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Abstract

This paper presents a prediction algorithm for estimating the upper bound of future Web traffic volume. Unlike traditional
traffic predictions that are performed at a single time scale using curve fitting, we employ a multiple time scale approach and
utilize traffic statistical properties to do forecasting. We have applied our prediction algorithm to the 1998 World Cup data set.
Experiments show that it is effective for short term traffic bound predictions, applicable to bursty traffic, and useful for Web
server overload prevention.
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1 Introduction

To provide expected quality of services, a Web site needs to predict its future traffic volume: long term predictions (e.g., in
months or years) are useful for capacity planning, while short term predictions (e.g., in seconds or minutes) are useful for
overload prevention.

As Web has a large number of potential users, a Web site may receive highly bursty requests and get overwhelmed, which is
known as the flash crowd phenomenon. When a Web server becomes overloaded, its service quality will be seriously degraded:
its users will perceive longer delays or even lose services. To prevent overload, capacity planning is not sufficient since the
real traffic volume may exceed the planned capacity. Moreover, provisioning according to the peak traffic volume or even
over-provisioning is not cost effective since Web traffic has a large variance. To better handle overload, dynamic load shedding
and migration are needed, such as the Hotspot Rescue Service [2]. Short term traffic predictions are important for a server to
take needed actions in advance when it anticipates an approaching peak load which is likely to exceed its capacity or a preset
threshold.



Note that for overload prevention, we only need to predict an upper bound of the future traffic volume. More precisely,
whether the future traffic volume will exceed the server’s capacity or a preset threshold. As long as the future traffic volume is
below the predicted bound, the exact volume does not matter much here. Also note that for overload prevention, over-prediction
has a less penalty than under-prediction because a false alarm only incurs unnecessary overheads, but a miss prediction of an
excess traffic can cause the server being overloaded.

In this paper, we describe a prediction algorithm for estimating the upper bound of future Web traffic volume. We employ a
multiple time scale approach by using traffic information at a smaller time scale to forecast traffic volume at a larger time scale.
Furthermore, we utilize traffic statistical properties other than curve fitting to do forecasting. The rest of this paper is organized
as follows: we give the motivation in Section 2, describe our prediction algorithm in Section 3, discuss the parameter selection
in Section 4, present experiment results in Section 5, and conclude in Section 6.

2 Motivation

Traditionally, traffic predictions are carried at a single time scale using curve fitting. A difficult issue here is to choose the
right number (denoted asNh) of history intervals used for predictions: ifNh is too large, then predictions are based upon less
relevant information in history, whereas ifNh is too small, then predictions are made from incomplete information; both cases
lead to poor predictions. Usually better predictions can be achieved by varyingNh dynamically, but it is hard to derive the
correctNh.

To avoid the trouble of choosingNh, we seek a new approach to traffic predictions by only using traffic information in
current interval. More specifically, we try to correlate how traffic changes within current interval at a smaller time scale (e.g.,
one tenth of current time scale) with that at current time scale. Previous work on self similarity [3] has shown that statistical
correlations exist for Web traffic at different time scales. From a first look, it seems that self similarity is not useful for traffic
predictions since it is a property for stationary processes, whereas predictions are more useful when traffic volume changes
quickly and dramatically. A careful re-consideration reveals that no matter how quickly a traffic changes, at sufficiently small
time scales, the change between adjacent intervals will be small. Equivalently, we can regard the mean of traffic volume in
adjacent intervals as unchanged and the real change as variability. Note that for three consecutive intervals:I1, I2, andI3, we
can view thatI1 andI2 have the same meanµ1,2, andI2 andI3 have the same meanµ2,3; butµ1,2 andµ2,3 can be unequal (i.e.,
I1 andI3 can have different means). In this way, we can perform predictions by utilizing self similarity within two adjacent
intervals at sufficiently small time scales. A good fit here is that self similarity is measured in terms of statistical correlations
between two different time scales, which are just what we need to predict the upper bound of future traffic volume.

3 Prediction Algorithm

We formulate our prediction problem as follows: given a time scaleT (such as100 seconds), we want to predict the upper
bound of traffic volume in next interval based on traffic information in current interval. Note that the length of each interval
is T . Let vc andvc+1 denote the traffic volume in current interval (Ic) and next interval (Ic+1), respectively, anddc denote
the difference betweenvc+1 andvc (i.e., vc+1 = vc + dc). If we can find an upper bound (denoted asbc) of dc, then we can
estimate thatvc+1 < vc + bc. In other words, predicting an upper bound forvc+1 is equivalent to estimatingbc. Next we show
using statistical properties and self similarity to estimatebc.

