1 + n3 and n2 + n3, respectively. Accordingly, a service registration

that previously targets for scope S now needs to be registered under both S1 and S2.

Another important design consideration for mSLP is to be fully backward com-

patible with SLP. As a lightweight enhancement to SLP, mSLP only defines a new

DAAdvert attribute “mesh-enhanced”, a new message extension called mesh forward-

ing (MeshFwd), and a new message type called anti-entropy request (AntiEtrpRqst).

An SLP DA can be mesh-enhanced by carrying the “mesh-enhanced” attribute key-

word in its DAAdvert message and supporting the mSLP functionality without af-

fecting its old functionality. Mesh-enhanced DAs can be deployed incrementally and

co-exist with legacy SLP DAs in the same system.

mSLP offers a number of advantages. First, SA registrations can be simplified.

No matter how many DAs are present in a scope, an SA only needs to discover,

monitor, and register with any one of them for that scope. Registrations will then

be propagated automatically to other DAs. Secondly, consistency among peer DAs

can be improved as they periodically reconcile their inconsistent registrations. Fur-

thermore, newly booted and rebooted DAs can catch up on all new registrations at

once from their peers purely through DA interaction, without involving SAs. Finally,

fewer TCP connections are needed when SAs register with DAs via TCP. Note that

service registrations in SLP can be performed via either TCP or UDP, but a reg-

istration needs to use TCP if it is too large to fit into a UDP packet. Consider a

scope that has n SAs and m DAs. In SLP, each SA needs to connect to each DA and

register, thus nm TCP connections are needed. But in mSLP, each SA only needs to
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connect to one DA in the full mesh of m nodes and register, then registrations are

propagated through the DA mesh, therefore only n + m(m − 1)/2 TCP connections

are needed. Given any n > m ≥ 2, we have nm > n + m(m − 1)/2. For example, if

n = 100 and m = 10, then 1000 TCP connections are needed in SLP, but only 145

such connections are needed in mSLP.

2.3.3 Peer Relationship Management

In mSLP, a DA maintains a peer relationship to each of its peers. The peer rela-

tionship management involves five aspects: learning about new peers, establishing

a peering connection, exchanging peer information, maintaining a peer relationship,

and tearing down a peer relationship.

2.3.3.1 Learning about New Peers

In mSLP, a DA can learn about its peers via static configuration, DHCP [95], and

DAAdvert multicast and unicast.

2.3.3.2 Establishing a Peering Connection

To establish a peering connection from DA1 to DA2, DA1 first needs to get DA2’s

DAAdvert, then initiates a peering connection to DA2, and then sends its DAAdvert

along this peering connection to DA2. Figure 2.3 illustrates these three steps. The

last step is important because it ensures that DA2 will have DA1’s DAAdvert, and thus

enables DA2 to identify the peering connection initiated by DA1 based on that the

advertised IP address in the DAAdvert is the same as the sender’s IP address. Note

that there is a small possibility that a pair of peering connections might be created

between two peers if they try to initiate a connection to each other almost at the same
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time. To avoid this kind of inefficiency, when a DA identifies a new peering connection

initiated by a peer, it should check whether it has already initiated another peering

connection to the peer. If this is the case, then the DA with a lower-numbered IP

address should terminate the connection it has initiated. In this way, only a single

peering connection will be established between DA1 and DA2.

2.3.3.3 Exchanging Peer Information

After two DAs have established a peering connection, they exchange information

about their existing peers by forwarding DAAdvert messages of their existing peers

to each other via the peering connection. This enables both DAs to learn about new

peers incrementally.

2.3.3.4 Maintaining a Peer Relationship

To maintain a peer relationship, a DA periodically sends its DAAdvert message to

its peer DA via the peering connection. This keep-alive mechanism enables a DA to

detect network partitions and peer crashes.
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2.3.3.5 Tearing Down a Peer Relationship

A DA will tear down a peer relationship when its peer’s DAAdvert message has timed

out, when it has received its peer’s shutdown message, or when its peer has closed

the peering connection.

2.3.4 Registration Propagation Control

mSLP constrains registration propagations among peer DAs in three ways. First, two

peer DAs exchange registrations only in their shared scopes. This calls for the support

of scope-based partial replication among peer DAs. For example, as DA1 and DA3

in Figure 2.2 share one scope S2, they exchange registrations only in scope S2. Note

that a multi-scoped registration needs to be propagated properly to all corresponding

scopes. For example, consider that DA3 in Figure 2.2 receives a multi-scoped reg-

istration in scope S2 and S3, then this registration needs to be propagated to DA1,

DA2, and DA4 since all of them serve part of the registration scopes. Secondly, only

new registrations are exchanged between two peer DAs. To support this function-

ality, each registration needs to be labeled correctly so that a DA can decide which

registrations a peer has already had, and the DA only sends those registrations the

peer does not have yet. Finally, for each registration only a new version can overwrite

an old one. Note that different versions of the same registration have the same service

URL. When registrations are propagated among DAs, their arrival orders at a DA

cannot be used to resolve different versions of the same registration. For example,

assume that SA1 sends a registration R1 to DA1 first, and a new version of the same

registration R2 to DA2 later. When R1 and R2 are propagated, DA2 receives R1 later

than R2, but R1 should not overwrite R2 at DA2 since R2 is a newer version.

To satisfy the first constraint, a DA just needs to compare the scopes of each reg-
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istration with the scopes of each peer DA, and propagates each registration properly

to the corresponding peer DAs. To satisfy the last two constraints, additional control

information is needed. Thus, we designed the mesh-forwarding (MeshFwd) extension,

which carries two pieces of control information for each registration: an accept-id

assigned by its accept DA (the first DA that accepts the registration) and a version-

timestamp assigned by its originating SA (the SA that initiates the registration). An

accept-id has two components: an accept-da (a unique identifier of the accept DA)

and an accept-timestamp. All accept-timestamps assigned by the same DA must

be monotonically increasing. Therefore, all accept-ids are unique; they define a total

order for all registrations accepted by the same DA and a partial order for all registra-

tions accepted by all DAs. mSLP uses accept-ids to control registration propagations

so as to ensure that any registration accepted by any DA is distributed to all DAs

in the registration scopes exactly once. Specifically, a DA propagates registrations in

increasing order of their accept-ids, i.e., registrations accepted by the same DA are

propagated in increasing order of their accept-timestamps, and registration accepted

by different DAs may be propagated in any order. Similarly, all version-timestamps

assigned by the same SA must be monotonically increasing. Since any SLP registra-

tion is only updated by one SA, using version-timestamps is sufficient to identify the

most recent version for any registration.

mSLP has two goals in propagating registrations among peer DAs. The first one

is to make service information highly available. Compared with availability, inconsis-

tency among peer DAs is less of a concern. Therefore, an asynchronous replication

model is more appropriate, where a registration update is delivered to one DA first,

then it is propagated to other peer DAs later. Another goal is to propagate registra-

tion updates received by each DA to other peer DAs as quickly as possible in order

to minimize inconsistency among peer DAs. To achieve these two goals, mSLP dis-
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tributes registrations among peer DAs in two ways: anti-entropy and direct forward-

ing. In terms of providing high availability using lazy replication, the anti-entropy

[96, 54, 147] mechanism is more efficient than the gossip technique [71].

Anti-entropy is used for exchanging initial registrations when two peer DAs get

to know each other for the first time, and for catching up on new registrations after

failures. A DA initiates an anti-entropy session by sending an AntiEtrpRqst message

to a peer. Then the peer replies with all requested new registrations in increasing

order of their accept-ids, and sends a service acknowledgment (SrvAck) message at the

end of the batch of new registrations to indicate that processing of the corresponding

AntiEtrpRqst message has been completed. While in anti-entropy, new registrations

are pulled by the receiving DA via an AntiEtrpRqst message and are sent in a batch,

in direct forwarding, new registrations are pushed by the sending DA and are sent

individually. More specifically, after a DA has sent all new registrations accepted

by itself to a peer via anti-entropy, the DA starts to forward any further incoming

registration accepted by itself directly to the peer. This direct forwarding continues

as long as the peer is alive and there is no failure. Note that the direct forwarding

of a registration only goes one hop from its accept DA (say, DA1) to all DA1’s peers

that are in the registration scopes.

For anti-entropy, mSLP supports two types of sessions: complete and selective.

Complete anti-entropy [96, 54] is the traditional way to perform anti-entropy, in which

all registrations that have an accept-id greater than any specified accept-id in the

AntiEtrpRqst or have an accept-da not specified in the AntiEtrpRqst are solicited.

Selective anti-entropy [147] (described further in Chapter 4) is our proposed new way

to perform anti-entropy, in which only registrations that have an accept-id greater

than any specified accept-id in the AntiEtrpRqst are solicited. Selective anti-entropy

enables two parties to perform partial anti-entropy in the granularity of one accept-
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da, i.e., all registrations accepted by the same DA. Selective anti-entropy generalizes

traditional anti-entropy with added flexibility; it supports scope-based replication in

mSLP and complex partial replication in general.

Next, we use an example to show how selective anti-entropy differs from complete

anti-entropy. Consider a scope that has three DAs: DA1, DA2 and DA3. DA2 has

registrations accepted by DA1, DA2, and DA3. If DA1 sends a selective AntiEtrpRqst

to DA2 using an accept-id list as {(DA2, T2)}, then DA1 only requests registrations

that are accepted by DA2 and have an accept-timestamp greater than T2. In contrast,

if DA1 sends a complete AntiEtrpRqst to DA2 using the same accept-id list as before,

then DA1 requests all registrations accepted by DA1 and DA3, in addition to those

registrations accepted by DA2 and having an accept-timestamp greater than T2.

2.4 Remote Service Discovery

2.4.1 Motivation

SLP is designed for local service discovery within one administrative domain. For

service discovery beyond the local domain, there are two cases. The first one is remote

service discovery, which is to discover services in a given remote (i.e., non-local) DNS

domain. For this type of service discovery, we have a specific DNS domain. The

second case is to discover services based on geographic locations or other properties

that are not specific to any DNS domain, such as finding wireless network access

points in the New York metropolitan area. This type of service discovery is more

difficult since it spans many DNS domains.

DNS SRV [56] can specify the server locations for a specific service, transport

protocol, and DNS domain, which provides good support for remote service discovery.
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However, if multiple servers are discovered via DNS SRV for a service, only priority

and weight can be used to make a selection. If additional service properties such as

cost, speed, and service quality need to be considered in the selection process, DNS

SRV becomes insufficient.

Using SLP and DNS SRV together can provide better support for remote service

discovery. First, a UA uses DNS SRV to find SLP DAs at a remote DNS domain.

Then, the UA uses SLP to query one of those DAs to discover desired services in that

domain just as in the local domain. In this way, we can avoid the limitations in using

SLP and DNS SRV separately. On one hand, without DNS SRV, an SLP UA needs

to depend on static configuration to learn about remote DAs because DHCP and

multicast DA discovery are not generally applicable beyond the local administrative

domain. On the other hand, without SLP, DNS SRV has limited support for service

selection.

2.4.2 Design

To support remote service discovery in SLP, we defined DNS SRV Resource Records

(RRs) for SLP DA services [158], which can map a given DNS domain name to

remotely accessible (i.e., accessible from the Internet) SLP DAs in that domain.

As SLP scopes are intended to be used only within one administrative domain,

they are likely incomprehensible to users outside of the administrative domain. Thus,

any remotely accessible service must be registered in the “default” scope, but it may

be registered in other scopes at the same time. Similarly, all DAs advertised via DNS

SRV must serve the “default” scope, but they may serve other scopes at the same

time. As a result, users wishing to discover services at a remote DNS domain should

only search the “default” scope.
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Due to reasons such as security considerations, load controls, and charging require-

ments, a domain normally just wants a chosen subset of its services to be accessible

from the Internet. This administrative differentiation of service usages is achieved by

having chosen services from any scope registered in the “default” scope and exposed

to the Internet. The advantage for a domain to put all remotely accessible services in

a single “default” scope is that remote (non-local) users do not need to differentiate

scopes to discover desired services in that domain. Note that the services discovered

via DNS SRV and remote SLP DAs may not necessarily be remotely accessible.

Our proposed remote service discovery using SLP and DNS SRV facilitates dis-

covering services at a remote DNS domain if the domain name is known via a priori

knowledge. However, it is not intended to solve the problem of Internet-wide service

discovery [11].

2.5 Preference Filters

2.5.1 Motivation

Since an SLP server, either a DA or an SA, does not perform any processing on

search results, all matching results are returned from the server to the client with

no particular order. This works fine for small SLP deployments, but may not scale

to large deployments. Consider the following scenarios. First, if too many service

entries match a search request, the search results may overload client network and

storage resources. Secondly, a client may just want to find a few results that satisfies

its requirements rather than all of them. Sending unneeded results to the client will

waste network and server resources. Finally, a client may want to weigh the relative

suitability of matching results based on some criteria, which calls for sorting search
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Figure 2.4: The processing of a SrvRqst that has a search filter and a preference filter

results. Sorting at the server is more efficient than sorting at the client since the

former does not need to pass the attributes of matching results to the client just for

sorting purposes. Reducing the amount of data transferred to the client is useful

when the client uses a low bandwidth channel, such as a wireless channel. A good

example showing the need for processing search results at SLP servers is the best-

match search, such as finding a printer that has the shortest queue. For this discovery,

an SLP UA needs to get information for all printers, sort them based on the queue

length attribute, and choose the one with the shortest queue. This procedure is

inefficient when there are many printers.

2.5.2 Design

Preference filters [157, 146] are designed to facilitate flexible processing of search

results at the server, based on the client requirements in terms of the size and order

of results. Preference filters are specified via SLP extensions attached to SrvRqst

messages. Figure 2.4 shows the processing of a SrvRqst message that has a search

filter and a preference filter. First, the search filter is applied to the service registration

database, which generates a set of matching results. Then the preference filter is

applied to the matching results, which generates a set of preferred results.

Although the format of preference filters could be designed in a way similar to SLP

and LDAP search filters [61], we employ a simpler approach based on composition.
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We choose select and sort as two basic preference filters and design the corresponding

SLP Select and Sort extensions [157] for specifying them, then we use these two

basic filters to compose generic preference filters.

The Select extension is used by a UA in the SrvRqst message to limit the max-

imum number (say, n) of results to be returned, and is used by an SLP server in

the corresponding SrvRply message to indicate the total number (say, m) of search

results. If n < m, then only the first n search results are returned, otherwise all m

search results are returned. As a special case, a UA may set n to 0 to obtain the

number of search results without retrieving the results themselves.

The Sort extension carries a sort key list. Each sort key has a key name (i.e.,

an attribute name), a type specifier (“s” for string and “i” for integer), an ordering

specifier (“+” for increasing and “-” for decreasing), and an optional reference value.

Although SLP has five attribute types, namely integer, string, boolean, opaque, and

keyword, we only consider integer sort and string sort because keyword attributes

never need to be sorted as they have no values, and boolean and opaque attributes

can be sorted as strings if needed. Integer keys may have a reference value, as in

speed:i:+:12, causing the sort to be based on the distance to the reference value, here,

12.

A generic preference filter is a list of select and sort filters observing the following

rules. First, two basic filters of the same type, whether select or sort, cannot be

adjacent to each other. Secondly, if the number of sort and select filters is the same,

the last one must be a select filter. Finally, for two select filters s1 and s2, if s1

appears earlier than s2, then the selected number of results specified in s1 must be

greater than that in s2.

Next, we show some examples of preference filters, in which select(number) de-

notes a select filter and sort(attribute:type:ordering:reference) denotes a sort filter.
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Finding the best match is accomplished via a sort filter followed by a select filter,

e.g., “sort(load:i:+), select(1)” for the least loaded service, “sort(speed:i:-), select(1)”

for the fastest service, and “sort(price:i:+:12), select(1)” for the service with a price

closest to 12 charging units. Examples for other complex preference filterings include

“sort(speed:i:-), select(3)” for the three fastest services, “sort(speed:i:-,load:i:+), se-

lect(1)” for the least loaded service among the fastest, and “sort(speed:i:-), select(3),

sort(load:i:+), select(1)” for the least loaded service among the three fastest.

2.6 Global Attributes

2.6.1 Motivation

In SLP, service attributes describe service properties specific to certain service type,

which we referred to as local attributes. In contrast, global attributes describe service

properties common to all service types. Local attributes and global attributes differ in

how they are defined, named, and used. Currently, SLP only supports local attributes

in that each service type defines its own attribute set via a service template [58]; an

attribute name is unique only within its service type (i.e., two different service types

may use the same attribute name); and an attribute is always used along with its

service type. As more service properties are identified as being common to all service

types, such as transport protocol, we saw a need to enable global attributes in SLP

for efficiency and advanced discovery. For example, without such a mechanism, a

UA needs three steps to find all services supporting the Stream Control Transmission

Protocol (SCTP) [123]: sending a SrvTypeRqst message to obtain a list of service

types, then using a separate SrvRqst message to search services of each type, and

finally combining the search results. As a SrvRqst message can only search services
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of a single type, n + 1 searches are needed for n service types, which is inefficient if

n is large.

2.6.2 Basic Design

To enable global attributes [146, 152] in SLP, we need to assign a separate namespace

to global attributes, define them via attribute templates, and use them properly in

searching services across multiple service types. First, a separate namespace is needed

for global attributes. This is because a global attribute can be used with any service

type. If it has the same name as a local attribute, then there will be confusion as to

which is which. To follow the common practice of prefixing an attribute name with

its service type, we use the “service-” prefix in global attribute naming. Note that

XML [27] also uses prefixes to define its namespaces. Secondly, a global attribute is

defined via an attribute template [152]. Any service type that uses a global attribute

imports the attribute’s definition into its service template, similar to the C include

and Java import mechanisms. In this way, a global attribute only has one definition,

and can be used consistently for all service types. Finally, a global attribute can

appear in any place where a local attribute is appropriate. In a SrvRqst message,

when local attributes are used, exactly one service type must be specified; but when

only global attributes are used, multiple service types or a service type wildcard

can be specified. Thus, using a single SrvRqst message can search services across

multiple or all service types. For example, to find all services supporting SCTP, we

can use a SrvRqst message that has a service type wildcard, and a search filter of

“service-transport-protocol=sctp”.

Using global attributes can improve SLP efficiency. First, global attributes only

need to be defined once. Afterwards, they can be imported into any service template.
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This avoids defining the same attribute repeatedly in different service templates, and

ensures a consistent definition. Secondly, by using global attributes, a single SrvRqst

message can search services across multiple service types, which is more efficient than

using multiple SrvRqst messages, one for each service type.

2.6.3 Advanced Usages

Using global attributes can accelerate the standardization of common service prop-

erties and support advanced discovery scenarios. For example, we can define service

identifier and device identifier as global attributes. Service identifiers and device

identifiers are URIs [21] such as UUIDs [73]; each of them uniquely and persistently

identifies a service or a device. We can use service identifiers and device identifiers to

support the following discovery scenarios.

Supporting URL changes. While Jini [134] and UDDI [129] use service identifiers

as service keys, SLP uses service URLs as service keys. Since a service may

change its URLs (e.g., when the service moves), retrieving a service based on

its service URLs may not always be feasible. To remedy this situation, we can

define service identifier as a global attribute so that a client can always find a

service based on its service identifier.

Discovering multi-access-point services. A multi-access-point service provides

the same service via different access points that reside at the same device.

For example, a multi-protocol printer that supports IPP [60] and LPR access

protocols may have two URLs service:printer:ipp://mpp.example.com and ser-

vice:printer:lpr://mpp.example.com. We can use service identifiers to discover

multi-access-point services as follows. A multi-access-point service advertises

each access point separately, but all advertisements use the same service iden-
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tifier to indicate that they point to the same service. A client can discover all

advertisements of a multi-access-point service by specifying the service identifier

and the service type (or a service type wildcard) in a SrvRqst message.

Discovering multi-function devices. A multi-function device provides different

types of services at the same device. For example, a device that supports print-

ing and scanning services may have two URLs service:printer://print.example.com

and service:scanner://scan.example.com. Using device identifiers, we can dis-

cover multi-function devices as follows. A multi-function device advertises each

service type separately, but all advertisements use the same device identifier to

indicate that they reside at the same device. A client can discover all adver-

tisements of a multi-function device by specifying the device identifier and a

wildcard service type (or all the service types the device supports) in a SrvRqst

message.

Discovering replicated services. A replicated service provides the same service at

different devices. Using service identifiers and device identifiers together, we can

discover replicated services as follows. A replicated service advertises the same

service at each device separately, and all advertisements use the same service

identifier but different device identifiers. Note that a replicated service uses

different device identifiers in its advertisements whereas a multi-access-point

service uses the same device identifier in its advertisements.

2.7 Implementation

We have implemented our enhanced SLP in Java 1.4, which includes a stand-alone

DA server and an integrated UA/SA tool. Besides the basic SLP protocol stack,
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our open-source implementation [145] supports the SLP mesh enhancement, remote

service discovery, preference filters, and global attributes. Next, we outline how these

SLP enhancements are implemented.

To support the SLP mesh enhancement, DAs need to manage peer relationships by

maintaining a peer table, and need to control registration propagations by maintaining

a summary vector for all registrations as well as an accept-id and a version-timestamp

for each registration. At the same time, SAs need to use the MeshFwd extension in

their registrations, but UAs do not need to be changed.

To support remote service discovery, a domain needs to list its remotely accessible

DAs via DNS SRV. At the same time, UAs need to perform DNS queries to obtain

SRV records so as to discover DAs at given remote DNS domains.

To support preference filters, an SLP server needs to adjust its processing of

SrvRqst messages as follows. For a SrvRqst message with a preference filter, the

filter is ignored during the search, and then the filter is applied to the search results.

When the filter has multiple select and sort filters, they must be processed in order,

with the output of one filter as the input of the next filter. The output of the last

filter is returned to the client.

Similarly, to support global attributes, an SLP server needs to adjust its processing

of SrvRqst messages as follows. For a SrvRqst message that uses local attributes, it

should have exactly one service type, and is handled as before. For a SrvRqst message

that uses only global attributes, it may have multiple service types or a service type

wildcard. In this case, the service type information is ignored during the search, and

then those search results that do not match any of the specified service types are

discarded.
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2.8 Evaluation

To evaluate the proposed enhancements, we carried out experiments in our local area

network and on PlanetLab [99]. In our local area network, we used a cluster of 30

machines; each machine had a 1 GHz Intel Pentium III CPU and 512 MB of memory.

They all ran Redhat 9.0 with Linux kernel 2.4.20-20.9, and were connected via 100

Mb/s fast Ethernet. At the time of the experiments, PlanetLab consisted of more

than 300 nodes all over the world; each node had a CPU of at least 1 GHz clock

rate and had at least 1 GB of memory. They all ran Redhat 9.0 with Linux kernel

2.4.22-r3 planetlab, and used PlanetLab software 2.0. PlanetLab nodes had four types

of network connections: DSL, Internet2, North American commodity Internet, and

outside North America.

We used our open-source SLP DA implementation written in Java [145], and im-

plemented SLP SAs and UAs using C. We evaluated each enhancement individually

by comparing the results when the enhancement was enabled with that when the

enhancement was disabled. Note that we did not obtain quantitative results for re-

mote service discovery because this enhancement extended SLP functionality without

affecting discovery performance.

2.8.1 Mesh Enhancement

To show the benefits of using mSLP, we measured consistency between two peer

DAs after one recovered from failures. In this experiment, we ran two DAs, one SA,

and one UA, all at local machines, and they were all in the same scope. The SA

performed n different registrations repeatedly with a fixed interval of Ir seconds, and

the lifetime of each registration was set to (n + 1)Ir seconds. Thus, each registration

was refreshed every R = nIr seconds, and each DA should have n registration entries
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Figure 2.5: Without using mSLP: consistency between two peer DAs at host ankara
and ottawa after host ottawa recovered from two failures during 90 to 440 seconds
and 1150 to 1320 seconds

at steady state. The UA queried both DAs with a fixed interval of Iq seconds to find

out how many registration entries each DA had. Since the UA did not need to retrieve

the entries themselves, it attached a preference filter “select(0)” to each query. The

SA or UA timed out a registration or query if it could not get a response after T

seconds, in which case the DA was assumed to have failed, i.e., the DA had crashed

or had been disconnected from the network. The experimental parameters were set

as follows: n = 100, Ir = 6 seconds, R = nIr = 600 seconds, Iq = 10 seconds, and

T = 1 second.

In the first experiment, mSLP was disabled, and the SA registered with both

DAs. For the run length of 2000 seconds, the DA at host ankara worked properly,

but the DA at host ottawa was unavailable during two time periods, from 90 to 440

seconds and from 1150 to 1320 seconds. Figure 2.5 shows the number of registration
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entries at both DAs as sampled by the UA. For each sample, if the response from a

DA timed out, then the UA marked the number of registration entries at that DA as

−1. We observe that host ottawa missed m service registrations when it failed during

[t0, t1], where m = n(t1 − t0)/R assuming t1 − t0 ≤ R. When host ottawa recovered

from failures, it had m registration entries less than host ankara during [t1, t0 + R].

Without suffering new failures, host ottawa caught up with missing entries during

[t0 + R, t1 + R], and had the same registration entries as host ankara after t1 + R.

Thus, host ottawa took a recovery interval of R seconds to catch up with all missing

registrations. When the UA queried host ottawa during [t1, t1 + R], it got incomplete

service information.

To quantify the relationship between missing entries and failure duration, we use

µ to denote the average rate of missing entries during the first R seconds after a DA

recovered from failures, and use ρ to denote the ratio of the failure duration over

recovery interval R. We first consider ρ ∈ [0, 1]. In the above experimental setup, the

missing entries in [t1, t0 + R] is nρ, and the average missing entries in [t0 + R, t1 + R]

is nρ/2. Thus, we can compute µ as follows:

µ =
nρ(1 − ρ)R + n(ρ/2)ρR

nR
= ρ(2 − ρ)/2

Figure 2.6 shows the relationship between µ and ρ for ρ ∈ [0, 1]. We observe that

µ increases as ρ increases, and µ = 0 when ρ = 0, and µ = 50% when ρ = 1. If ρ > 1,

the DA would expire all registration entries when it recovered. Thus, µ = 50% when

ρ > 1, which is the same as ρ = 1.

In the second experiment, mSLP was enabled. For each registration, the SA only

registered with one DA by randomly choosing one DA to register. If the response from

the chosen DA timed out, then the SA registered with another DA. Figure 2.7 shows
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Figure 2.6: The relationship between µ and ρ for ρ ∈ [0, 1], where µ is the average
rate of missing entries during the first R seconds after a DA recovered from failures,
and ρ is the ratio of failure duration over recovery interval R.

the experimental results, where the failure scenario was the same as in the first case.

We observe that when both DAs were alive, each registration was propagated from

one DA to another DA automatically via mSLP. Also, when host ottawa recovered

from failures, it got all missing registrations at once from host ankara via mSLP

quickly, which took about 100 ms in our experiments. Thus, when both DAs were

alive, the UA could always get the same consistent reply whether it queried host

ottawa or ankara. In other words, mSLP can effectively fix the inconsistency problem

among peer DAs after one of them recovers from failures.

To quantify the consistency improvement by using mSLP, consider the probability

that a UA gets incomplete service information. Assuming each DA has an availability

of p1, and ρ ≤ 1, then the probability that a DA has incomplete service information is

p2 = (1− p1)/ρ. Thus, the probability that a UA gets incomplete service information
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Figure 2.7: Using mSLP: consistency between two peer DAs at host ankara and ottawa
after host ottawa recovered from two failures during 90 to 440 seconds and 1150 to
1320 seconds

from two DAs is p3 = 50%(p2 + (1 − p1)p2)2 = p2 + (1 − p1)p2 when mSLP is not

used, but is p4 = p2
2 when mSLP is used. For example, if p1 = 99.9%, and ρ = 0.1,

then p2 = 1%, p3 = 1.001%, and p4 = 0.01%, where the probability that a UA gets

incomplete service information has been reduced by two orders of magnitude by using

mSLP.

2.8.2 Preference Filters

To show the benefits of using preference filters, consider the response time of a query

when many entries match the query. For example, in DotSlash [150], different web

servers register with mSLP DAs, and a web server discovers and utilizes spare capacity

at other web servers to relieve its load spikes. Although many registered web servers

may have spare capacity, a web server only needs to use a few of them in case of load
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Figure 2.8: Using preference filters versus without using preference filters: the re-
sponse time measured from two PlanetLab nodes, gtidsl1 and ucla1, where node
gtidsl1 was behind a DSL line, and node ucla1 connected to Internet2.

spikes. In this experiment, we ran one DA and one SA at local machines, and ran two

UAs on PlanetLab nodes, one UA at node gtidsl1 which was behind a DSL line, and

another UA at node ucla1 which connected to Internet2. The SA registered with the

DA to simulate service registrations performed by n web servers with different spare

capacities, where n varied from 10 to 1000. The two UAs queried the DA to obtain

information about spare capacities at available web servers. For each n, each UA

queried in two cases: (1) without using preference filters, all n entries were retrieved,

and (2) by using the following preference filters “sort(spare-capacity:i:-), select(10)”,

only entries with the ten largest spare capacities were retrieved. We used TCP in the

first case since the reply size could be quite large, but used UDP in the second case

since the reply size was small and fixed.

Figure 2.8 shows the experimental results. We observe that without using prefer-
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ence filters, the response time increases as the number of matching entries n increases

because the DA needs to process more entries and send more data to the UA. Fur-

ther, when the reply size gets larger, the low bandwidth UA at node gtidsl1 takes

significantly more time to get the reply than the high bandwidth UA at node ucla1.

In contrast, by using preference filters, the response time increases only slightly as n

increases because the reply size is unchanged, but the DA needs sightly more time

to process a larger number of matching entries. The big difference in response times

between using and without using preference filters is mainly due to the difference of

reply sizes in these two cases. When preference filters are used, the reply size is fixed,

which is 927 bytes for all n ∈ [10, 1000]. But when preference filters are not used, the

reply size increases as n increases, which is 920 bytes when n = 10, 9020 bytes when

n = 100, and 90020 bytes when n = 1000.

2.8.3 Global Attributes

To show the benefits of using global attributes, consider the time used for completing

a location-based query. For example, consider the problem of finding all services at

a given location, where a number of different types of services exist, such as printer,

projector, and fax. In this experiment, we ran one DA and one SA at local machines,

and ran one UA at the PlanetLab node gtidsl1. The SA registered n types of services

with the DA, where n varied from 1 to 20. The UA queried the DA to find services at

a given location. Without using global attributes, the UA needed to use n+1 queries,

where one query was needed for obtaining the service type list, and a separate query

is needed for each service type. Using global attributes, the UA only needed to use

one query by specifying a service type wildcard.

Figure 2.9 shows the experimental results. We observe that without using global
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Figure 2.9: Using global attributes versus without using global attributes: the time
used for performing location-based queries from a PlanetLab DSL node gtidsl1

attributes, the total time used increases as the number of service types increases. In

contrast, by using global attributes, the time used is roughly unchanged. We also ran

the above experiment using a local UA, and obtained a similar curve except that the

time used by the local UA was about two orders of magnitude less than that of the

UA at node gtidsl1.

2.9 Related Work

Fully-meshed peer relationships are used in IBGP [105]. While an IBGP node is only

in one mesh, a multi-scoped mSLP DA may belong to multiple meshes. mSLP sup-

ports flexible selective anti-entropy [147] as well as traditional complete anti-entropy

[96]. UDDI [129] also uses anti-entropy to replicate registries, but only for full repli-

cations, whereas mSLP supports scope-based partial replications.
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DNS-based Service Discovery (DNS-SD) [36] proposes a convention for naming and

structuring DNS resource records, which allows clients to discover service instances

of desired service types at any DNS domain by using only standard DNS queries.

Although our proposed remote service discovery and DNS-SD both support DNS-

domain-based service discovery, i.e., are not restricted to local service discovery, they

differ in terms of design goals and functionality. DNS-SD aims to facilitate service

discovery by using DNS only, which is advantageous for easy deployment, but it

does not support for service filtering via search filters, which is inefficient for service

selection. In contrast, our system supports flexible and powerful service filtering by

using SLP and DNS SRV together.

A number of service discovery systems such as Jini [134] and UDDI [129] support

selecting and sorting search results, but none of them support generic preference

filtering by composing these two basic operations. LDAP sort control [62] and paging

control [139] come closest to our proposed preference filters. But LDAP sends all

search results back to the client via the paging control mechanism, whereas our system

simply sends selected number of search results to the client. Furthermore, our system

supports reference-based sorting and supports composing multiple select and sort

filters. In the context of service discovery, our preference filters are a simple case for

the general issue of preference-based service selection [15]. Beyond service discovery,

our preference filters are related to SQL order by statement.

Our work on SLP global attributes was motivated by Guttman’s work [57] on

using service identifiers as SLP service keys. However, Guttman’s proposal needs to

use hierarchical attributes when a service has multiple URLs with different properties.

We believe that it is simpler to keep service URLs as service keys and define service

identifiers as a global attribute. Similar to global attributes, Jini [134] defines a set

of common entry classes in the net.jini.lookup.entry package. When a Jini search
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specifies multiple interfaces, it finds services that implement all specified interfaces

(logical “and”). In contrast, when an SLP SrvRqst message specifies multiple service

types, it finds services of any specified type (logical “or”).

2.10 Summary

This chapter described four new mechanisms for SLP: mesh enhancement that sim-

plifies SA registrations and improves the consistency of peer DAs, remote service

discovery that enables SLP users to discover services at remote DNS domains, pref-

erence filters that facilitate processing of search results in SLP servers, and global

attributes that allow using a single query to search services across multiple types.

These mechanisms can improve SLP efficiency and scalability, and enable SLP to

better support new and advanced discovery. Although we discuss these techniques

in the context of SLP, we expect that they can also be applied to other service dis-

covery systems. The SLP mesh enhancement (mSLP), remote service discovery, and

preference filters are now experimental RFCs (Request for Comments) [157, 156, 158].
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Chapter 3

Selective Anti-Entropy

This chapter describes selective anti-entropy, a mechanism we used in SLP mesh

enhancement. Since it is a general mechanism for high availability partial replication,

we discuss it here separately. We first give some background on replication and

anti-entropy, then describe the motivation and design of selective anti-entropy. After

presenting the implementation and evaluation for selective anti-entropy, we discuss

related work and give a summary.

3.1 Replication

Replication is an important technique for enhancing performance, availability, and

scalability of distributed systems.

Based on how data are replicated among replicas, replication systems can be

classified into two categories, namely full replication and partial replication. In full

replication, all data are replicated to all replicas. We denote a full replication system

with r replicas as F(r). In partial replication, the whole data set is partitioned into

subsets referred to as scopes, and all data in the same scope are replicated to the same
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Figure 3.1: An example of P(6, 3), a partial replication system with 6 replicas and 3
scopes, where replicas are R1 to R6, scopes are S1 to S3, and an edge between two
replicas means that they share scopes.

replica set. We denote a partial replication system with r replicas and s scopes as

P(r, s), where a replica may serve any number of scopes (up to s), and a scope may

have any number of replicas (up to r). Clearly, F(r) is just a special case of P(r, s)

when all replicas serve all scopes. Figure 3.1 shows an example of P(6, 3), a partial

replication system with 6 replicas and 3 scopes, where replicas are R1 to R6, scopes

are S1 to S3, and an edge between two replicas means that they share scopes.

A partial replication system is more flexible and efficient than a full replication

system. First, partial replication can help restrict access to data. For example, a

company may have service registries for internal services, external services, and all

services, which are used by internal users, external users, and administrators, respec-

tively. Secondly, partial replication can reduce the amount of data transferred across

wide area networks for geographically distributed replicas, which can lower telecom-

munications costs. For example, a company may have service registries located at its

regional offices and its headquarters for regional services and all services, respectively.

A partial replication system is also more complex than a full replication system.

For instance, all replicas in F(r) are equivalent, but replicas in P(r, s) can have

four different types of relationships based on how they share serving scopes. We use
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S(Rx) and S(Ry) to denote the serving scopes of replica Rx and Ry, respectively. The

relationship between Rx and Ry can be equivalent, subset, overlap, or non-overlap,

explained below.

Equivalent. Rx and Ry are equivalent if they serve the same scopes, i.e., S(Rx) =

S(Ry). For example, in Figure 3.1, R3 and R6 are equivalent.

Subset. Rx and Ry have a subset relationship if the serving scopes of one replica are

a subset of the serving scopes of another replica, i.e., S(Rx) ⊂ S(Ry) or S(Ry) ⊂

S(Rx). For example, in Figure 3.1, R4 and R1 have a subset relationship.

Overlap. Rx and Ry have an overlap relationship if they have serving scopes in

common but they do not have an equivalent or subset relationship, i.e., S(Rx)∩

S(Ry) 6= ∅, S(Rx) 6= S(Ry), S(Rx) 6⊂ S(Ry), and S(Ry) 6⊂ S(Rx). For example,

in Figure 3.1, R3 and R4 have an overlap relationship.

Non-overlap. Rx and Ry have a non-overlap relationship if they do not share any

serving scope, i.e., S(Rx) ∩ S(Ry) = ∅. For example, in Figure 3.1, R2 and R5

have a non-overlap relationship.

A partial replication system can be converted into several full replication systems.

We first consider the case when the scopes in a partial replication system are disjoint,

such as free services and paid services. For example, a partial replication system

with one registry for free services, one registry for paid services, and one registry

for all services can be converted into two full replication systems with two registries

for free services and two registries for paid services. Note that the conversion keeps

the same replication degree for each scope as before. However, such a conversion

involves overhead. First, the conversion needs to use more registries than the original

partial replication system. Secondly, a multi-scope query needs to be converted into
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multiple single-scope queries, and the corresponding query result sets need to be

combined into one result set. When the scopes in a partial replication system overlap,

such as internal services and external services, the conversion involves additional

overhead. First, a multi-scope service may need to register with more registries.

Secondly, when a multi-scope query is converted into multiple single-scope queries,

a multi-scope registration may appear in multiple query result sets. Thus, we need

to remove duplicate registrations in combining the query result sets. Due to the

overhead outlined above, we believe that it is useful to support partial replication.

3.1.1 Anti-Entropy

Anti-entropy [44] is an important mechanism for achieving eventual consistency among

a set of replicas, where an update is accepted by one replica first, and then the up-

date is propagated asynchronously to the remaining replicas. An important feature of

anti-entropy is that two replicas only exchange new updates to reconcile their inconsis-

tency. To achieve this, all updates need to be labeled correctly, and be propagated in

certain order among replicas. Anti-entropy uses the following labeling scheme. Each

update is assigned an accept-id by its accept-replica. The accept-replica for an update

is the first replica that accepts the update. An accept-id has two components, an

accept-replica-id and an accept-timestamp. The accept-replica-id is a unique identifier

of the accept-replica, and the accept-timestamp is the timestamp when the update

is accepted at its accept-replica. All accept-timestamps assigned by the same replica

must be monotonically increasing. Two accept-ids are comparable only if they have

the same accept-replica-id, and their order is determined by their accept-timestamps.

In anti-entropy, updates are propagated in increasing order of their accept-ids.

Thus, each replica can use a summary vector to summarize the updates it has received.
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This summary vector keeps the largest accept-timestamp for each accept-replica-id.

For example, if replica Ri has a summary vector of ((R1, t1), (R2, t2), ..., (Rr, tr)),

then Ri has received all updates accepted by replica Rj up to timestamp tj, where

1 ≤ j ≤ r.

Anti-entropy [96, 54] is a mechanism for high availability replication, but it was

designed for supporting full replication. We enhanced it to support partial replication

by allowing two replicas to selectively reconcile inconsistent data in a session.

3.2 Motivation

We refer to the existing anti-entropy algorithms [96, 54] as complete anti-entropy in

that two replicas reconcile their inconsistent data completely in one bi-directional

session or in two uni-directional sessions. In other words, a replica gets all missing

updates from another replica in one session. Complete anti-entropy was designed to

support full replication, but it may fail in partial replication. For example, in Figure

3.1, assume that R2 and R3 have not received any update yet, and R6 has accepted

three updates u1
6, u2

6, and u3
6 from clients. The scopes and accept-ids for u1

6, u2
6, and

u3
6 are shown in Table 3.1. Note that u3

6 belongs to two scopes, S1 and S2. Consider

three sessions among R2, R3, and R6 as follows.

• In the session between R2 and R6, R2 gets new updates u1
6 and u3

6 in scope S1

from R6, and R2’s summary vector changes from () to ((R6, t
3
6)).

• In the session between R3 and R2, R3 gets new updates u1
6 and u3

6 in scope

S1 from R2, and R3’s summary vector changes from () to ((R6, t
3
6)). Here, the

summary for R6 is wrong since R3 has not received update u2
6 which has an

accept-id of (R6, t
2
6).
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Update Scope Accept-id
u1

6 S1 (R6, t
1
6)

u2
6 S2 (R6, t

2
6)

u3
6 S1, S2 (R6, t

3
6)

Table 3.1: The scopes and accept-ids for three updates, u1
6, u2

6, and u3
6, at replica R6

that are accepted by R6 from clients, and t16 < t26 < t36.

• In the session between R3 and R6, R3 wants to get new updates in scope S1 and

S2 from R6, but since R3 and R6 have the same summary vector of ((R6, t
3
6)),

R6 will not send u2
6 to R3. Anti-entropy fails here because R3 has an incorrect

summary for R6.

The reason for the wrong summary is that updates in different scopes are prop-

agated separately, which may not follow the order of their accept-ids. For example,

R3 receives u3
6 before u2

6 (which is not in the order of their accept-ids) since u3
6 is in

scope S1, u2
6 is in scope S2, and R3 receives all updates in scope S1 first.

To handle scope-based update propagation, it seems straightforward to extend

the summary vector mechanism by using a summary matrix to maintain the largest

accept-timestamp for each accept-replica-id and scope combination. However, this

simple extension can work properly only if the scopes do not overlap, i.e., any update

only belongs to a single scope. As we discussed earlier in Section 3.1, unfortunately,

an update can belong to multiple scopes. For example, a service may be used by

both internal and external users, and consequently it belongs to both internal and

external services scopes. Similarly, in Table 3.1, update u3
6 belongs to both scope S1

and scope S2. For such cases, using a summary matrix does not solve the problem.

To avoid the above summary problem (i.e., a replica cannot summarize its received

updates using a summary vector or summary matrix) in applying the anti-entropy

mechanism to partial replication, we propose to use selective anti-entropy.
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3.3 Design

Selective anti-entropy allows two replicas to selectively reconcile inconsistent data in

a session. In other words, a replica can choose to reconcile inconsistent data in any

number of subsets. When all subsets are chosen, selective anti-entropy is equivalent

to complete anti-entropy. Thus, selective anti-entropy is a generalization of complete

anti-entropy with added flexibility.

In P(r, s), all updates can be classified into r categories based on their accept-

replicas: R1, R2, ..., and Rr, where Ri represents the subset of updates accepted by Ri

(1 ≤ i ≤ r). We use Θ(Rx, {Rx1
, Rx2

, ..., Rxk
}, Rz) to denote a selective anti-entropy

session, where Rx requests new updates in the following k subsets from Rz: Rx1
, Rx2

,

..., and Rxk
.

We assume that a replica Rx does not request updates accepted by itself (i.e.,

Rx) from another replica Ry. But Rx may request updates accepted by Ry (i.e., Ry)

directly from Ry or indirectly from yet another replica Rz. For the former case, the

session Θ(Rx, {Ry}, Ry) is referred to as a direct session. For the latter case, the

session Θ(Rx, {Ry}, Rz) is referred to as an indirect session. If Rx requests updates

accepted by Ry and Rz from Rz, then the session Θ(Rx, {Ry, Rz}, Rz) is referred to

as a mixed session.

Based on the number of subsets requested and whether the session is direct or indi-

rect, selective anti-entropy sessions can be classified into four types: select-one-direct,

select-one-indirect, select-multiple, and select-all. Their corresponding definitions are

shown in Table 3.2. A select-multiple or select-all session can be viewed as comprising

k (k ≥ 2) select-one sessions, in which at most one is select-one-direct session, and the

rest are select-one-indirect sessions. A select-all session is equivalent to a complete

anti-entropy session.
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Type Number of Subsets Requested Direct/Indirect Session
select-one-direct 1 direct

select-one-indirect 1 indirect
select-multiple [2, r − 1) indirect/mixed

select-all r − 1 mixed

Table 3.2: Four types of selective anti-entropy sessions: select-one-direct, select-one-
indirect, select-multiple, and select-all, where the total number of replicas is r.

Figure 3.2 gives an example to show how selective anti-entropy differs from com-

plete anti-entropy. In this example, we have three replicas, R1, R2, and R3, all serving

the same scopes. Figure 3.2(a) shows the initial state at each replica: R1 has no up-

date yet; R2 has received two updates u1
2 and u2

2 from clients, and has propagated u1
2

to R3; and R3 has received two updates u1
3 and u2

3 from clients, and has propagated

u1
3 to R2. Figure 3.2(b) illustrates how R1 performs complete anti-entropy with R2

and R3 sequentially: it first gets three updates (u1
2, u2

2, and u1
3) from R2, and then it

gets one update (u2
3) from R3. In contrast, Figure 3.2(c) illustrates how R1 performs

select-one-direct anti-entropy with R2 and R3 simultaneously: it gets two updates (u1
2

and u2
2) from R2 and gets two updates (u1

3 and u2
3) from R3 in parallel.

3.3.1 Safe Sessions

An anti-entropy session is safe if it will not cause any incorrect summary at the

replica initiating the session. To identify which selective anti-entropy session is safe,

we present three lemmas below. The basic idea for ensuring a selective anti-entropy

session safe is that a replica needs to get all scopes of needed updates in a subset

at once; getting partial scopes of needed updates in a subset may cause an incorrect

summary of the subset at the replica initiating the session. We use S(Rx), S(Ry),

and S(Rz) to denote the serving scopes of replica Rx, Ry, and Rz, respectively.
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(c) R1 performs select-one-direct anti-entropy with R2 and R3 simulta-
neously: it gets two updates (u1

2
and u2

2
) from R2 and gets two updates

(u1

3
and u2

3
) from R3 in parallel.

Figure 3.2: An example to show how selective anti-entropy (here we use select-one-
direct anti-entropy) differs from complete anti-entropy
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Lemma 3.1. Any select-one-direct anti-entropy session, such as Θ(Rx, {Rz}, Rz), is

safe.