Let random variableD(T ) denote the difference of traffic volume between adjacent intervals at time scaleT , andµ(T ) and
σ(T ) denote the mean and standard deviation ofD(T ), respectively. If assuming thatD(T ) follows normal distribution, we
can estimate the bound ofD(T ) usingµ(T ) andσ(T ). For example, since about95% samples ofD(T ) fall into the range of
[µ(T )− 2 ∗ σ(T ), µ(T ) + 2 ∗ σ(T )], we can say that a sample ofD(T ) will be less thanµ(T ) + 2 ∗ σ(T ) with more than95%
probability. In order to derivebc, we divideIc into n equal sub-intervals with length ofT ′ = T/n, and look atD(T ′) in these
n intervals. With a sufficient number of samples (e.g.,n ≥ 10), we can have an estimation forµ(T ′) andσ(T ′). If assuming
that the traffic is self-similar with Hurst parameterH within the period ofIc andIc+1, then we haveµ(T ) = nH ∗ µ(T ′), and
σ(T ) = nH ∗ σ(T ′). With µ(T ) andσ(T ), we can estimatebc asµ(T ) + 2 ∗ σ(T ). Note that here we chooseµ(T ) + 2 ∗ σ(T )
rather thanµ(T )+3∗σ(T ) mainly because we want to have a closer upper bound estimation to avoid unnecessary false alarms.
Also note that since our prediction is based on statistical properties, the predicted upper bound is correct only with a high



probability.

4 Parameter Selection

Several parameters affect the prediction performance. The first one is the prediction intervalT . As we use self similarity to
derive statistical correlations between two different time scales, the mean of traffic volume should be roughly unchanged within
the period of2 ∗ T . UsuallyT should not exceed100 seconds. The second parameter is the scaling factorn between the two
different time scalesT andT ′. As this parameter decides the number of samples in time scaleT ′ used for deriving statistical
properties,n should be no less than10. The third one is the Hurst parameterH . Since we do not know the correctH in advance,
and using a largerH tends to over estimate whereas using a smallerH tends to under estimate, the general guidances are as
follows: (1) the burstier the traffic, the largerH [4]; (2) a rightH will result in roughly the same prediction performance when
n changes; and (3) use a little bit largerH if not sure, usually in the range of[0.8, 0.9].

5 Experiment Results

To evaluate our prediction algorithm, we apply it to the 1998 World Cup data set [1], which includes1.35 billion requests
made to30 servers at four different regions during a period of92 days. We run our prediction algorithm for three servers on
three days. The three chosen servers are server5, server41 and server64, which are selected from three different regions since
servers in the same region have very similar traffic curves. The three chosen days are June 29 (day65), July 7 (day73) and July
8 (day74), which are among the busiest days in the data set. In each day, we choose a period of three hours that includes a
dramatic traffic spike.

We carry experiments in three steps. For preparation, we calculate the number of requests at the following time scales (in
second):1, 2, 5, 10, 12, 15, 18, 20, 30, 40, 50, 60, 100, 120, 150, 180, 200, 300, 400, 600. In different experiments, we varyT ,
n andH to evaluate their effects on predictions. After each experiment, we calculate the percentage of prediction intervals in
which the real traffic volume fall below the predicted upper bound.

In the first experiment, we fixn = 10 andH = 0.85, but varyT from 10 to 600 seconds. We get consistent prediction
performance across all nine different server-day combinations. For clarity, we only show the results for the three servers on
day74 in Figure 1. As we anticipate, prediction performance changes asT increases: around95% whenT ≤ 100 seconds,
slowly degraded to around90% whenT ∈ (100, 200) seconds, and down quickly whenT ≥ 200 seconds. We show the
detailed prediction results for server41 on day65 in Figure 2.

Since the finest time scale in the data set is1 second, and a good prediction intervalT ≤ 100 seconds, we haven ∈ [10, 100].
In the second experiment, we fixH = 0.85 andT = 100, but varyn. We predict usingn = 10, 20, 50, 100, respectively, and
get roughly the same results. For example, for server41 on day65, the three predictions usingn = 10, 50, 100 all have a97.2%
performance, while the prediction usingn = 20 has a96.3% performance with just one more miss prediction. This validates
that with a rightH , predictions using differentn (within a certain range) are roughly equivalent, and thatH = 0.85 appears to
be the right value for this data set.

In the last experiment, we fixT = 100, but varyn andH . This is to determine a rightH based on the following property:
increasingn will raise the prediction performance if we are using a largerH , but lower the prediction performance if we are
using a smallerH .

6 Conclusion

In this paper, we described a prediction algorithm for estimating the upper bound of future Web traffic volume, in which we
employ a multiple time scale approach and utilize traffic statistical properties to do forecasting. We evaluated three algorithm
parameters and showed that our algorithm is simple, effective for short term traffic bound predictions, applicable to bursty
traffic, and useful for Web server overload prevention.
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Figure 1: Prediction performance for day74
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Figure 2: Detailed prediction results for server41 on day65
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