Proof. In a select-one-direct anti-entropy session such as Θ(Rx, {Rz}, Rz), Rx requests

one subset of updates from Rz, and Rz is the accept-replica for the requested subset

Rz. Note that Rx only requests updates in S(Rx)∩ S(Rz) instead of S(Rz). S(Rx)∩

S(Rz) and S(Rz) can have three different relationships: (1) S(Rx)∩S(Rz) ⊂ S(Rz) if

Rx only serves partial scopes of Rz; (2) S(Rx)∩S(Rz) = S(Rz) if Rx serves all scopes

of Rz; and (3) S(Rx)∩S(Rz) = ∅ if Rx does not serve any scope of Rz. In all cases, we

have S(Rx)∩S(Rz) ⊆ S(Rz), where S(Rx)∩S(Rz) is the scopes of updates requested

by Rx and S(Rz) is the scopes of updates available at Rz. Since the requested scopes

are a subset or equal to the available scopes, Rx can get all scopes of needed updates

in Rz from Rz at once. Note that Rx will have a summary of Rz that is correct only

for S(Rx) ∩ S(Rz).

Lemma 3.2. A select-one-indirect anti-entropy session Θ(Rx, {Ry}, Rz) is safe if

S(Rx) ∩ S(Ry) ⊆ S(Rz). In other words, Θ(Rx, {Ry}, Rz) may cause an incorrect

summary of Ry at Rx if S(Rx) ∩ S(Ry) ⊃ S(Rz).

Proof. In a select-one-indirect anti-entropy session such as Θ(Rx, {Ry}, Rz), Rx re-

quests one subset of updates from Rz, but Rz is not the accept-replica for the re-

quested subset Ry. Based on Lemma 3.1, we can assume that Rz has a summary

of Ry that is correct for S(Rz) ∩ S(Ry). If S(Rx) ∩ S(Ry) ⊆ S(Rz), then we have

S(Rx) ∩ S(Ry) ⊆ S(Rz) ∩ S(Ry), where S(Rx) ∩ S(Ry) is the scopes of updates re-

quested by Rx and S(Rz)∩ S(Ry) is the scopes of updates available at Rz. Since the

requested scopes are a subset or equal to the available scopes, Rx can get all scopes

of needed updates in Ry from Rz at once. Note that Rx will have a summary of Ry

that is correct only for S(Rx) ∩ S(Ry).
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We show some examples for Lemma 3.2. In Figure 3.1, Θ(R3, {R1}, R6) is safe

because S(R3) ∩ S(R1) = {S1, S2} = S(R6), but Θ(R3, {R6}, R2) may not be safe

since S(R3) ∩ S(R6) = {S1, S2} ⊃ S(R2) = {S1}.

Lemma 3.3. A select-multiple or select-all anti-entropy session is safe if each of its

select-one-indirect sessions is safe.

Proof. Without loss of generality, consider a select-two session Θ(Rx, {Ry, Rz}, Rz),

where Rx requests two subsets of updates, Ry and Rz, from Rz. Since Ry and Rz are

disjoint for the purpose of update propagation, this select-two session can be converted

into two select-one sessions, namely a select-one-direct session Θ(Rx, {Rz}, Rz) and a

select-one-indirect session Θ(Rx, {Ry}, Rz). Each select-one session only affects one

summary at Rx. If all select-one sessions are safe, then the summary vector at Rx

will be connect. Based on Lemma 3.1, any select-one-direct session is safe. Thus, a

select-multiple or select-all anti-entropy session is safe if each of its select-one-indirect

sessions is safe.

Based on Lemma 3.1, 3.2, and 3.3, we have Theorem 3.4 on safe sessions for

selective anti-entropy.

Theorem 3.4. Using selective anti-entropy, a replica can avoid using unsafe sessions

and always use safe sessions.

Proof. Based on Lemma 3.2 and 3.3, a replica can avoid using unsafe select-one-

indirect, unsafe select-multiple, and unsafe select-all sessions.

Based on Lemma 3.1, a replica can always use safe select-one-direct sessions,

assuming that a replica does not fail permanently. Moreover, a replica can use safe

select-one-indirect, safe select-multiple, and safe select-all sessions.
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Based on Theorem 3.4, the main advantage of using selective anti-entropy is that

it enables a replica to avoid using unsafe sessions and always use safe sessions. In

contrast, a replica cannot guarantee a complete anti-entropy session to be safe in

some cases. For example, consider two complete anti-entropy sessions, Θ1 and Θ2, in

Figure 3.1: Θ1 is between R3 and R6, Θ2 is between R3 and R2, and Θ1 is performed

before Θ2. R3 cannot guarantee Θ2 to be safe since between Θ1 and Θ2, R2 may

perform another session with R6 and get new updates in R6.

3.3.2 Parallel Sessions

While a replica needs to perform complete anti-entropy sessions with other replicas

sequentially, it can perform some selective anti-entropy sessions in parallel. For exam-

ple, a replica can perform all select-one-direct sessions in parallel with other replicas.

In general, we have Theorem 3.5 on parallel sessions for selective anti-entropy.

Theorem 3.5. Replica Rx can perform k (k ≥ 2) selective anti-entropy sessions

(Θ1, Θ2, ..., Θk) in parallel with other replicas if and only if the requested subsets of

updates (U1, U2, ..., Uk) in these sessions do not overlap, i.e., U1 ∩ U2 ∩ ... ∩ Uk = ∅.

Proof. In a replication system with r replicas, updates are classified into r subsets:

R1, R2, ..., and Rr, where Ri represents the subset of updates accepted by replica Ri

(1 ≤ i ≤ r). For the purpose of update propagation, these r subsets of updates are

disjoint. We assume that replica Rx doe not need to get updates in Rx from another

replicas. Thus, without getting duplicates of the same updates, Rx can requests

updates in up to r−1 subsets at once, which may be done via a single select-multiple

or select-all session, or via multiple parallel sessions where each subset is requested

at most once.
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We show an example for Theorem 3.5. Assume k = 2, U1 = {R2, R4}, and U2 =

{R3, R5}, then session Θ1 and Θ2 can be performed in parallel because U1 ∩ U2 = ∅.

Running anti-entropy sessions in parallel at a replica can improve performance

since the replica does not need to wait until a session is finished before it can start

another session.

3.4 Implementation

We have implemented selective anti-entropy in SLP mesh enhancement (mSLP) [156,

145]. For full replication, complete anti-entropy is sufficient, but for partial repli-

cation, selective anti-entropy is needed. Thus, mSLP supports both selective and

complete anti-entropy sessions. In mSLP, the anti-entropy request message carries an

anti-entropy type ID to indicate the session type. There are two session control func-

tions specific to selective anti-entropy, namely choosing safe sessions and performing

multiple sessions in parallel. A simple strategy is to use select-one-direct sessions as

much as possible for selective anti-entropy because all select-one-direct sessions are

safe, and they can be performed in parallel.

3.5 Evaluation

While the main goal of selective anti-entropy is to solve the summary problem in ap-

plying the anti-entropy mechanism to partial replication, we give a brief evaluation of

its performance in this section. We consider a replication system with r replicas, and

we measure the time that a replica needs to finish all r− 1 anti-entropy sessions with

the rest replicas. For simplicity, we assume that network conditions (bandwidth, de-

lay, and loss rate) are roughly equivalent among all replicas, which is typical in a local
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area network environment. In general, if only sequential sessions are used, selective

anti-entropy and complete anti-entropy should deliver equivalent performance. Thus,

we focus on selective anti-entropy with parallel sessions. Specifically, we compare

the performance of parallel select-one-direct sessions with that of sequential complete

sessions.

3.5.1 Performance Analysis

Using parallel select-one-direct sessions has the potential to deliver better performance

than using sequential complete sessions for the following reasons. First, the setup time

of these parallel sessions can overlap. Secondly, to process a select-one-direct anti-

entropy request, a replica only needs to send new updates accepted by itself, which

is much simpler than sending new updates accepted by r − 1 replicas. Remember

that all new updates need to be propagated in increasing order of their accept-ids.

Finally, if a replica has sufficient network bandwidth and processing power, it can

receive updates at a higher rate by using parallel sessions.

3.5.2 Experimental Results

We used our mSLP Java implementation [145], and carried out experiments on a

cluster of Sun Ultra Sparc (Ultra-1, Ultra-2, or Ultra-10) workstations. All machines

ran Solaris 5.7, and were connected via 10 Mb/s Ethernet. We used a varying number

of n machines as existing replicas, one machine as the new replica, and one machine as

the client. The initial state was as follows. The client had sent 5005 different updates

to each of the n replicas; and each replica had propagated 5000 updates accepted

by itself to the rest replicas. Thus, each replica had 5000n + 5 updates. When the

new replica joined the replication system, it got updates from the existing n replicas.
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Figure 3.3: The performance of parallel select-one-direct sessions compared to that
of sequential complete sessions

Figure 3.3 shows the time that the new replica took to finish anti-entropy with the

existing n replicas. We observe that using parallel select-one-direct sessions always

performs better than using sequential complete sessions. Also, the difference of the

time used in the above two cases becomes larger as n increases.

3.6 Related Work

Using anti-entropy for high availability replication was first described in [44]. The

time-stamped anti-entropy (TSAE) [54] proposed the summary vector technique, and

suggested using multicast to propagate updates quickly. Bayou [96] enhanced anti-

entropy flexibility by using uni-directional pair-wise sessions. Our work on selective

anti-entropy [147] generalizes the anti-entropy mechanism, making it applicable to

generic partial replication as well. We use selective anti-entropy in designing the SLP
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mesh enhancement (mSLP) [156], an automated partial replication system for scope-

based directory services. A recent replication system that employs anti-entropy is

UDDI [129], a registry framework for universal description, discovery, and integration

of web services, but UDDI only supports full replication.

3.7 Summary

This chapter described selective anti-entropy, a generic mechanism for high availabil-

ity partial replication. By using safe sessions, selective anti-entropy can avoid the

summary problem in applying the anti-entropy mechanism to partial replication. By

using parallel sessions, selective anti-entropy can improve performance. As a gener-

alization of complete anti-entropy, selective anti-entropy is flexible and applicable to

both full replication and partial replication.
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Chapter 4

DotSlash: An Automated Web

Hotspot Rescue System

This chapter describes the DotSlash framework, an automated web hotspot rescue

system that enables a web site to build an adaptive distributed web server system on

the fly [150, 149]. We focus on load migration for static content in this chapter, and

will address load migration for dynamic content [151, 154] in the next two chapters.

In this chapter, we first introduce the web hotspot problem and discuss related work.

Then, we provide an overview of DotSlash, including its usage models and some rescue

examples. After presenting the DotSlash design, implementation, and evaluation, we

give a summary.

4.1 Introduction

As more web sites are experiencing a request load that can no longer be handled by

a single server, using multiple servers to serve a single site has become a widespread

approach. Traditionally, a distributed web server system has used a fixed number of
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dedicated servers based on capacity planning, which works well if the request load

is relatively consistent and matches the planned capacity. However, web requests

could be very bursty. A well-identified problem web hotspots, also known as flash

crowds or the Slashdot effect [4], may trigger a large load increase but only last for

a short period [65, 115]. For such situations, over-provisioning a web site is not only

uneconomical but also difficult since the peak load is hard to predict [74].

To handle web hotspots effectively, we advocate dynamic allocation of server ca-

pacity from a server pool distributed globally. It is important to distribute load

across wide area networks because the access link of a local network could become a

bottleneck. As an example of global server pools, content delivery networks (CDNs)

[131, 5, 45] have been used by large web sites, but small web sites often cannot af-

ford the cost particularly since they may need these services very rarely. We seek

a more cost-effective mechanism. As different web sites, e.g., different types or in

different geographic locations, are less likely to experience their peak request loads

at the same time, they could form a mutual-aid community, and use spare capacity

in the community to relieve web hotspots experienced by any individual site [38].

Based on this observation, we designed DotSlash which allows a web site to build an

adaptive distributed web server system on the fly to expand its capacity by utilizing

spare capacity at other sites. Using DotSlash, a web site not only has a fixed set of

origin servers, but also has a changing set of rescue servers drafted from other sites.

A web server allocates and releases rescue servers based on its load conditions. The

rescue process is completely self-managing and transparent to clients.

DotSlash does not aim to support a request load that is persistently higher than

a web site’s planned capacity, but rather to complement the existing web server

infrastructure to handle short-term load spikes effectively. We envision a spectrum

of mechanisms for web sites to handle load spikes. Infrastructure-based approaches
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should handle the request load sufficiently in most cases (e.g., 99.9% of the time),

but they might be too expensive for short-term enormous load spikes and insufficient

for unexpected load increases. For these cases, DotSlash intervenes so that a web site

can support its request load in more cases (e.g., 99.999% of the time). In parallel,

a web site can use service degradation [1] such as turning off dynamic content and

serving a trimmed version of static content under heavily-loaded conditions. As the

last resort, a web site can use admission control [140] to reject a fraction of requests

and only admit preferred clients.

DotSlash has the following advantages. First, it is self-configuring in that service

discovery [59] is used to allow servers of different web sites to learn about each other

dynamically, rescue actions are triggered automatically based on load conditions, and

a rescue server can serve the content of its origin servers on the fly without the

need of any advance configuration. Second, it is scalable because a web server can

expand its capacity as needed by using more rescue servers. Third, it is very cost-

effective since it utilizes spare capacity across a web server community to benefit any

participating server, and it is built on top of the existing web server infrastructure,

without incurring any additional hardware cost. Fourth, it is easy to use because

standard DNS mechanisms and HTTP redirect are used to offload client requests

from an origin server to its rescue servers, without the need of changing operating

system or DNS server software. An add-on module to the web server software is

sufficient to support all needed functions. Fifth, it is transparent to clients since

it only uses server-side mechanisms. Client browsers remain unchanged, and client

bookmarks continue to work. Finally, an origin server has full control of its own

rescue procedure, such as how to choose rescue servers and when to offload client

requests to rescue servers.

DotSlash targets small web sites, although large web site can also benefit from it.
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Parts of this work may be applicable to other services such as Grid computational

services [50] and VoIP services [108].

4.2 Related Work

Caching. Caching [135, 42, 34] provides many benefits for web content retrieval and

distribution, such as reducing bandwidth consumption and client-perceived latency.

Caching may appear at several different places, such as client-side proxy caching,

intermediate network caching, and server-side reverse caching, many of which are not

controlled by origin web servers. DotSlash uses caching at rescue servers to relieve

load spikes at an origin server, where caching is set up on demand and fully controlled

by the origin server.

Content delivery networks (CDNs). Commercial CDN services [131, 5, 45]

deliver part or all of the content for a web site to improve the performance of content

delivery. As an infrastructure-based approach, CDN services are good for reinforcing

a web site in a long run, but less efficient for handling short-term load spikes. Also,

using CDN services needs advance configuration such as contracting with a CDN

provider and changing the URIs of offloading objects (e.g., Akamaizing [5]). As an

alternative mechanism to CDN services, DotSlash offers cost-effective and automated

rescue services for better handling short-term load spikes. Recently, free CDNs ser-

vices such as CoralCDN [52] and CoDeeN [137] have been developed. CoralCDN [52]

allows volunteer sites to form a peer-to-peer (P2P) CDN, which is transparent to

clients. However, CoralCDN requires that web site publishers change selected URLs

to Coralized URLs or Coral-aware users manually construct Coralized URLs because

only Coralized URLs can use CoralCDN. CoDeeN [137] uses a network of open web

proxy servers on PlanetLab to distribute and cache client requests, which can be ben-
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eficial to both clients and web site publishers. However, CoDeeN is not transparent

to clients because clients need to specify a CoDeeN proxy in their browser settings.

Distributed web servers. Using pre-arranged distributed web server systems

is a widespread approach to support high request loads and reduce client-perceived

delays. These systems often use replicated web servers (e.g., ScalaServer [13] and

GeoWeb [29]), with a focus on load balancing and serving a client request from the

closest server. In contrast, DotSlash allows an origin server to build a distributed

system of heterogeneous rescue servers on demand so as to relieve the heavily-loaded

origin server.

Server-side collaboration. DotSlash is a system that facilitates dynamic collab-

oration among different web sites. By using service discovery technology, DotSlash

enables an origin server to collaborate with a dynamically changing set of rescue

servers for handling unexpected load spikes. The distributed cooperative Apache web

server system [77] and the proactive hot spot avoidance system [48] also support col-

laboration among different web servers. However, they do not address the issue of how

to form a collaborative server group dynamically, which limits their scalability and

adaptivity to changing environments. Backslash [121] uses P2P overlay networks to

form a collaborative web mirroring system and uses distributed hash tables (DHTs)

to locate resources. However, Backslash relies on the uniformity of URL hashing for

load distribution, which may not achieve good load balancing due to skewed demand

for web objects and diverse capacity of surrogate nodes. In contrast, DotSlash allows

an origin server to fully control its load distribution based on the available capacity

of each rescue server.

Content internetworking. The Internet Engineering Task Force (IETF) has

developed a model for content (distribution) internetworking (CDI) [43, 113]. The

DotSlash architecture appears to be a special case of the CDI architecture, where each



66

web server itself is a content network. However, the CDI framework does not address

how to dynamically allocate servers and adjust redirect rate based on feedback to

handle short-term load spikes, which is the main focus of DotSlash.

Client-side cooperation. Client-side mechanisms allow clients to help each

other so as to alleviate server-side congestion and reduce client-perceived delays. An

origin web server can mediate client cooperation by redirecting a client to another

client that has recently downloaded the URI, e.g., Pseudoserving [70] and CoopNet

[92]. Clients can also form P2P overlay networks and use search mechanisms to locate

resources, e.g., PROOFS [122] and BitTorrent [23]. Client-side P2P overlay networks

have advantages in sharing large and popular files, which can reduce request load at

origin web servers. In general, client-side mechanisms scale well as the number of

clients increases, but they are not transparent to clients, which is likely to prevent

widespread deployment.

Grid. Grid technologies allow “coordinated resource sharing and problem solv-

ing in dynamic, multi-institutional organizations” [50], with a focus on large-scale

computational problems and complex applications. The sharing in Grid is broader

than simply file exchange; it can involve direct access to computers, software, data,

and other resources. In contrast, DotSlash employs inter-web-site collaborations to

handle web hotspots effectively, with an emphasis on overload control at web servers

and disseminating popular files to a large number of clients.

Océano. Océano [10] allows multiple customers to be hosted on a shared com-

puting utility. Although Océano and DotSlash both support dynamic allocation and

de-allocation of servers based on load conditions, Océano targets a server farm man-

aged by the same administrator, whereas DotSlash targets different web sites within a

mutual-aid community. Consequently, Océano uses a centralized control for server al-

location, whereas DotSlash uses a distributed negotiation for rescue server allocation.
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In terms of server sharing, Océano employs sequential sharing at the granularity

of whole servers, whereas DotSlash allows a rescue server to serve its own content

and the origin server’s content in parallel. Moreover, Océano dynamically changes a

server’s computing environment, such as operating system and application software,

so as to support different customers. In contrast, DotSlash employs service discovery

to allow an origin server to find suitable rescue servers without the need to change

the computing environment of any server.

4.3 DotSlash Overview

In DotSlash, a web server is in one of the following states at any time: in SOS state it

gets rescue services from others, in rescue state it provides rescue services to others,

and in normal state otherwise. These three states are mutually exclusive: a server is

not allowed to get rescue services and provide rescue services at the same time. Using

this rule can avoid complex rescue scenarios (e.g., a rescue loop where S1 requests

a rescue service from S2, S2 requests a rescue service from S3, and S3 requests a

rescue service from S1), and keeps DotSlash simple and robust without compromising

scalability.

Throughout this thesis, we use the notation origin server and rescue server in the

following way. When two servers set up a rescue relationship, the one that benefits

from rescue services is the origin server, and the one that provides rescue services is

the rescue server. Figure 4.1 shows an example of rescue relationships for eight web

servers, where an arrow from Sy to Sx denotes that Sy provides rescue services to Sx.

In this figure, S1 and S2 are origin servers; S3, S4, S5, and S6 are rescue servers; and

S7 and S8 are not involved with rescue services yet.

Next, we describe DotSlash usage models and gives some rescue examples.



68

rescuing

PSfrag replacements

(S2)
(S3)

(S1, S2)
DA1 (S1, S2)
DA2 (S1, S2)
DA3 (S2, S3)

DA4 (S3)
(1) DA2’s DAAdvert

(2) Create a peering connection
(3) DA1’s DAAdvert

DA1

DA2

R1

R2

R3

R4

R5

R6

(S1, S2, S3)
(S1)

(S1, S2)
(S2, S3)

(S3)
{u1

2, u
2
2, u

1
3}

{u1
2, u

2
2, u

1
3, u

2
3}

{u1
2, u

1
3, u

2
3}

{u1
2, u

2
2}

{u1
3, u

2
3}

{u2
3}

S1

S2

S3

S4

S5

S6

S7

S8

Figure 4.1: An example of DotSlash rescue relationships for eight web servers S1 to
S8, where an arrow from Sy to Sx denotes that Sy provides rescue services to Sx. In
this figure, S1 and S2 are origin servers; S3, S4, S5, and S6 are rescue servers; and S7

and S8 are not involved with rescue services yet.

4.3.1 Usage Models

DotSlash allows different web sites to form a mutual-aid community, and use spare

capacity in the community to relieve web hotspots experienced by any individual

site. We consider three types of mutual-aid communities, namely open communities,

closed communities, and flood-insurance closed communities.

An open mutual-aid community needs to deploy at least one DotSlash service

registry accessible to public. For reliability, multiple registries need to be deployed,

which replicate service registration information from each other automatically (see

Section 4.4.5 for details). It is beneficial to set up a DNS domain for a mutual-

aid community, which allows DotSlash service registries to be discovered via DNS

SRV, eliminating manual configuration for registry discovery (see Section 4.4.5 for

details). A web server joins an open mutual-aid community by registering itself with

any DotSlash service registry in the community, and contributing its spare capacity

to the community. Under heavy load, a participating server discovers and uses spare

capacities at other servers in the community via DotSlash rescue services. An open
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mutual-aid community is intended for a cooperative environment; it is simple, but it

does not provide security measures against attacks or abuse.

Since DotSlash uses the Service Location Protocol (SLP) [59] for service discov-

ery, we can employ the SLP authentication features to eliminate malicious service

registrations. Thus, only authorized web sites can register with DotSlash service

registries, and each registration can be verified. As SLP authentication is based on

public key cryptography, a closed mutual-aid community needs to have an authority

for key management and distribution. When a web site is authorized to join a closed

community, it needs to create a pair of public/private keys, and register its public key

with the community authority. As a result, the community authority maintains a list

of public keys for all authorized participating servers. When a web server performs

a service registration, it uses its private key to sign the registration message. When

a DotSlash service registry receives a registration, it checks whether the public key

specified in the SPI (Security Parameters Index) of the registration is a valid key in

the community, and uses the key, if valid, to verify the registration. Similarly, when

a web server receives a list of matching URLs for its rescue server discovery, it checks

whether the public key specified in an SPI is a valid key in the community, and uses

the key, if valid, to verify the corresponding URL entry. By doing so, only authorized

web sites can serve as rescue servers. The same mechanism can be used for origin

server authentication as follows. When an origin server initiates a rescue relationship

with a rescue server, it signs its SOS request using its private key (see Section 4.4.4

for details). The rescue server accepts an SOS request only if it is from a verified

member of the community.

To increase the incentive for providing DotSlash rescue services and reduce abuse,

a flood-insurance closed mutual-aid community can be used. In such a community,

each participating web server needs to have its own public key and private key, and
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it needs to pay the community authority a small premium to obtain tokens for using

rescue services. For example, $3 might be needed for 10 tokens. The community

authority maintains a list of all valid tokens in the community, and associates each

token with a participating web server. Each time when an origin server sets up a

rescue relationship with a rescue server, it needs to transfer one token to the rescue

server, which is performed via a TOKEN message that carries the token signed by the

origin server using its private key. When a rescue server receives a TOKEN message,

it signs the token using its private key, and then sends this double-signed message to

the community authority for verification. When the community authority receives a

TOKEN message, if it can verify the token, it changes the token’s association from

the origin server to the rescue server, and returns “200 OK”; otherwise, it returns

“406 Token Invalid”. When an origin server has used up all its tokens, it needs to

buy new tokens for using rescue services. On the other hand, a rescue server can

accumulate tokens for its own rescue needs or sell its tokens.

4.3.2 Rescue Examples

In DotSlash, an origin server uses HTTP redirect and DNS round robin to offload

client requests to its rescue servers, and a rescue server serves as a reverse caching

proxy for its origin servers (see Section 4.4.1 for details). There are four rescue cases:

(1) HTTP redirect at the origin server and cache miss at the rescue server, (2) HTTP

redirect at the origin server and cache hit at the rescue server, (3) DNS round robin

at the origin server and cache miss at the rescue serever, and (4) DNS round robin

at the origin server and cache hit at the rescue server. We show examples for case 1

and 4 next; case 2 and 3 can be derived similarly.

In Figure 4.2, the origin server So is www.origin.com with IP address 1.2.3.4, and
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Figure 4.2: Two examples for DotSlash rescue services
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the rescue server Sr is www.rescue.com with IP address 5.6.7.8. We assume that So

and Sr has set up a rescue relationship, Sr has assigned an alias vh1.www.rescue.com

to So, and So has added Sr’s IP address to its round robin local DNS. Figure 4.2(a)

gives an example for case 1, where client C1 follows a ten-step procedure to retrieve

http://www.origin.com/index.html.

1. C1 resolves So’s domain name www.origin.com;

2. C1 gets So’s IP address 1.2.3.4;

3. C1 makes an HTTP request to So using http://www.origin.com/index.html;

4. C1 gets an HTTP redirect from So to http://vh1.www.rescue.com/index.html;

5. C1 resolves Sr’s alias vh1.www.rescue.com;

6. C1 gets Sr’s IP address 5.6.7.8;

7. C1 makes an HTTP request to Sr using http://vh1.www.rescue.com/index.html;

8. Sr makes a reverse proxy request to So using http://www.origin.com/index.html

because of a cache miss for http://vh1.www.rescue.com/index.html;

9. So sends the requested file to Sr;

10. Sr caches the requested file, and returns the file to C1.

Figure 4.2(b) gives an example for case 4, where client C2 follows a four-step

procedure to retrieve http://www.origin.com/index.html using dynamic DNS.

1. C2 resolves So’s domain name www.origin.com;

2. C2 gets Sr’s IP address 5.6.7.8 due to DNS round robin at So’s local DNS;
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3. C2 makes an HTTP request to Sr using http://www.origin.com/index.html;

4. C2 gets the requested file from Sr because here is a cache hit.

4.4 DotSlash Design

The main focus of DotSlash is to allow a web site to build an adaptive distributed web

server system in a fully automated way. DotSlash consists of dynamic virtual hosting,

request redirection, workload monitoring, rescue control, and service discovery.

4.4.1 Dynamic Virtual Hosting

Dynamic virtual hosting allows a rescue server to serve the content of its origin servers

on the fly. Existing virtual hosting (e.g., Apache [9]) needs advance configuration:

registering virtual host names in DNS, creating DocumentRoot directories, and adding

directives to the configuration file to map virtual host names to DocumentRoot direc-

tories. DotSlash handles all these configuration actions dynamically.

When a rescue relationship is set up between an origin server and a rescue server,

the rescue server assigns a unique virtual host name to the origin server, which is

used in the HTTP redirects issued from the origin server. A rescue server generates

needed virtual host names dynamically by adding a sequence number component to its

configured name, e.g., vh<seqnum>.host.domain for host.domain, where <seqnum>

is monotonically increasing. Virtual host names are registered using A records via

dynamic DNS updates [132]. We have set up a domain dot-slash.net that accepts vir-

tual host name registrations. For example, www.rescue.com can obtain a unique host

name foo in dot-slash.net, and register its virtual host names as vh<seqnum>.foo.dot-

slash.net.
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As a rescue server, www.rescue.com may receive client requests that use three

different kinds of host names: its configured name www.rescue.com, an assigned

virtual host name such as vh1.www.rescue.com, or an origin server name such as

www.origin.com. Its own content is requested in the first case, whereas the content of

its origin servers is requested in the last two cases. Moreover, the second case is due

to HTTP redirects from the origin servers, and the third case is due to DNS round

robin at the origin servers.

In order to map each assigned virtual host name to its corresponding origin server,

a rescue server maintains a host name mapping table. When a rescue server receives

a client request, it first checks whether the requested host name is its own configured

name. If that is not the case, it lookups the requested host name in its host name

mapping table. If the requested host name matches a mapping entry’s virtual host

name or origin server name, the origin server name is returned. Due to client-side

caching, web clients may continue to request an origin server’s content from its old

rescue servers. To handle this situation properly, a rescue server does not remove a

mapping entry immediately after the rescue service has been terminated, but rather

keeps the mapping entry for a configured time such as 24 hours, and redirects such a

request back to the corresponding origin server via an HTTP redirect.

A rescue server works as a reverse caching proxy for its origin servers. For example,

when www.rescue.com has a cache miss for http://vh1.www.rescue.com/index.html, it

maps vh1.www.rescue.com to www.origin.com, and issues a reverse proxy request for

http://www.origin.com/index.html. Using reverse caching proxy offers a few advan-

tages. First, as files are replicated on demand, the origin server incurs low cost since

it does not need to maintain states for replicated files and can avoid transferring files

that are not requested by rescue servers. Second, as proxy and caching are functions

supported by most web server software, it is simple to use reverse proxying to get
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needed files, and use the same caching mechanisms to cache proxied files and local

files.

By using reverse caching proxy, DotSlash employs an on-demand replication pol-

icy, that is a document is transferred from an origin server to a rescue server only

when the document is requested and is a cache miss at the rescue server. This pol-

icy can reduce the bandwidth requirement at the origin server as much as possible.

Note that typically only a small set of documents are requested during web hotspots

[65], thus there is no need to replicate the whole site from the origin server for the

purpose of web hotspot rescue. In general, replication policies control how content

is replicated from an origin server to its rescue servers, such as pushed by the origin

server or pulled by its rescue servers. Previous work [98, 97] indicates that no sin-

gle replication policy can efficiently manage all documents. The optimal replication

policy not only depends on how documents are accessed, but also depends on how

servers are organized, e.g., replication strategies for unstructured P2P networks have

been studied in [39].

4.4.2 Request Redirection

Having described how a rescue server serves the content of its origin servers on the

fly in the last section, we discuss how client requests are redirected from an origin

server to its rescue servers in this section. Request redirection [17, 28, 136] involves

two aspects: the mechanisms to route client requests from an origin server to its

rescue servers and the policies to choose a rescue server among multiple choices,

namely server selection [47, 30]. A client request can be redirected by the origin

server’s authoritative DNS, the origin server itself, or a redirector at the transport

layer (content-blind) or application layer (content-aware). Redirection policies can
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be based on load at rescue servers, locality of requested files at rescue servers, and

proximity between the client and rescue servers.

We first provide a brief overview of existing request redirection mechanisms. DNS-

based redirection routes client requests during the server name resolution phase. It

is widely used [5, 45] because of its generality and simplicity: it is applicable to any

IP-based applications and no changes are required to clients and servers. However,

DNS-based redirection has certain limitations. For example, it requires reducing or

eliminating client-side caching of domain name binding, which has negative effects

on DNS performance [116]. Also, DNS-based redirection can only provide crude load

balancing. Network routers can be extended, such as anycast [93, 64] and Cisco

DistributedDirector [37], to distribute client requests transparently based on routing

metrics, but this approach is less flexible in that it is hard to incorporate server load

conditions. A cluster load balancer can dispatch client requests among servers within

a cluster, but it may become a single point of failure and a bottleneck. ScalaServer

[13] describes a scalable request distribution scheme for cluster-based network servers

by using a centralized dispatcher as the front-end and replicating the distributor

component onto each cluster node. Using mobility support in IPv6 [2] and the Inter-

net Indirection Infrastructure [124] have also been proposed to route client requests.

HTTP redirect [49] is easy to use, but clients incur longer delays.

DotSlash uses two mechanisms for request redirections: DNS round robin as the

first level crude load distribution, and HTTP redirect as the second level fine-grained

load balancing. DNS round robin can reduce the request arrival rate at the origin

server, and HTTP redirect can increase the service rate of the origin server because an

HTTP redirect is much cheaper to serve than the original content. Both mechanisms

can increase the origin server’s throughput for request handling.

We have investigated three options for constructing redirect URIs: IP address,
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virtual directory, and virtual host name. Using the rescue server’s IP address can

save the client’s DNS lookup time for the rescue server’s name, but the rescue server

is unable to tell whether a request is for itself or for one of its origin servers. Using

a virtual directory such as /dotslash-vh, http://www.origin.com/index.html can be

redirected as http://www.rescue.com/dotslash-vh/www.origin.com/index.html. The

problem is that it does not work for embedded relative URIs. DotSlash uses virtual

host names in HTTP redirects, which allows proper virtual hosting at the rescue

server, and works for embedded relative URIs.

In terms of redirection policies, DotSlash uses standard DNS round robin without

modifying the DNS server software, and uses weighted round robin (WRR) for HTTP

redirects, where the weight is the allowed rate of HTTP redirects assigned by each

rescue server. The allowed rate of HTTP redirects is specified via two parameters,

allowed redirect rate in requests per second and allowed redirect data rate in kilobytes

per second, which are used to control the rate of load migration for dynamic content

and static content, respectively. Due to factors such as caching and embedded relative

URIs, the rate of HTTP redirects seen by the origin server may be different from that

served by the rescue server. Thus, in DotSlash an origin server uses rate feedback

from the rescue server to adjust its rate of HTTP redirects (see Section 4.4.4 for

details).

DotSlash performs request redirection using DNS round robin and HTTP redirect.

However, DNS round robin and HTTP redirect need to be avoided in certain cases.

On one hand, a request sender needs to bypass DNS round robin at a web server

by using the web server’s IP address directly in the following cases: when an origin

server initiates a rescue connection to a rescue server, when a rescue server makes

a reverse proxy request to an origin server, and when a web client retrieves a web

server’s status information. On the other hand, a request receiver needs to avoid
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Table 4.1: Major DotSlash parameters, where type C, O, I, and D denote configurable
parameters, measured outputs, control inputs, and derived parameters, respectively,
and 1 kB = 1000 bytes.

Parameter Description Type
ρl

n and ρu
n lower and upper threshold for network utilization, default

50% and 75%
C

λm
d maximum data rate (kB/s) for outbound HTTP traffic C

τ control interval, default 1 second C
α used in exponentially weighted moving average filter, de-

fault 0.5
C

λd real data rate (kB/s) of outbound HTTP traffic O
λrd real redirect data rate (kB/s) O
λa

rd allowed redirect data rate (kB/s) I
Pr redirect probability I
ρn network utilization, ρn = λd/λ

m
d D

ρ̂n reference network utilization, ρ̂n = (ρu
n + ρl

n)/2 D

λ̂d reference data rate (kB/s), λ̂d = ρ̂nλm
d D

β adjustment factor for control inputs, β = ρn/ρ̂n D

performing an HTTP redirect if the request is from a rescue server, or if the request

is for retrieving the server’s status information.

4.4.3 Workload Monitoring

Having described how DotSlash performs request redirection in last section, we discuss

workload monitoring in this section, which allows a web server to react quickly to load

changes. Major DotSlash parameters are summarized in Table 4.1. We measure the

utilization of each resource at a web server separately. We use ρn and ρc to denote

network utilization and CPU utilization, respectively. According to a recent study

[92], network bandwidth is the most constrained resource for most static web sites

during hotspots. Thus, we focus on monitoring network utilization ρn in this section.

We use two configurable parameters, lower threshold ρl
n and upper threshold ρu

n, to



79

define three regions for ρn: lightly loaded region [0, ρl
n), desired load region [ρl

n, ρu
n],

and heavily loaded region (ρu
n, 100%]. Furthermore, we define a reference utilization

ρ̂n as (ρl
n + ρu

n)/2.

In DotSlash, we monitor outbound HTTP traffic within a web server, without

relying on an external module to monitor traffic on the link. We assume there is no

significant other traffic besides HTTP at a web server, and assume a web server has

a symmetric link or its inbound bandwidth is greater than its outbound bandwidth,

which is true, for example, for a web server behind DSL. Since a web server’s outbound

data rate is normally greater than its inbound data rate, it should be sufficient to

only monitor outbound HTTP traffic.

Due to header overhead (such as TCP and IP headers) and retransmissions, the

HTTP traffic rate monitored by DotSlash is less than the real traffic rate on the

link. Since the header overhead is relatively constant and other overheads are usually

small, to simplify calculation, we use a configurable parameter λm
d to denote the

maximum data rate for outbound HTTP traffic, where λm
d = BU , B is the network

bandwidth, and U is the percentage of bandwidth that is usable for HTTP traffic.

We perform a special accounting for HTTP redirects because they may account for a

large percentage of HTTP responses and their header overhead is large compared to

their small payload sizes. For an HTTP redirect response of n bytes, its accounting

size is Ar = (n + O)U bytes, where O is the header overhead in bytes. A web

server sends five TCP packets for each HTTP redirect: one for accepting the client

TCP connection, one for acknowledging the client HTTP request, one for sending the

HTTP redirect to the client, and two for terminating the client TCP connection. The

first TCP header (SYN ACK) is 40 bytes, and the remaining four TCP headers are

32 bytes each. Thus, O = (40 + 32 ∗ 4) + 20 ∗ 5 + (14 + 4) ∗ 5 = 358 bytes, which

includes the TCP and IP headers, and the Ethernet headers and trailers.
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4.4.4 Rescue Control

Rescue control allows a web server to tune its resource utilization by using rescue

actions that are triggered automatically based on load conditions. For example,

to control network utilization ρn within the desired load region [ρl
n, ρu

n], overload

control actions are triggered if ρn > ρu
n, and under-load control actions are triggered

if ρn < ρl
n. In general, to control the utilization of multiple resources such as network

and CPU, overload control actions are triggered if any resource is heavily loaded,

and under-load control actions are triggered if all resources are lightly loaded. For

simplicity, we discuss rescue control based only on network utilization ρn in this

section. Next, we first introduce DotSlash rescue protocol and give an overview

of DotSlash rescue control. Then, we describe DotSlash rescue actions and state

transitions in details.

4.4.4.1 Rescue Protocol

DotSlash rescue protocol (DSRP) allows servers of different web sites to collaborate

with each other. DSRP is an application-level request-response protocol using single-

line plain text messages. A request has a command string (starting with a letter)

followed by optional parameters, whereas a response has a response code (three digits)

followed by the response string and optional parameters. DSRP defines five requests:

SOS for initiating a rescue relationship, TOKEN for transferring one token from

an origin server to a rescue server, RATE for adjusting the allowed rate of HTTP

redirects, KEEPALIVE for indicating a rescue server alive, and SHUTDOWN for

terminating a rescue relationship. As shown in Figure 4.3, SOS and TOKEN requests

are always sent by origin servers, and RATE and KEEPALIVE requests are always

sent by rescue servers, but SHUTDOWN requests may be sent by either origin servers
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Figure 4.3: DotSlash rescue protocol (DSRP)

or rescue servers. Note that TOKEN requests are used only in the flood-insurance

model.

To initiate a rescue relationship, an origin server sends an SOS request to a chosen

rescue server candidate. The request has the following parameters: the origin server’s

fully qualified domain name, its IP address, and its port number for web requests.

When a web server receives an SOS request, it can accept the request by sending

a “200 OK” response or reject the request by sending a “403 Reject” response. A

“200 OK” response has the following parameters: a unique alias of the rescue server

assigned to the origin server, the rescue server’s IP address, the rescue server’s port

number for web requests, and the allowed redirect rate and redirect data rate that

the origin server can offload to the rescue server. When authentication is enable, an

origin server needs to sign its SOS request using its private key, and a rescue server

needs to authenticate the origin server before accepting the SOS request. When the

flood-insurance model is used, an origin server needs to transfer one token to a rescue

server after its SOS request has been accepted by the rescue server, which is done via

a TOKEN request that carries one token signed by the origin server using its private

key. When a rescue server receives a TOKEN request, it signs the token using its
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private key, and then sends this double-signed message to the community authority for

verification. When the community authority receives a TOKEN message, it returns

“200 OK” if it can verify the token, and returns “406 Token Invalid” otherwise.

4.4.4.2 Rescue Control Overview

We use the following control strategies. First, we use a configurable parameter τ to

denote the control interval, which is the smallest time unit for performing workload

monitoring and rescue control. Other time intervals are specified as a multiple of the

control interval. To react quickly to load changes, we use a small control interval,

default to 1 second. Secondly, to handle stochastics and avoid over-reacting to load

changes, we apply an exponentially weighted moving average filter to all control inputs

and measured outputs. Using network utilization ρn as an example, for interval

k we compute ρn(k) = αρn(k − 1) + (1 − α)ρn(k), where ρn(k) is the current raw

measurement, ρn(k) is the filtered value of ρn(k), ρn(k − 1) is the previous filtered

value, and α is a configurable parameter with a default value of 0.5. Third, if multiple

rescue server candidates are available, the one with the largest rescue capacity is used

first. This policy helps an origin server to keep the number of its rescue servers as

small as possible. Minimizing the number of rescue servers can reduce their cache

misses, and thus reduce the data transfer volume at the origin server.

DotSlash employs a closed-loop rescue control system by adjusting control inputs

adaptively based on measured outputs and reference inputs, where control inputs are

various rescue actions, measured outputs are the utilization measurements of different

resources, and reference inputs are the desired utilization levels of controlled resources.

Figure 4.4 illustrates the closed-loop rescue control system in DotSlash. Note that

origin servers and rescue servers use different control inputs. For example, an origin

server controls the redirect probability Pr, whereas a rescue server controls the allowed
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Figure 4.4: DotSlash closed-loop rescue control system

redirect data rate λa
rd for each of its origin servers. Here, Pr is the probability that

an origin server redirects client requests to its rescue servers, and λa
rd is the network

bandwidth that a rescue server allocates to an origin server. Note that an origin

server should ensure that the real redirect data rate λrd ≤ λa
rd, but a rescue server

may experience λrd > λa
rd.

DotSlash uses a rule-based controller [94], which performs rescue control based

on a set of heuristic rules. These rules are in the form of “If certain conditions are

true Then take certain rescue actions”, where conditions are specified based on the

current DotSlash state and measured control outputs. For example, we have two

rules for origin servers as follows: (1) if ρn > ρu
n, then increase Pr; and (2) if ρn < ρl

n,

then decrease Pr. Similarly, we have two rules for rescue servers as follows: (1) if

ρn > ρu
n, then decrease λa

rd; and (2) if ρn < ρl
n, then increase λa

rd. These rules are

straightforward and generally applicable to all web servers. This approach allows us

to build an autonomic system to automate the whole rescue process. In contrast, a

conventional controller such as a proportional-integral-derivative (PID) controller [51]

cannot be applied to all web servers. The reason is that in classical control theory,

different web servers are different target systems, and thus they should be modeled

separately. As a result, different conventional controllers are needed for different web

servers.
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Figure 4.5: DotSlash rescue actions and state transitions

4.4.4.3 Rescue Actions and State Transitions

We summarize DotSlash rescue actions and state transitions in Figure 4.5, and de-

scribe rescue actions in each state next.

The normal state has two rescue actions: initial allocation and initial rescue. For

the first case, if a web server is heavily loaded (i.e., ρn > ρu
n), then it needs to allocate

its first rescue server, set Pr to 0.5, and switch to the SOS state. For the second case,

if a web server receives a rescue request and it is lightly loaded (i.e., ρn < ρl
n), then it

can accept the rescue request, set λa
rd to (ρ̂n − ρn)λm

d or a smaller value determined

by a rate allocation policy, and switch to the rescue state.

The SOS state has four rescue actions: increase Pr, additional allocation, decrease

Pr, and release. For the first case, if an origin server is heavily loaded and it has unused

redirect capacity (i.e., λrd < λa
rd), then it needs to increase Pr until Pr reaches 1. For

the second case, if an origin server is heavily loaded and it has run out of redirect
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// Compute β
β = ρn/ρ̂n;

// Increase Pr if ρn > ρu
n

if (Pr < 1) {
if (Pr < 0.5) {

Pr = 0.5;
} else if (Pr > 0.99) {

Pr = 1;
} else {

t = min(βPr, 1);
Pr = αPr + (1 − α)t;

}
}

// Decrease Pr if ρn < ρl
n

if (Pr > 0) {
if (Pr < 0.1) {

Pr = 0;
} else {

t = βPr;
Pr = αPr + (1 − α)t;

}
}

Figure 4.6: Algorithm for adjusting Pr at an origin server

capacity (i.e., λrd equals λa
rd), then it needs to allocate an additional rescue server so

as to increase its redirect capacity. For the third case, if an origin server is lightly

loaded and it still redirects requests to rescue servers (i.e., Pr > 0), then it needs to

decrease Pr until Pr reaches 0. For the last case, if an origin server has been lightly

loaded and has not redirected requests to rescue servers (i.e., Pr is 0) for a configured

number of consecutive control intervals, then it needs to release all rescue servers.

Figure 4.6 gives the algorithm for adjusting Pr at an origin server, which increases

Pr if ρn > ρu
n, and decreases Pr if ρn < ρl

n. The adjustment is controlled by parameter

β = ρn/ρ̂n, where β > 1 for increase since ρn > ρu
n > ρ̂n, and β < 1 for decrease

since ρn < ρl
n < ρ̂n. Further, the adjustment is smoothed by using an exponentially

weighted moving average filter with α = 0.5. To allow Pr to converge quickly to 1 or

0 as needed, an increase from above 0.99 is set to 1, and a decrease from below 0.1 is

set to 0. To react quickly to load spikes, an increase from below 0.5 is set to 0.5.

Figure 4.7 illustrates how Pr is adjusted at an origin server for two different

workloads by using the algorithm shown in Figure 4.6. Note that ρn in this figure

is the filtered value of the raw measurement of network utilization. For simplicity,

we assume that the raw measurement of network utilization only changes at control

interval 21: from 0.8 to 0.2 for workload1, and from 0.9 to 0.1 for workload2. We
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Figure 4.7: Adjusting Pr at an origin server for two different workloads by using
the algorithm shown in Figure 4.6. In this figure, ρn is the filtered value of the raw
measurement of network utilization which changes at control interval 21: from 0.8 to
0.2 for workload1, and from 0.9 to 0.1 for workload2.

use α = 0.5, ρl
n = 0.5, ρu

n = 0.75, and ρ̂n = (ρl
n + ρu

n)/2 = 0.625. For initial values,

ρn = 0 and Pr = 0. We can observe the following results from Figure 4.7. First, when

the workload changes, it takes 7 control intervals for the filtered value to converge to

the raw measurement. Secondly, when the workload is consistently above the upper

threshold, it takes 11 to 15 control intervals to increase Pr up to 1, and the higher the

workload, the quicker the Pr increase. In contrast, when the workload is consistently

below the lower threshold, it takes 7 to 9 control intervals to decrease Pr down to 0,

and the lower the workload, the quicker the Pr decrease. Since DotSlash uses a small

control interval with a default value of 1 second, it only takes a short time (from a

few seconds to tens of seconds) to adjust Pr to the desired value.

The rescue state has five rescue actions: decrease λa
rd, heavy-load shutdown, in-

crease λa
rd, additional rescue, and idle shutdown. For the first case, if a rescue server
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// Compute β
β = ρn/ρ̂n;
if (β < 0.5) {

β = 0.5;
} else if (β > 2) {

β = 2;
}

// Decrease λa
rd if ρn > ρu

n

if (λa
rd > 0) {

if (λa
rd < 0.1λm

d ) {
λa

rd = 0;
} else {

t = λa
rd/β;

λa
rd = αλa

rd + (1 − α)t;
}

}

// Increase λa
rd if ρn < ρl

n

if (λa
rd < λ̂d && λrd > γλa

rd) {

if (λa
rd > 0.99λ̂d) {

λa
rd = λ̂d;

} else {

t = min(λa
rd/β, λ̂d);

λa
rd = αλa

rd + (1 − α)t;
}

}

Figure 4.8: Algorithm for adjusting λa
rd at a rescue server

is heavily loaded and its λa
rd > 0, then it needs to decrease λa

rd until λa
rd reaches 0.

For the second case, if a rescue server is heavily loaded and its λa
rd is 0, then it needs

to shutdown the rescue relationship. When a rescue server has shutdown all rescue

relationships, it switches to the normal state. For the third case, when a rescue server

is lightly loaded and λa
rd < λ̂d, then it can increase λa

rd. Note that a rescue server

should not increase λa
rd if λrd is far below λa

rd. For the fourth case, if a rescue server

is lightly loaded, and it receives a new rescue request, then it can accept the rescue

request, and assign a λa
rd to the new origin server. By doing so, the rescue server

will have multiple origin servers, and a separate λa
rd is assigned to each origin server.

For the last case, if a rescue server has an origin server whose λrd has been 0 for

a configured number of consecutive control intervals, then the rescue server should

shutdown the rescue relationship so as to release rescue resources in case of the origin

server failure or network separation.

Figure 4.8 gives the algorithm for adjusting λa
rd at a rescue server, which decreases

λa
rd if ρn > ρu

n, and increases λa
rd if ρn < ρl

n. Note that λa
rd is increased only if

λrd > γλa
rd, where γ is a configurable parameter with a default value of 0.9. This

algorithm is very similar to the algorithm shown in Figure 4.6. However, these two

algorithms make adjustments in opposite directions because their adjusting factors

are β and 1/β, respectively. We keep the adjusting factor for λa
rd within the range of
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Figure 4.9: Adjusting λa
rd at a rescue server by using the algorithm shown in Fig-

ure 4.8. In this figure, ρn is the filtered value of the raw measurement of network
utilization which changes from λa

rd/λ
m
d to 0.9 at control interval 21.

[0.5, 2] to avoid over-reacting adjustments. To allow λa
rd to converge quickly to λ̂d or

0 as needed, an increase from above 0.99λ̂d is set to λ̂d, and a decrease from below

0.1λm
d is set to 0.

Figure 4.9 illustrates how λa
rd is adjusted at a rescue server by using the algorithm

shown in Figure 4.8. Note that ρn in this figure is the filtered value of the raw mea-

surement of network utilization. For simplicity, we assume that the raw measurement

of network utilization changes at control interval 21 from λa
rd/λ

m
d to 0.9. We use

α = 0.5, γ = 0.9, ρl
n = 0.5, ρu

n = 0.75, and ρ̂n = (ρl
n + ρu

n)/2 = 0.625. For initial

values, ρn = 0 and λa
rd = 0.1λm

d . Similar to Figure 4.7, we can observe the following

results from Figure 4.9: (1) it takes 6 to 10 control intervals for the filtered value to

converge to the raw measurement, and (2) it takes 6 to 14 control intervals to adjust

λa
rd to the desired value.
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Figure 4.10: Rescue server discovery via a set of fully-meshed DotSlash registries
(based on mSLP DAs), where R/S denotes registration and search operations, and P
denotes a peer relationship.

4.4.5 Service Discovery

Service discovery allows servers of different web sites to learn about each other dy-

namically and collaborate without any administrator intervention. DotSlash uses the

Service Location Protocol (SLP) [59] since it is an IETF proposed standard for service

discovery in IP networks, and it is flexible, lightweight and powerful. Based on the

SLP mesh enhancement (mSLP) described in Chapter 2, DotSlash uses a distributed

service registries that maintain a fully-meshed peer relationship, as shown in Figure

4.10. A web server can discover the available DotSlash registries via DNS SRV [158].

For example, DotSlash registries deployed in dot-slash.net can be discovered via a

DNS query by using query name= slpda. tcp.dot-slash.net and query type=srv. After

obtaining the available DotSlash registries, a web server can use any service registry

to register its information and to search information about other web servers. Service

registrations received by one registry will be propagated automatically to all of its

peer registries, and anti-entropy (described in Chapter 3) is used to ensure consistency

among all service registries. When a registry reboots after failures, it can obtain the

up-to-date registration information from its peer registries. Only a small number of

such service registries are needed for reliability and scalability. All of them serve the



90

Mod_dots

Apache

Dotsd

HTTP SLPDNS

mSLP DABIND

Another
Dotsd

Internet

Shared Memory

Client

DSRPDSRP

DSRP: DotSlash Rescue Protocol

PSfrag replacements

(S2)
(S3)

(S1, S2)
DA1 (S1, S2)
DA2 (S1, S2)
DA3 (S2, S3)

DA4 (S3)
(1) DA2’s DAAdvert

(2) Create a peering connection
(3) DA1’s DAAdvert

DA1

DA2

R1

R2

R3

R4

R5

R6

(S1, S2, S3)
(S1)

(S1, S2)
(S2, S3)

(S3)
{u1

2, u
2
2, u

1
3}

{u1
2, u

2
2, u

1
3, u

2
3}

{u1
2, u

1
3, u

2
3}

{u1
2, u

2
2}

{u1
3, u

2
3}

{u2
3}

S1

S2

S3

S4

S5

S6

S7

S8

C1

C2

Pr

ρn

ρ̂n

Pr

λa
rd

Figure 4.11: DotSlash software architecture

scope “DotSlash” (reserved for DotSlash rescue services) so that they will not affect

local service discovery.

The template for DotSlash rescue services has the following attributes: the domain

name for the web server, its IP address which is used to bypass DNS round robin,

its port number for web requests, its port number for DotSlash rescue services, and

the current allowed redirect data rate λa
rd computed as max((ρ̂n − ρn)λm

d , 0). A web

server performs service registrations and rescue server searches periodically with a

configurable interval τr and τs, respectively. To get ready for load spikes, a web

server maintains a list of rescue server candidates. A DotSlash service search request

uses preference filters [157] (see Section 2.5) that allow the registry to sort the search

result based on λa
rd and to only return the desired number of matching entries, which

is useful if many entries match a search request.

4.5 Implementation

We use Apache [9] as our base system since it is open source and is the most popu-

lar web server [88]. Figure 4.11 shows the DotSlash software architecture. DotSlash

is implemented as two parts: Mod dots and Dotsd. Mod dots is an Apache mod-

ule that supports DotSlash functions related to client request processing, including
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accounting for each response, HTTP redirect, and dynamic virtual hosting. Dotsd

is a daemon that accomplishes other DotSlash functions, including service discov-

ery, dynamic DNS updates, and rescue control and management. For convenience,

Dotsd is started within the Apache server, and is shutdown when the Apache server

is shutdown. Dotsd and Mod dots share control data structures via shared memory.

DNS servers and DotSlash service registries are DotSlash components external to the

Apache server. We use BIND as DNS servers, and use mSLP Directory Agents (DAs)

as DotSlash service registries. A web server interacts with other web servers via its

Dotsd using DSRP (see Section 4.4.4).

DotSlash control data are divided into two parts: a workload meter for the web

server itself, and a peer table for collaborating web servers. The peer table maintains

accounting information of redirected traffic for peers. Traffic accounting is performed

at two time scales: the current control interval and the server’s lifetime which is from

the server’s starting time to now. The former accounting is used to trigger rescue

actions, and the corresponding counters are reset to zero at the end of the current

control interval. The latter accounting allows computing various average traffic rates

by sampling the corresponding counters at desired time intervals.

Dotsd is implemented using the pthread threading library. It has two main

threads: a control thread and a DSRP server. The control thread runs at the end

of each control interval for processing tasks that need to be done periodically such

as computing the current workload level, triggering rescue actions if needed, and

checking whether it needs to perform service discovery. The DSRP server accepts

connections from other Dotsds and creates a new thread for processing each accepted

connection. Dotsd also includes three clients: a DNS client for dynamic DNS updates,

an SLP Service Agent for service registrations, and an SLP User Agent for service

searches.
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Mod dots handles traffic accounting, performs HTTP redirects for an origin server,

supports dynamic virtual hosting for a rescue server, and implements a content han-

dler for /dotslash-status so that a request for http://host.domain/dotslash-status can

retrieve the current DotSlash status for the web server host.domain.

4.6 Evaluation

For a web server, we use two performance metrics D and R, where D is the maximum

data rate (in kilobytes per second) of HTTP responses delivered to clients, and R is

the maximum request rate (in requests per second) supported. Our goal is to improve

a web server’s D and R by using DotSlash rescue services. For a web server without

using DotSlash, its D and R can be estimated as λm
d and λm

d /(F + H), respectively,

where F is the average size of requested files, and H is the average HTTP header

size of responses, assuming the CPU is not a bottleneck. For any web server, the

maximum rate of HTTP redirects it can support can be estimated as λm
d /Ar, where

Ar is the accounting size for an HTTP redirect (see Section 4.4.3). Thus, a web

server can improve its R and D by using DotSlash as follows. If it only uses HTTP

redirect to offload client requests, its R is bounded by λm
d /Ar, and its D is bounded

by R(F + H). However, a web server can use DNS round robin to overcome this

scaling limitation so as to further improve its R and D.

We performed experiments in our local area network and on PlanetLab [99] to

achieve two goals. First, given a web server with a constraint on its outbound band-

width, we want to improve its R and D by using DotSlash rescue services, and aim to

achieve an improvement close to the analytical bound, i.e., the web server can handle

a request rate close to λm
d /Ar when only HTTP redirect is used. Second, we want to

confirm that our workload control algorithm works as expected.
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4.6.1 Workload Generation

We use httperf [84] to generate workloads, which provides a flexible facility for gener-

ating various HTTP workloads and for measuring server performance. If the request

rate to be generated is high, multiple httperf clients are used, each running on a

separate machine. To simulate web hotspots, a small number of files are requested

repeatedly from a web server. Each request uses a separate TCP connection. Thus,

the request rate equals the connection rate.

We made two enhancements to httperf to facilitate experiments on DotSlash.

First, we extended httperf to handle HTTP redirects automatically since an httperf

client needs to follow HTTP redirects in order to complete workload migrations from

an origin server to its rescue servers. Second, we wrote a shell script to support

workload profiles. A workload profile specifies a sequence of request rates and their

testing durations, which is convenient for describing workload changes.

For a web server, its R and D are determined as follows. We use httperf clients

to issue requests to the web server, starting at a low request rate, and increasing the

request rate gradually until the web server gets overloaded. A client uses 7 seconds

[29] as the timeout value for getting each response. If more than 10% [29] of issued

requests time out, a client declares the web server as being overloaded. For a sequence

of testing request rates that are monotonically increasing, r1 < r2 < · · ·, if the web

server gets overloaded at ri, then R = ri−1. For all testing request rates, up to R, the

maximum data rate delivered to clients is D.

4.6.2 Experimental Setup

We performed experiments in our local area network (LAN) and on PlanetLab [99]. In

our LAN experiments, we used a cluster of 30 Linux machines, which were connected
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using 100 Mb/s fast Ethernet. These machines had two different configurations, CLIC

and iDot. The former had a 1 GHz Intel Pentium III CPU and 512 MB of memory,

whereas the latter had a 2 GHz AMD Athlon XP CPU and 1 GB of memory. They

all ran Redhat 9.0 with Linux kernel 2.4.20-20.9. At the time of our experiments,

PlanetLab consisted of more than 300 nodes distributed all over the world. Each

node had a CPU of at least 1 GHz clock rate and had at least 1 GB of memory.

PlanetLab nodes had four types of network connections: DSL lines, Internet2, North

America commodity Internet, and outside North America. They all ran Redhat 9.0

with Linux kernel 2.4.22-r3 planetlab and PlanetLab software 2.0.

We set up the DotSlash software in three steps. First, we compiled Apache 2.0.48

with the worker multi-processing module, the proxy modules, the cache modules, and

our DotSlash module. We configured Apache as follows. Since reverse proxying was

taken care of by DotSlash automatically, no proxy configuration was needed. Web

caching was configured with 256 KB of memory cache, and 10 MB of disk cache,

and the maximum file size allowed in memory cache was 20 kB. For the DotSlash

module, we only configured λm
d . Second, we used BIND 9.2.2 as the DNS server

software, and set up a DNS domain dot-slash.net. All rescue servers registered their

virtual host names in this domain via dynamic DNS updates. We tested DotSlash

workload migration via HTTP redirect and DNS round robin. In this section, we

give experimental results for workload migration via HTTP redirect only because the

results for DNS round robin may vary from time to time due to DNS caching. Third,

we set up a DotSlash service registry using an mSLP DA. Each web server registered

itself with this service registry, and discovered other web servers by looking up this

registry.
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4.6.3 Experimental Results on PlanetLab

We ran a web server on a PlanetLab DSL node, planetlab1.gti-dsl.nodes.planet-lab.org

(referred to as gtidsl1), for which the outbound bandwidth was the bottleneck. We ran

httperf on a local CLIC machine. Ten files were requested repeatedly from gtidsl1,

with an average size of 6 KB [136]. Our goal is to measure, from the client side,

gtidsl1’s R and D in two cases, namely without using DotSlash versus using DotSlash.

For the first case, DotSlash was disabled. The request rate started at 1 re-

quest/second, increased to 20 requests/second, with a step size of 1, and each request

rate lasted for 60 seconds. Figure 4.12(a) shows the experimental results. In this

figure, gtidsl1 got overloaded at 10 requests/second, where 14% of requests, 84 out

of 600, timed out. Thus, R was 9 requests/second. The measured D was 53.9 kB/s

(1 kB = 1000 bytes), attained when the request rate was R.

For the second case, DotSlash was enabled. We set gtidsl1’s λm
d to 53.9 kB/s. To

provide needed rescue capacity for gtidsl1, we ran another web server on a local iDot

machine named as maglev, and its λm
d was set to 2000 kB/s. The request rate started

at 4 requests/second, increased to 200 requests/second, with a step of 4, and each

request rate lasted for 60 seconds. Figure 4.12(b) shows the experimental results. In

this figure, when the request rate reached 8 requests/second, the origin server gtidsl1

started to redirect client requests via HTTP redirects to the rescue server maglev.

As the request rate increased, the redirect rate increased accordingly. Eventually,

gtidsl1 redirected almost all clients requests to maglev. In this experiment, gtidsl1

got overloaded at 92 requests/second, where 25% of requests, 1404 out of 5520, timed

out. Thus, R was 88 requests/second. The measured D was 544.1 kB/s, attained

when the request rate was 84 requests/second.

Comparing the results obtained from the above two cases, we have 88/9 = 9.78,
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(b) Using DotSlash rescue services

Figure 4.12: The data rate and request rate for a PlanetLab DSL node gtidsl1 in two
cases, namely without using DotSlash verses using DotSlash. Note that figure (a)
and (b) have different scales of ordinates, and 1 kB = 1000 bytes.
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and 544.1/53.9 = 10.1, meaning that by using DotSlash rescue services, we got about

an order of magnitude improvement for gtidsl1 on its R and D, even if only HTTP

redirect is used. To show the effectiveness of DotSlash, we also compare R with

its analytical bound λm
d /Ar below. In this experiment, we only measured λm

d at

gtidsl1, without knowing its outbound bandwidth B. To be conservative, we use

U = (F + H)/(F + H + O) = 95%, where F = 6 KB, H = 250 bytes, and O = 358

bytes. Here the header overhead O for a single-request HTTP transaction is the same

as that for an HTTP redirect (calculated in Section 4.4.3). Since the size of an HTTP

redirect response is n = 227 bytes in the experiment, we have Ar = (n + O)U = 556

bytes. As a result, R is bounded by λm
d /Ar = 53.9 ∗ 1000/556 = 97 requests/second,

and we achieved 88/97 = 91% of its analytical bound.

4.6.4 Experimental Results in Local Area Networks

In the previous section we have shown the performance improvement, measured from

the client side, for a web server by using DotSlash rescue services in a wide area

network setting. In this section we will show, via an inside look from the server side,

how workload migrates from an origin server to its rescue servers. The workload

monitoring component in DotSlash maintains a number of counters for outbound

HTTP traffic, including total bytes served, the number of client requests served, the

number of client requests redirected, and the number of requests served for rescuing

others. The values of these counters for a web server host.domain can be obtained from

http://host.domain/dotslash-status?auto. By sampling these counters at a desired

interval, we can calculate the needed average values of outbound data rate, request

rate, redirect rate, and rescue rate.

In this experiment, we ran four machines, bjs, ottawa, lisbon, and delhi, as web
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(a) The request rate and redirect rate at bjs, and the rescue rates at its
rescue servers
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(b) The data rate at each web server, and the total data rate of all web
servers

Figure 4.13: The request rates and data rates at the origin server bjs and its rescue
servers
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servers, where bjs is an iDot machine, and the other three are CLIC machines. To em-

ulate a scenario where bjs works as an origin server with a bottleneck on its outbound

bandwidth, and the remaining web servers work as rescue servers, we configured their

λm
d as 1000, 7000, 5000, and 3000 kB/s, respectively. We ran httperf on five CLIC ma-

chines, which issued requests to bjs using the same workload profile. The maximum

request rate was 400 ∗ 5 = 2000 requests/second, and the duration of the experiment

was 15 minutes. Ten files were requested repeatedly, with an average size of 4 KB. We

ran a shell script to get the DotSlash status from the four web servers at an interval

of 30 seconds. The retrieved status data were stored in round-robin databases using

RRDtool [110], with one database for each web server. Figure 4.13 shows the data

rates and request rates for the four web servers over a duration of 17 minutes.

We observe the following results from Figure 4.13(a). First, bjs can support a

request rate of 2000 requests/second, which is close to λm
d /Ar, the analytical maximum

rate of HTTP redirects at bjs. Since Ar = (n + O)U = 468 bytes in this experiment,

where n = 227 bytes, O = 358 bytes, and U takes its default value 80%, we have

λm
d /Ar = 2140 requests/second. Second, the redirect rate at bjs increases as the

request rate increases, and it is roughly the same as the request rate once it is above

1500 requests/second. The reason is that bjs increases its redirect probability Pr as

its load increases. When the rate of HTTP redirects is greater than λm
d ρu

n/Ar = 1603

requests/second, Pr will stay at 1, that is all client requests are redirected from bjs to

its rescue servers. Third, bjs allocates one rescue server at a time, and uses the one

with the largest rescue capacity first. When a new rescue server is added in, the rescue

rates at the existing rescue servers decrease. Also, the rescue rates at rescue servers

are proportional to their rescue capacities because of the WRR load distribution at

bjs.

Comparing Figure 4.13(b) and 4.13(a), we observe that rescue servers have simi-
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larly shaped curves for their data rates and rescue rates. In contrast, as we expected,

the origin server bjs has quite a different shape for its request rate and data rate

curves: its request rate increases significantly from 200 requests/second at 1.5 min-

utes to 2000 requests/second at 11 minutes, but its data rate is roughly unchanged,

staying at λm
d ρu

n = 750 kB/s for the most part. This indicates that bjs has success-

fully migrated its workload to its rescue servers under the constraint of its outbound

bandwidth. Also, we observe that when the request rate is between 1600 and 2000

requests/second, the data rate at bjs rises above 750 kB/s, but still stays below

λm
d = 1000 kB/s. This is because bjs can only support a rate of 1600 requests/second

for HTTP redirects with a data rate of 750 kB/s. Furthermore, we observe that the

total data rate of all web servers has a maximum value of 9.7 MB/s, which is higher

than 9.2 MB/s, the maximum data rate measured from the httperf clients. The dif-

ference is due to our special accounting for HTTP redirects. As described in Section

4.4.3, an HTTP redirect is 227 bytes, but is counted as 468 bytes, which results in a

rate increase of 241 ∗ 2000 = 0.482 MB/s for 2000 HTTP redirects.

4.7 Summary

This chapter described the DotSlash framework. As a rescue system, DotSlash com-

plements the existing web server infrastructure to handle web hotspots effectively.

It is self-configuring, scalable, cost-effective, easy to use, and transparent to clients.

Through our experimental results, we have demonstrated that by using DotSlash a

web server can increase the request rate it supports and the data rate it delivers to

clients by an order of magnitude, even if only HTTP redirect is used. Using DNS

round robin and HTTP redirect together would further improve the performance.
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Chapter 5

Hotspot Rescue for Dynamic

Content by Replicating

Application Programs Dynamically

The previous chapter described the DotSlash framework that enables a web site to

build an adaptive distributed web server system across wide area networks on the

fly [150]. By effectively removing the bottlenecks at access network bandwidth and

web servers, the DotSlash base system is sufficient for handling web hotspots at

static content web sites. To perform hotspot rescue for dynamic content, DotSlash

needs to address the bottlenecks at application servers and database servers. This

chapter describes replicating application programs dynamically from an origin server

to its rescue servers, eliminating the application server bottleneck [151]. The next

chapter will describe using on-demand distributed query result caching to relieve the

database server bottleneck [154]. In this chapter, we first introduce the problem

of web hotspots for dynamic content and discuss related work. Then, we describe

dynamic script replication. After presenting the experimental results and evaluation,
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Figure 5.1: The three-tier architecture for dynamic content web sites

we give a summary.

5.1 Introduction

Handling web hotspots at dynamic content web sites is a challenging problem. First,

a dynamic content web site is more likely to be overwhelmed by flash crowds because

the request rate it supports is often much lower than that of a static content web site

[34] since generating dynamic web pages consumes more CPU cycles than serving

static web pages. Secondly, many existing caching mechanisms are designed for static

content, and cannot be applied to dynamic content directly [34, 42, 131]. Further-

more, a dynamic content web site typically has a three-tier architecture as illustrated

in Figure 5.1: a front-end web server handles the HTTP requests from clients, an ap-

plication server implements the business logic, and a back-end database server stores

the content. Depending on different applications and system configurations, different

servers in the infrastructure may become the bottleneck [7, 33].

Dynamic content can be generated using different technologies, such as PHP, Ac-

tive Server Pages (ASP), Java Server Pages (JSP), Java Servlets, and Enterprise Java

Beans (EJB). PHP is the most popular dynamic web technology used with Apache,

and Apache is the most popular web server. Thus, we discuss web hotspot rescue in

the context of the common LAMP (Linux, Apache, MySQL, and PHP) configuration,

and expect that similar techniques can be applied to other configurations of dynamic

content web sites [33, 127]. In the LAMP configuration as shown in Figure 5.2, PHP



103

Client
SQL

Apache + PHP MySQL
HTTP

PSfrag replacements

(S2)
(S3)

(S1, S2)
DA1 (S1, S2)
DA2 (S1, S2)
DA3 (S2, S3)

DA4 (S3)
(1) DA2’s DAAdvert

(2) Create a peering connection
(3) DA1’s DAAdvert

DA1

DA2

R1

R2

R3

R4

R5

R6

(S1, S2, S3)
(S1)

(S1, S2)
(S2, S3)

(S3)
{u1

2, u
2
2, u

1
3}

{u1
2, u

2
2, u

1
3, u

2
3}

{u1
2, u

1
3, u

2
3}

{u1
2, u

2
2}

{u1
3, u

2
3}

{u2
3}

S1

S2

S3

S4

S5

S6

S7

S8

C1

C2

Pr

ρn

ρ̂n

Pr

λa
rd

Figure 5.2: The LAMP configuration for dynamic content web sites

is a module of the Apache web server. Note that there is no separate application

server; instead, the Apache server performs the tasks of an application server as well.

In LAMP implementation, the Apache server and database server are usually running

on separate machines.

Previous work [7] has shown that different applications may have different bot-

tlenecks in the LAMP configuration. The database server is the bottleneck for the

TPC-W benchmark [128] that models online bookstores such as amazon.com. But

the web/application server is the bottleneck for the RUBiS benchmark [112] that

models auction sites such as eBay, and for the RUBBoS benchmark [111] that models

bulletin board sites such as Slashdot. We focus on the web/application server bot-

tleneck in this chapter, and will address the database server bottleneck in the next

chapter. Our approach is as follows. When a web server is heavily loaded, it drafts

a number of rescue servers from other web sites on the fly, and redirects a fraction

of client requests to those rescue servers. To serve redirected client requests, a res-

cue server retrieves the PHP scripts dynamically from its origin server, caches the

scripts locally, and accesses the origin database server directly. We have implemented

a prototype of the DotSlash rescue system for the LAMP configuration, and tested

our implementation using the RUBBoS bulletin board benchmark [7]. Experiments

show that by using DotSlash, a dynamic content web site can completely remove its

web/application server bottleneck, and can support a request rate constrained only

by the capacity of its database server.
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5.2 Related Work

Various approaches have been proposed to cache dynamic content. Web caching

can cache entire HTML pages or page fragments at proxies [42], web servers [34],

application servers [63, 20], and edge servers [5]. Database caching [6, 26, 72] can

cache data from the back-end database at database caches closer to the application

server. Complementary to existing caching mechanisms, DotSlash allows a web site to

expand its capacity dynamically as load increases without administrator intervention.

In particular, DotSlash allows a web server to obtain additional computing capacity

on demand and replicate scripts dynamically.

In edge computing [5], application components can be offloaded to edge servers,

but manual configuration is needed to choose the components to be offloaded and

where to deploy applications. In ACDN [102], applications can be deployed and re-

deployed dynamically, but manual administration is still involved such as creating a

meta-file for each application to be replicated. In contrast, DotSlash is self-managing

by replicating each script file on demand and fully automatically.

5.3 Dynamic Script Replication

To support load migration for dynamic content, we enhance DotSlash with dynamic

script replication, which allows a rescue server to dynamically replicate scripts from

its origin servers, and cache the scripts locally. The motivation is that running scripts

consumes a fair amount of CPU cycles, and the CPU often becomes the bottleneck

for dynamic content web sites [7].

In DotSlash, an origin web server uses both DNS round robin and HTTP redirect

to offload a fraction of client requests to its rescue servers [150]. For clarity, we omit
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Figure 5.3: An example for dynamic script replication

the DNS name resolution steps, and give an example that uses HTTP redirect to

illustrate how dynamic script replication works. In Figure 5.3, the origin server So is

www.origin.com, and the rescue server Sr is www.rescue.com. The client C takes the

following steps to retrieve http://www.origin.com/search.php?name=x.

1. C makes an HTTP request to So using

http://www.origin.com/search.php?name=x.

2. So sends an HTTP redirect to C as

http://vh1.www.rescue.com/search.php?name=x.

Note that So has already set up a rescue relationship with Sr.

3. C makes an HTTP request to Sr using

http://vh1.www.rescue.com/search.php?name=x.

4. Sr makes an HTTP request to So using http://www.origin.com/search.php

because of a cache miss for the script file search.php.

5. So sends the script file search.php to Sr, and Sr caches search.php locally.

6. Sr runs search.php?name=x to access the corresponding database.

7. Sr gets the query results from the database.
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8. Sr sends the query results to C.

5.3.1 Operations at the Rescue Server

When the rescue server Sr receives a request Q, it checks whether Q is a redirected

request for dynamic content. If Q uses an alias of Sr such as vh1.www.rescue.com, or

uses an origin server’s name such as www.origin.com, then Q is a redirected request.

If the requested file extension matches one of the configured script extensions, then

Q requests dynamic content. In Apache, script extensions are configured using the

directive AddType, e.g., files with an extension of php or phtml can be configured as

PHP scripts using “AddType application/x-httpd-php .php .phtml”.

If Q is a redirected request for dynamic content such as

http://vh1.www.rescue.com/search.php?name=x, then Sr maps Q’s URI to a script

file, and sets the needed environment variables for retrieving PHP scripts if there is

a cache miss. In Apache, environment variables for sub-processes are set in a per re-

quest table subprocess env. DotSlash sets three environment variables: Origin Server

which specifies the origin server’s name, Origin Port which specifies the origin server’s

port number for web requests, and Script Root which specifies the root directory for

replicated scripts. Since Sr may need to retrieve and cache scripts from multiple origin

servers, a request URI is mapped to its script file as Script Root/Origin Server/URI Path,

where URI Path is the path part of the request URI. For example, Q’s URI is mapped

to a script file Qf as Script Root/www.origin.com/search.php.

If Qf exists, the script will be executed normally; otherwise, a “file not found”

error will be triggered, and be handled by a 404 handler as follows. If Script Root is

set (i.e., a redirected request for dynamic content), the DotSlash inclusion function

dots include is invoked; otherwise, a regular “file not found” message is returned.
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Dynamic script replication is performed by dots include using the following steps.

1. Retrieve the script file from So using http://Origin Server:Origin Port/URI Path;

2. Add a header H to the retrieved script file for handling file inclusions (see

Section 5.3.3 for details);

3. Set query variables (extracted from the query part of the request URI) in $ GET

or $ POST;

4. Run the script by invoking the native PHP include.

File locking is used to ensure that partially retrieved script files are not used by

concurrent requests.

5.3.2 Operations at the Origin Server

When the origin server So receives a request Q, it checks whether Q is from a rescue

server (based on its rescue server list, see Section 4.4.1 for details), and whether Q is

for dynamic content. If so, So will return the script file to the rescue server instead

of running the script.

5.3.3 File Inclusions in Replicated Scripts

In PHP, file inclusions are supported via include, require, include once, and re-

quire once statements. The include and require statements are identical in every way

except how they handle failures: include produces a warning while require results in a

fatal error. The include once and require once statements are used to ensure that any

file is included just once. A challenging issue here is that a replicated script running

at a rescue server may include files located at the origin server.
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We investigated two options for handling file inclusions in replicated scripts: re-

naming and error handler. The renaming approach is to rename each PHP inclusion

statement to the DotSlash inclusion function dots include after a script is replicated

from the origin server to the rescue server. This approach is applicable to all PHP in-

clusion statements, but it needs to parse each replicated script file. The error handler

approach is to use a customized error handler for each replicated script file. In PHP,

if a file to be included does not exist, an error will be triggered. Thus, we can use

a customized error handler to catch file inclusion errors, and replicate needed script

files dynamically. Note that the error handler approach is applicable to the include

and include once statements only because a missing file for the require or require once

statement will halt processing of the script.

We employ the error handler approach in DotSlash mainly because it is easier to

build. We add a header H to each replicated script file, which uses set error handler

to set the error handler to the DotSlash error handler dots error. As a wrapper func-

tion of dots include, dots error implements the PHP error handler API, and invokes

dots include in case of a file inclusion error.

5.3.4 Implementation

DotSlash functions, dots include and dots error, can be implemented as PHP user

functions written in PHP scripts, or as PHP native functions written in C and com-

piled as the DotSlash extension to the PHP module. For efficiency considerations,

we have implemented dots include and dots error as PHP native functions for PHP

4.3.6.
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5.4 Evaluation

We use R to denote the maximum request rate supported by a web server. Our goal

is to improve a web server’s R by using DotSlash.

5.4.1 Experimental Setup

We performed experiments in our local area network, where we used a cluster of 30

Linux machines connected via 100 Mb/s fast Ethernet. These machines had two

different configurations. The low-end configuration (LC) had a 1 GHz Intel Pentium

III CPU and 512 MB of memory, whereas the high-end configuration (HC) had a 2

GHz AMD Athlon XP CPU and 1 GB of memory. They all ran Redhat 9.0 with

Linux kernel 2.4.20-20.9.

We ran a varying number of web servers in different experiments. All web servers

ran Apache 2.0.49, configured with PHP 4.3.6, worker multi-processing module, proxy

modules, cache modules, and our DotSlash module. The PHP module included our

DotSlash extension, which implemented the DotSlash inclusion function dots include

and the DotSlash error handler dots error. In all experiments, we ran one database

server on an HC machine denoted as DB HC. The database server ran MySQL 4.0.18.

To support a large number of concurrent connections, we configured MySQL with

open files limit=65535 and max connections=2048.

We tested our prototype system using the RUBBoS bulletin board benchmark [7].

RUBBoS is modeled after an online news forum like Slashdot [120]. It consists of 19

PHP scripts, and the size of script files varies between 1 KB and 7 KB. The database

has a size of 439 MB, and contains 500000 users and 2 years of stories and comments.

There are 15 to 25 stories per day, and 20 to 50 comments per story. The length of

story and comment bodies is between 1 KB and 8 KB.
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We used RUBBoS clients to generate workloads. Each RUBBoS client can sim-

ulate a few hundred HTTP clients. An HTTP client issues a sequence of requests

using a think time that follows a negative exponential distribution, with an average of

7 seconds [128]. If the request rate to be generated is high, multiple RUBBoS clients

are used, each running on a separate machine. We use 7 seconds [29] as the timeout

value for getting the response for a request. If more than 10% [29] of issued requests

time out, the web server is considered as being overloaded.

5.4.2 Effectiveness

To show the effectiveness of DotSlash, we measured R at an origin web server from

the client side in different cases, based on whether DotSlash was used or not, and

whether the origin server ran on an HC machine or on an LC machine.

For the first experiment, we ran the origin web server on an HC machine denoted

as Orig HC, and DotSlash was disabled. Figure 5.4 shows the experimental results.

We denote the total number of HTTP clients as Nc. The request rate at Orig HC

increased as Nc increased. The measured R was 118 requests/second obtained when

Nc = 900. When Nc reached 1100, 11% of requests timed out. At this workload, the

CPU utilizations of Orig HC and DB HC were 100% and 45%, respectively. Clearly,

the web server was the bottleneck, although it had the same hardware configuration

as the database server.

In the second experiment, the origin web server still ran on Orig HC, but DotSlash

was enabled, and rescue servers were added automatically as load increased. All

rescue web servers ran on LC machines. We also show the experimental results in

Figure 5.4, but for Nc ≥ 500 only since Orig HC did not use any rescue server when

Nc ≤ 400. The measured R was 245 requests/second obtained when Nc = 1900, and
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Figure 5.4: The request rate and timeout rate for the origin web server Orig HC in
two cases, namely without using DotSlash verses using DotSlash.

Orig HC used 9 rescue servers. When Nc reached 2200, the database server DB HC

got overloaded, where 16% of requests timed out, and Orig HC used 10 rescue servers.

At this workload, the CPU utilizations of Orig HC and DB HC were 60% and 100%,

respectively, and the CPU utilizations of all rescue servers were below 60%.

Comparing the above two experiments, we have two results. First, in terms of

the R supported by Orig HC, we have 245/118 > 2, meaning that we doubled the

performance by using DotSlash. Secondly, based on the CPU utilization, we can

observe that when DotSlash is used, the origin web server is no longer a bottleneck,

and the performance is constrained only by the database server. To further verify

this observation, we repeated the above two experiments by running the origin web

server on an LC machine denoted as Orig LC so that we had a low-end origin web

server and a high-end database server. To save space, we summarize the experimental
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results as follows without showing figures.

Without using DotSlash, the measured R was 49 requests/second obtained when

Nc = 500. Orig LC got overloaded when Nc reached 600, where 21% of requests timed

out. When DotSlash was used, the measured R was 245 requests/second obtained

when Nc = 1900, and Orig LC used 10 rescue servers. DB HC got overloaded when Nc

reached 2200, where 16% of requests timed out, and Orig LC used 12 rescue servers.

Thus, we have 245/49 = 5, meaning that we improved the R at Orig LC by 500%

by using DotSlash. The reason for using 10 rescue servers to get this improvement

is that the origin server and rescue servers have a CPU utilization close to 50%

because we have configured the desired load region in our experiments as [45%, 70%].

More specifically, Orig LC can support a rate of 49 requests/second with 100% CPU

utilization. Thus, to support a rate of 245 requests/second, we need 5 such web

servers with 100% CPU utilization, or equivalently, we can use 11 such web servers

(i.e., 1 origin server and 10 rescue servers) with 5 ∗ 100%/11 = 45% CPU utilization.

From the above experiments, we can observe that using DotSlash can completely

remove the web server bottleneck, and the performance of a dynamic content web

site is constrained only by its database server. Also, when DotSlash is used, it

does not make much difference as to using a high-end web server or a low-end web

server. For example, to support a rate of 245 requests/second, Orig HC uses 9 res-

cue servers whereas Orig LC uses 10 rescue servers, where the performance ratio of

Orig HC/Orig LC is about 2.

5.4.3 Workload Control and Migration

DotSlash monitors workload by maintaining a number of counters for outbound

HTTP traffic and CPU utilization, and allows these counter values to be retrieved
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Figure 5.5: The request rate and redirect rate at the origin server Orig LC and the
rescue rate at the 9 rescue servers (Resc LC1, ..., Resc LC9)

conveniently via http://host.domain/dotslash-status?auto. By sampling these coun-

ters at a desired interval, we can calculate the needed average values of request rate,

redirect rate, rescue rate, and CPU utilization.

To show how workload is controlled and migrated at the server side, we performed

the following experiment. The origin web server ran on Orig LC, and all rescue web

servers ran on LC machines, denoted as Resc LC1, ..., Resc LCn. DotSlash was

enabled, and rescue servers were added automatically as load increased. We ran 5

RUBBoS clients, all using the same workload profile to issue requests to Orig LC.

Each RUBBoS client simulated 340 HTTP clients, thus a total of 1700 HTTP clients

were simulated. We started one RUBBoS client at a time, with an interval of 1

minute, and each RUBBoS client ran for 8 minutes. We ran a shell script to get the

DotSlash status from all servers at an interval of 30 seconds.
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Figure 5.6: The CPU utilization for the origin server Orig LC, the 9 rescue servers
(Resc LC1, ..., Resc LC9), and the database server DB HC.

Figure 5.5 shows the request rate and redirect rate at Orig LC and the rescue rate

at the 9 rescue servers in a duration of 15 minutes. We can observe the following

results. First, the redirect rate at Orig LC increases as the request rate increases,

meaning that excess workload is migrated from Orig LC to its rescue servers via redi-

rects. Secondly, the serving rate (i.e., the request rate minus the redirect rate) at

Orig LC decreases as the redirect rate increases because redirects consume CPU cy-

cles. Also, the serving rate should be 22–34 requests/second for the desired CPU load

region of [45%, 70%] and a capacity rate of 49 requests/second, but the real serving

rate is bit smaller, 20–30 requests/second, due to the redirect overhead. Finally, the

rescue rate at all 9 rescue servers is about 25 requests/second, which is the workload

that drives the CPU utilization to about 50% at the rescue servers.

Figure 5.6 shows the CPU utilization for Orig LC, the 9 rescue servers, and
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DB HC. We can observe the following results. First, Orig LC has successfully con-

trolled its CPU utilization to stay within 50–60%. Secondly, all rescue servers have

a CPU utilization of 45–55%, being close to 50% mostly. Finally, when Nc reaches

1700, DB HC has a CPU utilization around 95%, meaning that without relieving the

database server bottleneck, there is not much potential to further increase the request

rate.

5.5 Summary

This chapter described using DotSlash to perform hotspot rescue for dynamic con-

tent. By supporting dynamic script replication, DotSlash can completely remove

the web/application server bottleneck at dynamic content web sites. Although we

discussed DotSlash in the context of LAMP configuration, we expect that similar

techniques can be applied to other types of dynamic content web sites.
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Chapter 6

Hotspot Rescue for Dynamic

Content by Using On-demand

Distributed Query Result Caching

The previous two chapters described DotSlash rescue services, which enable a web

site to build an adaptive distributed web server system on the fly and replicate appli-

cation programs dynamically, effectively relieving a spectrum of bottlenecks ranging

from access network bandwidth to web servers and application servers [150, 151]. This

chapter describes DotSlash Qcache services that allow a web site to use on-demand dis-

tributed query result caching, greatly reducing the workload at read-mostly databases

[154]. In this chapter, we first introduce the issue of database scalability for web ap-

plications. Then, we describe the design of our on-demand distributed query result

caching in details. After presenting an extensive performance evaluation for our pro-

totype system, we discuss related work and give a summary.
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6.1 Introduction

Database scalability is an important issue for web applications. First, the database

can be the most constrained resource in certain web applications such as on-line

bookstores [7]. Secondly, after other bottlenecks have been removed, the database

server will become a bottleneck at certain point if the load continues to increase.

There has been a large body of research work on database replication, partition,

caching, and clustering for improving database scalability [100, 118, 6, 26, 72, 32].

However, existing systems often involve manual configuration, making them difficult

to be deployed dynamically to new servers. This chapter describes DotSlash Qcache

services that allow a web site to set up on-demand distributed query result caching

on the fly, which can greatly reduce the workload at read-mostly databases. The

novelty of this work is that our query result caching is on demand, and operated

based on load conditions: caching remains inactive as long as the load is normal, but

is activated once the load is heavy. This approach offers good data consistency for

normal load, and good scalability with relaxed data consistency under heavy load.

Furthermore, our query result caching is self-configuring and transparent to web users

and applications. DotSlash Qcache services complement DotSlash rescue services;

together they provide a comprehensive solution to address different bottlenecks at

multi-tier web sites. We have prototyped our system for the common LAMP (Linux,

Apache, MySQL, and PHP) configuration, and performed an extensive evaluation

using the RUBBoS bulletin board benchmark [111]. Our experiments show that

DotSlash can increase a web site’s maximum request rate supported by a factor of 10

for the RUBBoS read-only mix.
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6.2 System Design

This section describes our system design. We first outline our major design goals,

chosen scalability mechanism, the application model, and our system architecture.

We then give details about our on-demand query result caching, caching-enhanced

data driver, and flexible caching storage engine.

6.2.1 Design Goals

Our design goals are dynamic scalability, self-configuration, and transparency. First,

we aim to provide a mechanism that can be deployed to new servers on demand so as

to improve database scalability dynamically for web applications. Since deploying a

scalability mechanism dynamically incurs an overhead at the origin server, we need to

reduce this overhead as much as possible. Secondly, our system is designed to be self-

configuring, handling dramatic load spikes autonomically without any administrative

intervention. Finally, our system aims to be transparent to web users and applications.

Without the need to change existing applications and user browsers, our system is

easy to deploy.

6.2.2 Scalability Mechanisms

A spectrum of mechanisms can be used to improve database scalability. In general,

caching and replication are good for read-mostly databases, whereas partitioning may

be useful when updates are frequent. For the purpose of handling web hotspots, we

focus on read-mostly databases, which are common for web applications such as con-

tent management systems (CMS), blogs, and web forums. Compared to replication,

caching is easier to deploy dynamically, and incurs lower overhead at the origin server

because cached objects are distributed from the origin server to caches on-demand,
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Figure 6.1: DotSlash Application Model

avoiding unnecessary data transfers. Thus, we narrow down our option to database

caching.

In terms of database caching, we have two main design choices, namely table level

caching and query result caching. Although table level caching [6, 26, 72] is more

efficient in that it can answer arbitrary queries on cached tables, query result caching

[119] is much simpler and can save expensive computations on cache hits. Thus, we

chose to use query result caching in DotSlash.

6.2.3 Application Model

We consider the standard three-tier web architecture, shown in Figure 6.1. Applica-

tion programs running at the application server access application data stored in the

database server through a data driver, which is normally a system component of the

application server. The data driver provides a standard API for web applications to

store and retrieve data in the back-end database. In our prototype system, we use the

common LAMP (Linux, Apache, MySQL, and PHP) configuration, where the PHP

module resides in the Apache web server.

6.2.4 System Architecture

DotSlash rescue services allow an origin server to draft and release rescue servers fully

automatically based on its load conditions. An origin web server discovers suitable
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Figure 6.2: Enabling query result caching in DotSlash

rescue servers via wide-area service location, either among peer servers or from a

dedicated pool of rescue servers, allocates them for temporary use, and redirects

client requests to them. DotSlash uses DNS round robin as the first level crude load

distribution, and uses HTTP redirect as the second level fine-grained load balancing.

When a rescue relationship is set up between two web servers, the rescue server assigns

a unique virtual host name to the origin server, which is used by the origin server

in its HTTP redirects to the rescue server. Also, the origin server adds the rescue

server’s IP address to its local DNS for round robin. In DotSlash, a rescue server can

serve the content of its origin server on the fly. In addition to caching static content

from the origin server, a rescue server replicates PHP scripts dynamically from the

origin server, and accesses databases at the origin server.

DotSlash Qcache services allow an origin server and its rescue servers to use on-

demand query result caching to reduce the database workload at the origin server.

Since the data driver (as shown in Figure 6.1) intercepts all database queries, we

enhance it with query result caching without changing the application API and da-
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Table 6.1: Three configurations in using DotSlash

Configuration Bottlenecks Addressed Used By
Dots Apache Network and web server All sites
Dots Apache + Network, web server, Dynamic
Dots PHP and application server sites
Dots Apache + Network, web server, Dynamic
Dots PHP + application server, sites
Dots MySQL and database server

tabase interface. In our prototype system, we extend the original PHP data driver

for MySQL databases with a query result cache. Figure 6.2 illustrates how to enable

query result caching in DotSlash. Note that a client request can be redirected from

the origin server to the rescue server via either DNS round robin or HTTP redirect.

Also note that a rescue server may need to access remote databases at the origin

server in addition to its local databases. We will discuss DotSlash data driver control

in details in Section 6.2.6.

Our open-source prototype implementation of DotSlash [144] has three major

components, namely Dots Apache, Dots PHP, and Dots MySQL. Dots Apache is an

Apache module that supports basic DotSlash functions including workload moni-

toring, rescue server discovery, rescue relationship management, request redirection,

dynamic virtual hosting, and dynamic DNS update. Dots PHP is an extension

for the PHP module of Apache that supports replicating PHP scripts dynamically.

Dots MySQL is a caching-enhanced PHP data driver for MySQL databases that sup-

ports caching database query results on demand. DotSlash can be used in three

different configurations as shown in Table 6.1, where Dots Apache and Dots PHP

provide DotSlash rescue services, and Dots MySQL provides DotSlash Qcache ser-

vices.
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6.2.5 Caching Features

On-demand query result caching is a unique feature of DotSlash Qcache services:

caching remains inactive as long as the load is normal, but is activated once the

load is heavy. The control of our on-demand query result caching is based on two

factors, namely the web server’s DotSlash state and load region. A web server has

three DotSlash states: SOS state if it gets rescue services from others, rescue state

if it provides rescue services to others, and normal state otherwise. DotSlash uses

two configurable parameters, lower threshold ρl and upper threshold ρu, to define

three load regions: light load region [0, ρl), desired load region [ρl, ρu], and heavy

load region (ρu, 100%]. DotSlash measures utilization of multiple resources, e.g., our

current prototype system measures network and CPU utilization. A web server’s load

region is determined as follows: the server is in the heavy load region if any resource

is heavily loaded, in the light load region if all resources are lightly loaded, and in the

desired load region otherwise.

We show the control of our on-demand query result caching in Figure 6.3. Caching

is activated if a web server is in the SOS state (i.e., an origin server), or if a web server

is in the rescue state (i.e., a rescue server), or if a web server is in the normal state

and its load is above the upper threshold. On the other hand, caching is de-activated

when an origin server switches from the SOS state to the normal state, or when a

rescue server switches from the rescue state to the normal state, or when a web server

is in the normal state and its load is below the lower threshold.

Self-configuration is an important feature of our system. When an origin server

sets up its rescue servers, it passes the query result caching control parameters to

its rescue servers. By doing so, a rescue server can manage cached objects based

on the instructions from the origin server. In this way, an origin server can set up a
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Figure 6.3: DotSlash on-demand query result caching, where caching is activated
(cache on) or de-activated (cache off) based on the web server’s DotSlash state (nor-
mal, SOS, or rescue) and load region (desired load, heavy load, or light load).

distributed query result caching system on the fly using one set of control parameters.

Distributed caching is a natural feature of our system. Each web/application

server has its own, co-located query result cache by default. An origin server can

obtain more query result caches as it drafts more rescue servers. Using co-located

query result caches is well-suited for DotSlash in terms of resource utilization efficiency

because our query result caching is on demand, and the cache server is idle most of

time. Note that our system can use a dedicated query result cache server which is

shared among an origin server and its rescue servers, or among a subset of rescue

servers. Doing so can reduce the workload at the origin database server. However, a

shared cache may become a potential performance bottleneck, and accessing a remote

cache incurs longer delays (see Section 6.3.4 for experimental results).

Our query result caching is transparent to web users and applications. Without
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the need to change client-side web browsers and server-side application programs, our

system is easy to deploy. Furthermore, we provide a way for web users to bypass our

query result caching. Our current prototype system uses the HTTP Cache-Control

header for this purpose as follows. If there is no-cache or max-age=0 in the HTTP

Cache-Control header of a client request, DotSlash will handle that request without

using query result caching.

6.2.6 Data Driver

Our caching-enhanced data driver is designed with the following considerations. First,

rescue servers only handle read-only database queries; all write database queries are

handled by the origin web server. This is mainly for security reasons because an ori-

gin server is unlikely to allow rescue servers to update its databases. Secondly, under

heavy load we turn off write queries temporarily for regular users, but still allow site

administrators (or a small group of premium users) to perform necessary updates.

This is mainly for scalability considerations because database systems often use lock-

ing (e.g., table locking in MySQL) to control concurrent read/write accesses to the

same database table, and a large number of read/write contentions can seriously de-

grade the database performance (see Section 6.3.5 for experimental results). Finally,

under heavy load we provide different consistency guarantees for site administrators

and regular users. The former can continue to perform both read and write queries,

and get an up-to-date view of database states without using query result caching,

whereas the latter can only perform read-only queries, and get a delayed view of da-

tabase states by using query result caching. We use an application-specific caching

TTL to bound the staleness of cached objects. Note that this design targets hotspot

rescue for read-mostly databases, which are common for content management systems
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(CMS), blogs, and web forums. It does not aim to be applicable to all web applica-

tions, e.g., it should not be used by e-commerce sites (modeled by benchmarks such

as RUBiS [112] and TPC-W [128]) that have frequent updates and strong consistency

requirements.

Our caching-enhanced data driver handles database queries based on three factors,

namely the web server’s query result caching state, the client request HTTP Cache-

Control header, and the client request type. Our query result caching is a per-

server state, which is on or off as illustrated in Figure 6.3. A client request can

bypass our query result caching using the HTTP Cache-Control header as described

in Section 6.2.5. A rescue server distinguishes two types of client requests, regular

and rescue, based on the request’s HTTP Host header. If the HTTP Host header uses

an origin server name such as www.origin.com, or an assigned virtual host name such

as vh1.www.rescue.com, then the request is treated as a rescue request, otherwise as

a regular request.

We show the control of our caching-enhanced data driver in Table 6.2. There

are four cases. For case 1, query result caching is off. Then any database query is

handled normally by forwarding the query directly to the database. For case 2, query

result caching is on and caching is not bypassed. Then any write query (i.e., the

SQL insert, update, or delete statement) is turned off, and an error message, such as

“Due to heavy load, write operations to databases at web site http://www.origin.com

have been temporarily turned off”, is returned. At the same time, any read-only

query (i.e., the SQL select statement) is handled as follows. The query is checked

against the query result cache. If there is a cache hit, the query result is obtained

from the cache and returned to the application immediately. In case of a cache miss,

the query is submitted to the corresponding database, which can be a local database

or a remote database at the origin server; then the query result is obtained from
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Table 6.2: DotSlash caching-enhanced data driver, which handles database queries
based on the web server’s query result caching state (on or off), the client request
HTTP Cache-Control header (bypass caching or not), and the client request type
(rescue or regular).

Case Cache Bypass Rescue Database Database
On Caching Request Write Read

1 no – – normal normal
2 yes no – turn off cache+DB
3 yes yes no normal DB+cache
4 yes yes yes redirect redirect

the database, saved to the query result cache, and returned to the application. For

case 3, query result caching is on, caching is bypassed, and the request is a regular

request. Then any database query is forwarded directly to the database. For a read-

only query, the query result is saved to the query result cache before being returned

to the application. For case 4, query result caching is on, caching is bypassed, and

the request is a rescue request. Then the request is redirected back to the origin

web server via HTTP redirect, which ensures that a client request that needs to

bypass caching can always be handled by the origin web server. For this purpose,

an origin server does not apply HTTP redirect to client requests that need to bypass

caching. However, client requests could be distributed to rescue servers due to the

origin server’s DNS round robin. This is why we need to use HTTP redirect in case

4. Note that a rescue server uses the origin server’s IP address in its HTTP redirects

to bypass the origin server’s DNS round robin mechanism.

6.2.7 Query Result Cache

We keep the query result cache as a separate component from the data driver. The

advantage of doing this is that we can experiment and use different engines as our
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caching storage.

The data driver uses the query result cache via two interface functions: check in

and check out. The check in function takes the query string, query result, and caching

TTL as input parameters, serializes the query result into a byte stream, and saves it

to the caching storage engine. The check out function takes the query string as the

input parameter and retrieves the query result. For a cache hit, it de-serializes the

query result byte stream into the original query result data structure and returns a

pointer to the result structure. In case of a cache miss, it returns a NULL pointer.

Both disk and memory can be used as our caching storage engine. Due to per-

formance considerations, we choose to use a memory storage engine, memcached [80],

which employs a client-server model. At the server side, a daemon maintains cached

objects in dynamically allocated memory. Each cached object is a key-value pair

with an expiration time. At the client side, we use an open-source C library libmem-

cache [78] to access the cache. In the check in function, we first use the ELF hash

algorithm [22] to map the query string into a cache key, and then store the query

string and the query result as the cache value, using the caching TTL as the expira-

tion time. Note that different query strings might be mapped into the same cache key

with a small probability, which is less than 1% in our experiments. To handle this

type of hash conflicts, we let the new query and its result overwrite the old one. This

strategy keeps our system simple without losing much performance. In the check out

function, we use the same ELF hash algorithm to map the query string into a cache

key. If a cached object is found for the key, we check whether the stored query string

matches the input query string. If so, it is a cache hit; otherwise, it is a cache miss.
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6.3 Evaluation

We use the maximum request rate supported by a web site as the major performance

metric. Our goal is to show the performance differences in four cases, namely without

using DotSlash, using DotSlash rescue services only, using DotSlash Qcache services

only, and using DotSlash rescue and Qcache services together.

6.3.1 Benchmark Description

We evaluate our prototype system using the RUBBoS bulletin board benchmark [111],

which is modeled after an online news forum like Slashdot [120], and has been used

in a number of systems [119, 90, 151].

RUBBoS supports discussion threads. Each thread has a story at its root, and

a number of comments for that story, which may be nested. There are two types of

users in RUBBoS: regular users who browse and submit stories and comments, and

moderators who in addition review stories and rate comments. The PHP version of

RUBBoS consists of 19 PHP scripts, and the size of script files varies between 1 and

7 KB. The database has a size of 439 MB, and contains 500, 000 users and 2 years

of stories and comments. There are 15 to 25 stories per day, and 20 to 50 comments

per story. The length of story and comment bodies is between 1 and 8 KB.

We use RUBBoS clients to generate workloads. Each RUBBoS client can emulate

a few hundred HTTP clients. An HTTP client issues a sequence of requests using

a think time that follows a negative exponential distribution, with an average of 7

seconds [128]. If the request rate to be generated is high, multiple RUBBoS clients

are used, each running on a separate machine. We use 7 seconds [29] as the timeout

value for getting the response for a request. If more than 10% [29] of issued requests

time out, the web server is considered as being overloaded.
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RUBBoS has two major workload mixes, read-only and submission. The read-

only mix invokes browse scripts, story/comment view scripts, and search scripts with

a probability of 2/3, 1/6, and 1/6, respectively. The submission mix invokes update

scripts with a probability of 1/10. The update scripts have both read and write

database queries. As a result, 2% of the total database queries in the submission mix

are write queries. A special property of the RUBBoS workload mixes is that for the

same request rate, its read-only mix causes a higher workload at the database than

its submission mix. This is due to two reasons. First, each pre-generated story has

20 to 50 comments, whereas a newly submitted story has only a few comments or

no comments at all. Secondly, each emulated RUBBoS client always starts with, and

often returns to the Stories Of The Day page, which has the most recent 10 stories.

6.3.2 Experimental Setup

Since we use query result caching to address the database server CPU bottleneck,

we performed experiments in our local area network. We used a cluster of Linux

machines connected via 100 Mb/s fast Ethernet. These machines had three different

configurations. Each web/application server had a 3 GHz Intel Pentium 4 CPU and

2 GB of memory, running Red Hat Enterprise Linux AS v.3 with Linux kernel 2.4.21-

32.0.1.EL. The database server had a 2 GHz AMD Athlon XP CPU and 1 GB of

memory, running Red Hat 9.0 with Linux kernel 2.4.20-20.9. Each client emulator

machine had a 1 GHz Intel Pentium III CPU and 512 MB of memory, running Red

Hat 9.0 with Linux kernel 2.4.20-20.9.

We ran a varying number of web/application servers in different experiments.

All web/application servers ran Apache 2.0.49, configured with PHP 4.3.6, worker

multi-processing module, proxy modules, cache modules, and our DotSlash module
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Dots Apache. The PHP module incorporated our Dots PHP and Dots MySQL, where

Dots PHP is our DotSlash extension for PHP to support dynamic script replication,

and Dots MySQL is our caching-enhanced data driver for MySQL databases to sup-

port query result caching. By default, each web/application server had a co-located

cache server running memcached with a storage space limit of 200 MB. When a cache

server was shared among several web/application servers, it had a storage space limit

of 1 GB.

The database server ran MySQL 4.0.18. Based on our evaluation, the default

MySQL storage engine MyISAM delivered a better performance than the InnoDB

storage engine for our chosen benchmark RUBBoS. Thus, we used MyISAM tables

in all our experiments. To enhance the performance of MyISAM tables under heavy

updates, we configured MySQL with delay key write=all to delay the writing of index

data to disk [142]. To support a large number of concurrent connections, we config-

ured MySQL with open files limit=65535 and max connections=8192. MySQL has

a warm-up stage to load the table index information into memory. To obtain con-

sistent results in the steady state of MySQL, we restarted MySQL after each run of

our experiments, and warmed up MySQL before each experiment using the read-only

mix with 1400 emulated clients. This workload caused the database server CPU to

be loaded around 70%. After each run of the submission mix, the RUBBoS database

was restored to its original content so that all experiments started with the same

database content.

We used our dot-slash.net domain for dynamic DNS name registrations, and used

the enhanced Service Location Protocol [145] for rescue server discovery.
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Figure 6.4: The relationship between the caching TTL and query result cache hit
ratio in a set of 10-minute experiments for the RUBBoS read-only mix

6.3.3 Caching TTL

In DotSlash, each web server has a configurable parameter called caching TTL, which

is used to control how long query results can be cached. This parameter is passed

from an origin server to all its rescue servers; and a rescue server caches query results

from an origin server based on the origin server’s caching TTL parameter.

In general, the caching TTL for query results is an application-dependent parame-

ter since different applications may need to use different caching TTLs based on their

data consistency requirements. For RUBBoS, we use 60 seconds as the caching TTL

because it is good enough to bound the staleness of cached objects in RUBBoS.

There is a trade-off in choosing the caching TTL parameter: decreasing this pa-

rameter will improve data consistency, whereas increasing this parameter will improve

caching performance. Figure 6.4 shows the relationship between the caching TTL and
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query result cache hit ratio in a set of 10-minute experiments for the RUBBoS read-

only mix. We observe that the cache hit ratio increases as the caching TTL increases.

For our chosen caching TTL 60 seconds, the cache hit ratio is 89.4%.

6.3.4 Results for the RUBBoS Read-only Mix

We first tested our system using the RUBBoS read-only mix. Depending on whether

rescue servers are available, whether query result caching is enabled, and whether each

web/application server has a co-located cache or uses a shared cache server running

on a separate machine, we have five test cases for the read-only mix as follows.

• READ: no rescue, no cache.

• READc: no rescue, with a co-located cache.

• READr: with rescue, no cache.

• READr,c: with rescue, with a co-located cache.

• READr,sc: with rescue, with a shared cache.

Table 6.3 summarizes our experimental results for the RUBBoS read-only mix.

Without using DotSlash rescue and Qcache services, a web server can only support

a request rate of 117 requests/second. The request rate supported increases to 249

requests/second by only using DotSlash rescue services with 4 rescue servers, and

increases to 1151 requests/second by using DotSlash rescue and Qcache services to-

gether with 15 rescue servers. Compared to READ, READr and READr,c achieve

an improvement of 213% and 984%, respectively. Compared to READr, READr,c

achieves an improvement of 462%. Next, we give details for each test case using the

read-only mix.
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Table 6.3: Summary of experimental results for the RUBBoS read-only mix

Test Max Rate Compared Compared Rescue
Case (reqs/sec) to READ to READr Servers

READ 117 100%
READc 125 107%
READr 249 213% 100% 4
READr,c 1151 984% 462% 15
READr,sc 828 708% 333% 13

Figure 6.5 shows the experimental results for READ and READc, where rescue

servers are not available. We give the CPU utilization for the web server and database

server in Figure 6.5(a), and present the request rate supported in Figure 6.5(b). We

observe that the web server CPU is the bottleneck. When the load is light with

300 clients, caching is not activated. Thus, we have the same CPU utilization for

READ and READc. When the load is heavy with 840 clients, caching is turned on,

and we can observe a big difference in CPU utilization. The database server CPU

utilization is 41% in READ, but is only 6% in READc, meaning that caching is

very effective in reducing the database workload. At the same time, the web server

CPU utilization decreases from 91% to 86% by using caching, indicating that getting

query results from the cache incurs less cost than accessing the database directly.

The maximum request rate supported is 117 and 125 requests/second in READ

and READc, respectively. The cache hit ratio is 91% in READc. In summary,

even without using rescue servers, query result caching is useful under heavy load.

However, caching itself cannot remove the web server bottleneck.

Figure 6.6 shows the experimental results for READr, READr,c, and READr,sc,

where a varying number of rescue servers are used. By using a sufficient number

of rescue servers, the origin web server is no longer a bottleneck. We give the CPU
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Figure 6.5: Experimental results for the RUBBoS read-only mix when rescue servers
are not available
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utilization for the origin database server and the shared cache server used in READr,sc

in Figure 6.6(a), present the request rate supported in Figure 6.6(b), and display the

average response time in Figure 6.6(c).

For READr, the origin database server gets overloaded quickly without using

query result caching. The maximum request rate supported is 249 requests/second,

obtained using 1800 clients and 4 rescue servers. Under this load, the origin database

server CPU utilization is 97%.

For READr,c, each web/application server uses a co-located query result cache,

which greatly reduces the database workload. For 1800 clients, the origin web server

uses 4 rescue servers, and the measured request rate is 252 requests/second. Under

this load, the origin database server CPU utilization is only 16%, which is a huge

reduction compared to 97% CPU utilization in READr. The maximum request rate

supported is 1151 requests/second, obtained using 8295 clients and 15 rescue servers.

Under this load, the origin database server CPU utilization is 83%, and the origin

web server cache hit ratio is 87%. For an experiment of this scale with 8295 clients,

we use 38 machines: 21 for emulating clients, 15 as rescue servers, 1 as the origin web

server, and 1 as the origin database server.

For READr,sc, all web/application servers use a shared query result cache server

running on a separate machine, which can further reduce the database workload. For

5400 clients, the origin database server CPU utilization is only 34%, compared to

52% CPU utilization in READr,c. However, the shared cache server itself becomes a

bottleneck since it gets loaded more quickly than the origin database server does. The

maximum request rate supported is 828 requests/second, obtained using 7200 clients

and 13 rescue servers. Under this load, the CPU utilization for the origin database

server and the shared cache server is 45% and 85%, respectively, and the cache hit

ratio at the shared cache server is 93%. In Figure 6.6(c), the average response time
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Figure 6.6: Experimental results for the RUBBoS read-only mix when rescue servers
are available
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Figure 6.6: Experimental results for the RUBBoS read-only mix when rescue servers
are available (Continued)

in READr,sc is much longer than that in READr,c since using a shared cache incurs

longer delays for remote cache accesses. In general, a shared cache is a single point of

failure and a potential performance bottleneck, and it incurs longer delays. Note that

it is possible to divide rescue servers into groups, and use a separate shared cache

in each group, which has the potential to keep the shared cache in each group from

being overloaded, and reduce the database workload as much as possible. However,

this method incurs administrative overhead in forming groups and determining the

right size of each group. As our goal is to build an autonomic system, we will not

explore this approach in more depth.

In summary, by using DotSlash rescue and Qcache services together, a web site

can improve its maximum request rate supported by a factor of 10 for the RUBBoS

read-only mix. Although the major performance gain comes from the Qcache services,
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the rescue services are the fundamental framework upon which the Qcache services

are built. Moreover, the efficiency of the Qcache services depends on the cache hit

ratio.

6.3.5 Results for the RUBBoS Submission Mix

Based on Section 6.2.6, DotSlash turns off database write queries temporarily for

regular users under heavy load. We disable this feature in testing our system against

the RUBBoS submission mix, which has about 2% write queries. We choose to do so

for two reasons. First, turning off all write queries will convert the submission mix

into a read-only mix, which we have evaluated in the last section. Secondly, allowing

site administrators to perform necessary updates in our system is roughly equivalent

to having a small percentage of write queries in the submission mix. Depending on

whether rescue servers are available and whether query result caching is enabled, we

have four test cases for the submission mix as follows.

• SUB: no rescue, no cache.

• SUBc: no rescue, with cache.

• SUBr: with rescue, no cache.

• SUBr,c: with rescue, with cache.

Table 6.4 summarizes our experimental results for the RUBBoS submission mix.

Without using DotSlash rescue and Qcache services, a web server can only support

a request rate of 180 requests/second. The request rate supported increases to 580

requests/second by only using DotSlash rescue services with 4 rescue servers, and in-

creases to 871 requests/second by using DotSlash rescue and Qcache services together

with 8 rescue servers. Compared to SUB, SUBr and SUBr,c achieve an improvement
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Table 6.4: Summary of experimental results for the RUBBoS submission mix

Test Max Rate Compared Compared Rescue
Case (reqs/sec) to SUB to SUBr Servers

SUB 180 100%
SUBc 174 97%
SUBr 580 322% 100% 4
SUBr,c 871 484% 150% 8

of 322% and 484%, respectively. Compared to SUBr, SUBr,c achieves an improve-

ment of 150%. Next, we give details for each test case using the submission mix.

Figure 6.7 shows the experimental results for SUB and SUBc, where rescue servers

are not available. We give the CPU utilization for the web server and database server

in Figure 6.7(a), and present the request rate supported in Figure 6.7(b). We observe

that the web server CPU is the bottleneck. When the load is light with 400 clients,

caching is not activated. Thus, we have the same CPU utilization for SUB and

SUBc. When the load is heavy with 1200 clients, caching is turned on. However, the

performance is not improved by only using query result caching because it reduces

the database workload but increases the web server workload due to a low cache hit

ratio, and the web server is the bottleneck. The maximum request rate supported is

180 and 174 requests/second in SUB and SUBc, respectively. Note that the number

of clients supported is 1300 in SUB and 1240 in SUBc. The cache hit ratio is 76% in

SUBc, which is much lower compared to around 90% cache hit ratio in the RUBBoS

read-only mix.

Figure 6.8 shows the experimental results for SUBr and SUBr,c, where a varying

number of rescue servers are used. By using a sufficient number of rescue servers, the

origin web server is no longer a bottleneck. We give the origin database server CPU

utilization in Figure 6.8(a), present the request rate supported in Figure 6.8(b), and
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Figure 6.7: Experimental results for the RUBBoS submission mix when rescue servers
are not available
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display the rate of locks waited for at the origin database server in Figure 6.8(c).

Based on Figure 6.8(a) and 6.8(b), we observe that the origin database server CPU

utilization at the peak rate is only 58% and 70% in SUBr,c and SUBr, respectively,

which are much lower compared to over 80% CPU utilization in the RUBBoS read-

only mix. This leads us to locate other bottlenecks in the system besides the database

CPU utilization. In fact, for the RUBBoS submission mix, the rate of database locks

waited for becomes a performance bottleneck well before the database CPU gets

overloaded. MySQL uses table locking in its default storage engine MyISAM to

control concurrent read/write accesses to the same database table. Table locking

allows many threads to read from a table at the same time; but a thread must get

an exclusive write lock to write to a table. During an update to a database table, all

other threads that need to access this particular table must wait until the update is

done. In MySQL, the number of table access contentions caused by table locking is

indicated by a status variable called table locks waited. In the RUBBoS submission

mix, both read and write access rates go up as the number of clients increases. As

a result, the rate of locks waited for increases. At certain point, the number of

table access contentions increases abruptly, which causes the database performance

to degrade seriously. Using query result caching reduces the read access rate to the

origin database, which in turn reduces the number of table access contentions as well

as the database workload.

For SUBr, query result caching is not used. As the load increases, the read access

rate to the origin database increases quickly along with the write access rate. The

maximum request rate supported is 580 requests/second, obtained using 4103 clients

and 4 rescue servers. Under this load, the origin database server has a 70% CPU

utilization, and an average of 4 locks waited for per second.
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Figure 6.8: Experimental results for the RUBBoS submission mix when rescue servers
are available
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(c) The rate of locks waited for at the origin database server

Figure 6.8: Experimental results for the RUBBoS submission mix when rescue servers
are available (Continued)

For SUBr,c, each web/application server uses a co-located query result cache,

which greatly reduces the read access rate to the origin database. The maximum

request rate supported is 871 requests/second, obtained using 6400 clients and 8

rescue servers. Under this load, the origin database server has a 58% CPU utilization,

and an average of 22 locks waited for per second. The origin web server cache hit

ratio is 70%.

In summary, by using DotSlash rescue and Qcache services together, a web site

can improve its maximum request rate supported by a factor of 5 for the RUBBoS

submission mix, where the major performance gain comes from the rescue services.

Comparing this performance improvement with that of the read-only mix, we observe

a difference of a factor of 2. Write queries not only reduce the cache hit ratio, but

also increase database access contentions. To allow single-server databases to survive
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web hotspots, DotSlash turns off write queries temporarily for regular users under

heavy load.

6.4 Related Work

Dynamic scalability for databases is largely an open issue. Recently, Olston et al. [90]

proposed a scalability service for databases using multicast-based consistency man-

agement, Although their system aims at broader web applications, its scalability gain

under heavy load is unclear. Moreover, their service is not transparent since clients

need to connect to their proxy servers in order to use the service. In contrast, Dot-

Slash targets read-mostly databases and scales well under dramatic load spikes. Also,

our system is transparent to web users. Amza et al. [8] evaluated transparent scal-

ing techniques for dynamic content web sites. Their results show that query result

caching can significantly increase performance for read-mostly databases, whereas

content-aware scheduling is effective for write-intensive databases. The performance

evaluation of our prototype system confirmed that query result caching works well

for read-mostly databases.

Replication is a widely used mechanism for database scalability. Ganymed [100]

separates update from read-only transactions, and routes updates to a main data-

base server and queries to read-only database copies. GlobeDB [118] uses partially

replicated databases based on data partition to reduce update traffic. Our current

prototype uses a single back-end database server, which can be extended to support

distributed database servers by incorporating database replication into our system.

Database caching [119, 6, 26, 72] can cache data from back-end databases at

caches closer to application servers, which is very effective in reducing the workload

at back-end databases. While caching in existing systems is active in all cases, our
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query result caching is activated only under heavy load, which minimizes the effect

of caching on consistency while improving the system scalability.

Database clustering [32, 91, 85] is a mechanism to pool database servers together

so as to provide high availability and performance. While Oracle Real Application

Clusters [91] uses a shared cache architecture, MySQL Cluster [85] is built on a

shared-nothing architecture. Clustered JDBC [32] implements the Redundant Array

of Inexpensive Databases concept, and provides a single virtual database to the ap-

plication through the JDBC interface. Generally speaking, database clustering is a

solution at the database server tier for high availability and performance. In contrast,

DotSlash is a solution at the web/application server tier for dynamic scalability. Thus,

our system and database clustering are orthogonal, and they can be used together at

dynamic content web sites.

Load balancing among a set of geographically distributed database servers has

been proposed. In the WARD architecture [103], dispatchers at an overloaded Inter-

net Data Center (IDC) can redirect requests for dynamic content to a geographically

remote IDC, that is to schedule database requests among replicated database servers

for load balancing. DotSlash on-demand distributed query result caching is orthog-

onal to database load balancing, and they can be used together at dynamic content

web sites.

6.5 Summary

This chapter described DotSlash Qcache services that allow a web site to use on-

demand distributed query result caching. Our query result caching is self-configuring

and transparent to web users and applications. Through our experimental results, we

have demonstrated that using DotSlash rescue and Qcache services together is very
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effective for read-mostly databases, e.g., a web site can improve its maximum request

rate supported by a factor of 10 for the RUBBoS read-only mix.
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Chapter 7

Web Traffic Prediction for

Overload Prevention

This chapter describes a prediction algorithm for estimating the upper bound of

future web traffic volume [148]. It provides insight into characterizing traffic of web

hotspots, and is useful for web server overload prevention systems such as DotSlash.

In this chapter, we first introduce the problem of web traffic prediction for overload

prevention and discuss related work. Then, we describe the design motivation and

our prediction algorithm. After discussing the algorithm parameter selection and

presenting the experimental results, we give a summary.

7.1 Introduction

To provide expected quality of service, a web site needs to predict its future traffic

volume: long-term prediction (e.g., in months or years) is useful for capacity plan-

ning, and short-term prediction (e.g., in seconds or minutes) is useful for overload

prevention. As the web becomes popular and has a huge number of potential users,
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a web site may receive highly bursty requests and get overwhelmed by web hotspots.

Short-term traffic prediction is important for a web site to take needed actions in

advance when it anticipates an approaching peak load which is likely to exceed its

capacity or a preset threshold.

For overload prevention, we only need to predict an upper bound of the future

traffic volume, i.e., whether the future traffic volume will exceed the server’s capacity

or a preset threshold. As long as the future traffic volume is below the predicted

bound, the exact volume does not matter much here. Moreover, over-prediction has

less penalty than under-prediction because a false alarm only incurs unnecessary over-

head, but a missed prediction of excess traffic can cause the server to be overloaded.

To estimate the upper bound of future web traffic volume, we designed a pre-

diction algorithm [148]. We employ a multiple-time-scale approach by using traffic

information at a smaller time scale to forecast traffic volume at a larger time scale.

Moreover, we utilize traffic statistical properties other than curve fitting to forecast

future traffic volume. This algorithm is simple and effective in upper bound predic-

tion for short-term bursty web traffic, which is useful for web hotspot rescue because

a web server needs to take rescue actions early, such as setting up rescue servers, to

shed load.

7.2 Related Work

Traffic characterization for web hotspots is an important issue. Adler [4] points out

the Slashdot effect for three Internet publications; Schwarz [115] describes dramatic

traffic surges at a US geological survey web site after earthquakes; Wessels [141]

studies the effect of Ken Starr’s report on NALAR web caches; Jung et al. [65]

investigate and compare the properties of flash events and that of denial of service
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(DoS) attacks; Barford et al. [18] analyze high volume traffic anomalies; and Arlitt

et al. [12] study the workload of the 1998 World Cup web site. These studies show

how traffic changes during web hotspots so as to properly identify web hotspots and

predict overload conditions. Distinguishing web hotspots from other high volume

traffic anomalies such as DoS attacks allows the web server to take different actions

in different situations.

Properly measuring workload level and service quality is useful for web hotspot

rescue. Banga and Druschel [16] study how to correctly measure the capacity of a

web server using bursty traffic. The degradation of client-perceived service quality

may suggest a web hotspot. Olshefski et al. [89] describe a mechanism for inferring

client response time at the web server.

7.3 Motivation

Traditionally, traffic predictions [19] are carried out at a single time scale using curve

fitting. A difficult issue here is to choose the right number (denoted as Nh) of history

intervals used for predictions: if Nh is too large, then predictions are based upon less

relevant information in history, whereas if Nh is too small, then predictions are made

from incomplete information; both cases lead to poor predictions. Usually better

predictions can be achieved by varying Nh dynamically, but it is hard to derive the

right Nh.

To avoid the trouble of choosing Nh, we seek a new approach to traffic prediction

by only using traffic information in current interval. More specifically, we try to

correlate how traffic changes within the current interval at a smaller time scale (e.g.,

one tenth of the current time scale) with that at the current time scale. Previous

work on self-similarity [40] has shown that statistical correlations exist for web traffic
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at different time scales. From a first look, it seems that self-similarity is not useful for

traffic predictions since it is a property for stationary processes, whereas predictions

are more useful when traffic volume changes quickly and dramatically. A careful

re-consideration reveals that no matter how quickly a traffic changes, at sufficiently

small time scales, the change between adjacent intervals will be small. Equivalently,

we can regard the mean of traffic volume in adjacent intervals as unchanged and the

real change as variability. For example, for three consecutive intervals, I1, I2, and I3,

we can view that I1 and I2 have the same mean µ1,2, and I2 and I3 have the same mean

µ2,3; but µ1,2 and µ2,3 can be unequal (i.e., I1 and I3 can have different means). In

this way, we can perform predictions by utilizing self-similarity within two adjacent

intervals at sufficiently small time scales. A good fit here is that self-similarity is

measured in terms of statistical correlations between two different time scales, which

are just what we need to predict the upper bound of future traffic volume.

7.4 Prediction Algorithm

We formulate our prediction problem as follows: given a time scale T (such as 100

seconds), we want to predict the upper bound of traffic volume in the next interval

based on traffic information in current interval. Note that the length of each interval

is T . Let vc and vc+1 denote the traffic volume in current interval (Ic) and next

interval (Ic+1), respectively, and dc denote the difference between vc+1 and vc (i.e.,

dc = vc+1 − vc). If we can find an upper bound (denoted as bc) of dc, then we can

estimate that vc+1 < vc + bc. In other words, predicting an upper bound for vc+1

is equivalent to estimating bc. Next, we show how to use statistical properties and

self-similarity to estimate bc.

Let the random variable D(T ) denote the difference of traffic volume between



151

adjacent intervals at time scale T , and µ(T ) and σ(T ) denote the mean and standard

deviation of D(T ), respectively. If we assume that D(T ) follows a normal distribution,

we can estimate the bound of D(T ) using µ(T ) and σ(T ). For example, since about

95% of the samples of D(T ) fall into the range of [µ(T ) − 2σ(T ), µ(T ) + 2σ(T )],

we can say that a sample of D(T ) will be less than µ(T ) + 2σ(T ) with more than

95% probability. In order to derive bc, we divide Ic into n equal sub-intervals with

length of T ′ = T/n, and look at D(T ′) in these n sub-intervals. With a sufficient

number of samples (e.g., n ≥ 10), we can have an estimate for µ(T ′) and σ(T ′). If

assuming that the traffic is self-similar with Hurst parameter H within the period of

Ic and Ic+1, then we have µ(T ) = nHµ(T ′), and σ(T ) = nHσ(T ′). With µ(T ) and

σ(T ), we can estimate bc as µ(T ) + 2σ(T ). Note that here we choose µ(T ) + 2σ(T )

rather than µ(T ) + 3σ(T ) mainly because we want to have a closer upper bound

estimation to avoid unnecessary false alarms. Also note that since our prediction is

based on statistical properties, the predicted upper bound is correct only with a high

probability.

7.5 Parameter Selection

Several parameters affect the prediction performance. The first one is the prediction

interval T . As we use self-similarity to derive statistical correlations between two

different time scales, the mean of traffic volume should be roughly unchanged within

the period of 2T . Thus, our prediction algorithm has an inherent restriction on how far

we can predict into the future. Based on our experimental results described in Section

7.6, usually T should not exceed 100 seconds. The second parameter is the scaling

factor n between the two different time scales T and T ′. As this parameter determines

the number of samples in time scale T ′ that are used for deriving statistical properties,
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n should be no less than 10. The third one is the Hurst parameter H. Since we do not

know the correct H in advance, and using a larger H tends to overestimate whereas

using a smaller H tends to underestimate, the general guidances are as follows: (1)

the burstier the traffic, the larger H [75]; (2) a right H will result in roughly the same

prediction performance when n changes; and (3) use a little bit larger H if not sure,

usually in the range of [0.8, 0.9].

7.6 Experimental Results

To evaluate our prediction algorithm, we applied it to the 1998 World Cup data set

[12], which included 1.35 billion requests made to 30 servers at four different regions

during a period of 92 days. We ran our algorithm for three servers on three days. The

three chosen servers were server5, server41, and server64, which were selected from

three different regions since servers in the same region had very similar traffic curves.

The three chosen days were June 29 (day65), July 7 (day73) and July 8 (day74),

which were among the busiest days in the data set. In each day, we chose a period of

three hours that included a dramatic traffic spike.

We carried out our experiments in three steps. For preparation, we calculated the

number of requests at the following time scales: 1, 2, 5, 10, 12, 15, 18, 20, 30, 40,

50, 60, 100, 120, 150, 180, 200, 300, 400, 600 seconds. In different experiments, we

varied T , n and H to evaluate how they affect predictions. After each experiment,

we calculated the percentage of prediction intervals in which the real traffic volume

falls below the predicted upper bound.

In the first experiment, we fixed n = 10 and H = 0.85, but varied T from 10

to 600 seconds. We got consistent prediction performance across all nine different

server-day combinations. For clarity, we only show the results for the three servers
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Figure 7.1: Prediction results for day74 of the 1998 World Cup data set, where n = 10,
H = 0.85, and the percentage of correct predictions is computed as the percentage of
prediction intervals in which the real traffic volume falls below the predicted upper
bound.

on day74 in Figure 7.1. As we anticipated, the prediction performance changes as T

increases: stays around 95% when T ≤ 100 seconds, degrades slowly to around 90%

when T ∈ (100, 200) seconds, and falls down quickly when T ≥ 200 seconds.

In Figure 7.2, we give the detailed prediction results for server41 on day65, where

T = 100 seconds, n = 10, and H = 0.85. For ease of comparison, we show real traffic

volume, predicted upper bound of increase, and real change altogether in this figure,

from which we can draw two conclusions as follows. First, the real change is below

the predicted upper bound of increase in most cases (more than 95%). Secondly,

the predicted upper bound of increase is relatively small compared with the real

traffic volume. In other words, our predictions can bound the increases with a high

probability of correctness without overestimating the increases too much. In the
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Figure 7.2: Detailed prediction results for server41 on day65 of the 1998 World Cup
data set, where n = 10, H = 0.85, and T = 100 seconds.

future, we will quantify overestimates more precisely.

Since the finest time scale in the data set is 1 second, and a good prediction

interval T ≤ 100 seconds, we have n ∈ [10, 100]. In the second experiment, we fixed

H = 0.85 and T = 100 seconds, but varied n. We predicted using n = 10, 20, 50, 100,

respectively, and got roughly the same results. For example, for server41 on day65, the

three predictions using n = 10, 50, 100 all had 97.2% correctness, while the prediction

using n = 20 had 96.3% correctness. This validates that with a right H, predictions

using different n (within a certain range) are roughly equivalent, and that H = 0.85

appears to be the right value for this data set.

In the last experiment, we fixed T = 100 seconds, but varied both n and H.

Our goal is to determine a right H based on how prediction performance changes

as n increases. Figure 7.3 shows our prediction results for server41 on day65, where
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Figure 7.3: Prediction results for server41 on day65 of the 1998 World Cup data set,
where n = 10, 20, 50, 100, H = 0.5, 0.65, 0.8, 0.85, 0.9, and T = 100 seconds.

n = 10, 20, 50, 100, and H = 0.5, 0.65, 0.8, 0.85, 0.9. From this figure, we can observe

that the percentage of correct predictions increases as H increases. More importantly,

when H = 0.5 or 0.65, the prediction performance degrades as n increases, meaning

that these two H values are too small for this data set. On the other hand, when

H = 0.8, 0.85, or 0.9, the prediction performance is roughly unchanged or goes up

slightly as n increases, meaning that these three H values are fine for this data set.

Also, H = 0.85 seems to be the best choice among them because H = 0.9 tends to

overestimate too much whereas H = 0.8 cannot achieve 95% prediction correctness.

7.7 Summary

This chapter described a web traffic prediction algorithm using a multiple-time-scale

approach. Through our experiments, we have demonstrated that our simple algorithm
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is effective in upper bound prediction for short-term bursty web traffic. This algorithm

provides insight into characterizing traffic of web hotspots, and is useful for web server

overload prevention.
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Chapter 8

Conclusions

This chapter summarizes the thesis, reviews the thesis contributions, and discusses

future work.

8.1 Thesis Summary

This thesis described the techniques we developed for service discovery and web

hotspot rescue, which fall into four categories: enhancements to the Service Location

Protocol, selective anti-entropy for high availability partial replication, DotSlash—an

automated web hotspot rescue system, and web traffic prediction for overload pre-

vention. The focus of this thesis research is to build self-configuring and dynamically

scalable computing systems. Service discovery allows end systems to discover desired

services on network automatically, eliminating administrative configuration. Web

hotspot rescue enables web sites to scale dynamically as needed, handling short-term

dramatic load spikes autonomously without human intervention.

The Service Location Protocol (SLP) [59] is an IETF (Internet Engineering Task

Force) proposed standard for service discovery in IP networks, and it is flexible,
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lightweight, and powerful. To address the challenges in service discovery such as scal-

ability and new discovery scenarios, we choose to enhance SLP instead of designing a

new service discovery system from scratch so as to leverage existing efforts in service

discovery and make our proposed techniques more likely to be used in real applica-

tions. We made four enhancements to SLP [153, 156, 157, 158, 152, 155, 146]: mesh

enhancement that simplifies Service Agent registrations and improves the consistency

of peer Directory Agents, remote service discovery that enables SLP users to discover

services at remote DNS domains, preference filters that facilitate processing of search

results at SLP servers, and global attributes that allow using a single query to search

services across multiple types. These enhancements improve SLP efficiency and scal-

ability, and enable SLP to better support new and advanced discovery scenarios. The

SLP mesh enhancement (mSLP), remote service discovery, and preference filters are

now experimental RFCs (Request for Comments) [157, 156, 158]. We expect that

similar techniques can be applied to other service discovery systems as well.

Anti-entropy [44] is an important mechanism to achieve eventual consistency

among a set of replicas, where an update is accepted by one replica first, and then

the update is propagated asynchronously to the remaining replicas. Traditional anti-

entropy [96, 54] only supports full replication. We enhanced it to support partial

replication by allowing two replicas to selectively reconcile inconsistent data in a

session. Using our proposed selective anti-entropy [147], a replica can choose to rec-

oncile inconsistent data in any number of subsets. When all subsets are chosen,

selective anti-entropy is equivalent to traditional anti-entropy. The main benefit of

selective anti-entropy is that it allows the summary vector mechanism in traditional

anti-entropy to be applicable to partial replication by using safe sessions. As a gener-

alization of traditional anti-entropy, selective anti-entropy is flexible and can support

both full replication and partial replication.
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Web hotspots, also known as flash crowds or the Slashdot effect [4], are short-

term dramatic load spikes that can seriously degrade the service quality of affected

web sites. Web hotspots may trigger a large load increase but only last for a short

period. For such situations, over-provisioning a web site is not only uneconomical

but also difficult since the peak load is hard to predict. To handle web hotspots

effectively, we developed DotSlash [150, 149, 151, 154], a self-configuring and scalable

web hotspot rescue system. DotSlash works autonomously. It uses service discov-

ery to allocate resources dynamically from a server pool distributed globally, and

uses adaptive overload control to automate the whole rescue process. DotSlash is a

cost-effective mechanism for small to medium-sized web sites to handle short-term

dramatic load spikes. As a comprehensive solution, DotSlash enables a web site to

build an adaptive distributed web server system on the fly, replicate application pro-

grams dynamically, and set up distributed query result caching on demand. These

techniques relieve a spectrum of bottlenecks ranging from access network bandwidth

to web servers, application servers, and database servers.

For overload prevention, we need to predict whether the future traffic volume will

exceed the server’s capacity or a preset threshold. Thus, we developed a prediction

algorithm for estimating the upper bound of future web traffic volume [148]. We

employ a multiple-time-scale approach by using traffic information at a smaller time

scale to forecast traffic volume at a larger time scale. Moreover, we utilize traffic

statistical properties other than curve fitting to forecast traffic volume. Our prediction

algorithm provides insight into characterizing traffic of web hotspots, and is useful

for web server overload prevention systems such as DotSlash.
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8.2 Thesis Contributions

This thesis contributes to the area of networking and distributed systems. In par-

ticular, it contributes to the emerging area of autonomic computing systems. We

recapitulate the thesis contributions as follows.

• Enhancements to the Service Location Protocol. We made four en-

hancements to the Service Location Protocol (SLP): mesh enhancement that

simplifies Service Agent registrations and improves the consistency of peer Di-

rectory Agents, remote service discovery that enables SLP users to discover

services at remote DNS domains, preference filters that facilitate processing of

search results at SLP servers, and global attributes that allow using a single

query to search services across multiple types. These enhancements improve

SLP efficiency and scalability, and enable SLP to better support new and ad-

vanced discovery. The SLP mesh enhancement (mSLP), remote service discov-

ery, and preference filters are now experimental RFCs (Request for Comments)

[157, 156, 158]. We expect that similar techniques can be applied to other

service discovery systems as well.

• Selective anti-entropy. We developed selective anti-entropy [147], a generic

mechanism for high availability partial replication. Traditional anti-entropy [96,

54] only supports full replication. We enhanced it to support partial replication

by allowing two replicas to selectively reconcile inconsistent data in a session.

As a generalization of traditional anti-entropy, selective anti-entropy is flexible

and applicable to both full replication and partial replication.

• DotSlash—An automated web hotspot rescue system. We developed

DotSlash [150, 151, 154, 144], a self-configuring and scalable rescue system for
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handling web hotspots effectively. DotSlash works autonomously. It uses service

discovery to allocate resources dynamically from a server pool distributed glob-

ally, and uses adaptive overload control to automate the whole rescue process.

DotSlash is a cost-effective mechanism for small to medium-sized web sites to

handle short-term dramatic load spikes. As a comprehensive solution, DotSlash

enables a web site to build an adaptive distributed web server system on the

fly, replicate application programs dynamically, and set up distributed query

result caching on demand. These techniques relieve a spectrum of bottlenecks

ranging from access network bandwidth to web servers, application servers, and

database servers.

• Web traffic prediction for overload prevention. We developed a pre-

diction algorithm for estimating the upper bound of future web traffic volume

[148], which is simple and effective for short-term bursty web traffic. We em-

ploy a multiple-time-scale approach, and utilize traffic statistical properties to

forecast traffic volume. Our prediction algorithm provides insight into charac-

terizing traffic of web hotspots, and is useful for web server overload prevention.

8.3 Future Work

For the research work described in this thesis, there are several interesting subjects

worthy of further investigation.

• Location-based service discovery. Currently, services are discovered mainly

based on network proximity using multicast and based on domain (e.g., admin-

istrative domain and application domain) specific registries. Another useful

dimension is to discover services based on proximity of geographic locations
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[114, 11, 76], which is not well supported by existing network infrastructure. In

general, there are two types of geographic information: geospatial coordinates

(longitude/latitude) and civic addresses (country, state, county, etc.). To build

geographic information infrastructure in a distributed and scalable way, a mech-

anism similar to DNS may be used. To support location-based service discovery

in SLP, we can define a global attribute “service-geographic-location” and as-

sociate a handler GeoLoc with it. A service provides its geographic location in

its registration, and a client specifies its geographic location via a preference

filter. The proximity of geographic locations between a client and a service

is calculated by the GeoLoc handler, which may need to look up a geographic

location database.

• Hotspot rescue for different Internet servers. DotSlash is an automated

hotspot rescue system for handling short-term dramatic load spikes effectively.

Currently, DotSlash focuses on regular web sites that have a majority of small

web objects with a size in the order of kilobytes. For these web sites, we use

an on-demand policy for replication, and a weighted round robin policy for

request redirection. To perform hotspot rescue for large objects with a size in

the order of megabytes (or even gigabytes) such as software packages and MP3

music files, we need to incorporate other polices in request redirection such as

locality of requested objects at rescue servers and proximity between the client

and rescue servers. Also, we need to incorporate other polices in replication

such as partitioning the set of objects to be replicated among rescue servers. So

far, we discuss hotspot rescue in the context of web servers; it is an interesting

issue to apply similar techniques to other Internet servers such as FTP servers,

game servers, and SIP proxy servers [117].
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• Different usage models for DotSlash. We outlined three usage models for

DotSlash in Section 4.3.1, namely open communities, closed communities, and

flood-insurance closed communities. Currently, our prototype system [144] only

supports open communities. We can add security and insurance mechanisms to

DotSlash to support the other two usage models. First, we can add authentica-

tion to DotSlash to support closed communities. Authentication is needed for

accepting service registrations, choosing rescue server candidates, and accepting

rescue requests. Secondly, in addition to authentication, we can add tokens to

DotSlash to support flood-insurance closed communities. An authorized web

server can obtain tokens from the community authority by paying an insurance

premium. To secure a rescue relationship, the origin server needs to transfer

one token to the rescue server.
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