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Abstract. DotSlash allows different web sites to form a mutual-aid community,
and use spare capacity in the community to relieve web hotspots experienced
by any individual site. As a rescue system, DotSlash intervenes when a web site
becomes heavily loaded, and is phased out once the workload returns to normal.
It aims to complement the existing web server infrastructure to handle short-term
load spikes effectively. DotSlash is self-configuring, scalable, cost-effective, easy
to use, and transparent to clients. It targets small web sites, although large web
sites can also benefit from it. We have implemented a prototype of DotSlash on
top of Apache. Experiments show that using DotSlash a web server can increase
the request rate it supported and the data rate it delivered to clients by an order
of magnitude, even if only HTTP redirect is used. Parts of this work may be
applicable to other services such as Grid computational services.

1 Introduction

As more web sites experience a request load that can no longer be handled by a single
server, using multiple servers to serve a single site becomes a widespread approach. Tra-
ditionally, a distributed web server system has used a fixed number of dedicated servers
based on capacity planning, which works well if the request load is relatively consistent
and matches the planned capacity. However, web requests could be very bursty. A well-
identified problem web hotspots (also known as flash crowds or the Slashdot effect [2])
may trigger a large load increase but only last for a short time [14, 24]. For such situa-
tions, overprovisioning a web site is not only uneconomical but also difficult since the
peak load is hard to predict [16].

To handle web hotspots effectively, we advocate dynamic allocation of server ca-
pacity from a server pool distributed globally because the access link of a local network
could become a bottleneck. As an example of global server pools, content delivery net-
works (CDNs) [27] have been used by large web sites, but small web sites often cannot
afford the cost particularly since they may need these services very rarely. We seek a
more cost-effective mechanism. As different web sites (e.g., different types or in dif-
ferent locations) are less likely to experience their peak request loads at the same time,
they could form a mutual-aid community, and use spare capacity in the community to
relieve web hotspots experienced by any individual site [10]. Based on this observa-
tion, we designed DotSlash which allows a web site to build an adaptive distributed
? This work was supported in part by the National Science Foundation (ANI-0117738).



web server system on the fly to expand its capacity by utilizing spare capacity at other
sites. Using DotSlash, a web site not only has a fixed set of origin servers, but also has
a changing set of rescue servers drafted from other sites. A web server allocates and
releases rescue servers based on its load conditions. The rescue process is completely
self-managing and transparent to clients.

DotSlash does not aim to support a request load that is persistently higher than a web
site’s planned capacity, but rather to complement the existing web server infrastructure
to handle short-term load spikes effectively. We envision a spectrum of mechanisms
for web sites to handle load spikes. Infrastructure-based approaches should handle the
request load sufficiently in most cases (e.g., 99.9% of time), but they might be too
expensive for short-term enormous load spikes and insufficient for unexpected load in-
creases. For these cases, DotSlash intervenes so that a web site can support its request
load in more cases (e.g., 99.999% of time). In parallel, a web site can use service degra-
dation [1] such as turning off dynamic content and serving a trimmed version of static
content under heavily-loaded conditions. As the last resort, a web site can use admission
control [31] to reject a fraction of requests and only admit preferred clients.

DotSlash has the following advantages. First, it is self-configuring in that service
discovery [13] is used to allow servers of different web sites to learn about each other
dynamically, rescue actions are triggered automatically based on load conditions, and a
rescue server can serve the content of its origin servers on the fly without the need of
any advance configuration. Second, it is scalable because a web server can expand its
capacity as needed by using more rescue servers. Third, it is very cost-effective since
it utilizes spare capacity in a web server community to benefit any participating server,
and it is built on top of the existing web server infrastructure, without incurring any
additional hardware cost. Fourth, it is easy to use because standard DNS mechanisms
and HTTP redirect are used to offload client requests from an origin server to its rescue
servers, without the need of changing operating system or DNS server software. An add-
on module to the web server software is sufficient to support all needed functions. Fifth,
it is transparent to clients since it only uses server-side mechanisms. Client browsers
remain unchanged, and client bookmarks continue to work. Finally, an origin server
has full control of its own rescue procedure, such as how to choose rescue servers and
when to offload client requests to rescue servers.

DotSlash targets small web sites, although large web site can also benefit from it.
We focus on load migration for static web pages in this paper, and plan to investigate
load migration for dynamic content in the next stage of this project. Parts of this work
may be applicable to other services such as Grid computational services [12]. The re-
mainder of this paper is organized as follows. We discuss related work in Section 2,
give an overview of DotSlash in Section 3, present DotSlash design, implementation
and evaluation in Section 4, 5 and 6, respectively, and conclude in Section 7.

2 Related Work

Caching [29] provides many benefits for web content retrieval, such as reducing band-
width consumption and client-perceived latency. Caching may appear at several differ-
ent places, such as client-side proxy caching, intermediate network caching, and server-



side reverse caching, many of which are not controlled by origin web servers. DotSlash
uses caching at rescue servers to relieve the load spike at an origin server, where caching
is set up on demand and fully controlled by the origin server.

CDN [27] services deliver part or all of the content for a web site to improve the
performance of content delivery. As an infrastructure-based approach, CDN services are
good for reinforcing a web site in a long run, but less efficient for handling short-term
load spikes. Also, using CDN services needs advance configurations such as contracting
with a CDN provider and changing the URIs of offloading objects (e.g., Akamaized
[3]). As an alternative mechanism to CDN services, DotSlash offers cost-effective and
automated rescue services for better handling short-term load spikes.

Distributed web server systems are a widespread approach to support high request
loads and reduce client-perceived delays. These systems often use replicated web servers
(e.g., ScalaServer [5] and GeoWeb [9]), with a focus on load balancing and serving a
client request from the closest server. In contrast, DotSlash allows an origin server to
build a distributed system of heterogeneous rescue servers on demand so as to relieve
the heavily-loaded origin server. DC-Apache [17] supports collaborations among het-
erogeneous web servers. However, it relies on static configuration to form collaborat-
ing server groups, which limits its scalability and adaptivity to changing environments.
Also, DC-Apache incurs a cost for each request by generating all hyperlinks dynami-
cally. DotSlash addresses these issues by forming collaborating server groups dynam-
ically, and using simpler and widely applicable mechanisms to offload client requests.
Backslash [25] suggests using peer-to-peer (P2P) overlay networks to build distributed
web server systems and using distributed hash table to locate resources.

The Internet Engineering Task Force (IETF) has developed a model for content
internetworking (CDI) [11, 23]. The DotSlash architecture appears to be a special case
of the CDI architecture, where each web server itself is a content network. However,
the CDI framework does not address the issue of using dynamic server allocation and
dynamic rate adjustment based on feedback to handle short-term load spikes, which is
the main focus of DotSlash.

Client-side mechanisms allow clients to help each other so as to alleviate server-
side congestion and reduce client-perceived delays. An origin web server can mediate
client cooperation by redirecting a client to another client that has recently downloaded
the URI, e.g., Pseudoserving [15] and CoopNet [20]. Clients can also form P2P overlay
networks and use search mechanisms to locate resources, e.g., PROOFS [26] and Bit-
Torrent [7]. Client-side P2P overlay networks have advantages in sharing large and pop-
ular files, which can reduce request loads at origin web servers. In general, client-side
mechanisms scale well as the number of clients increases, but they are not transparent
to clients, which are likely to prevent widespread deployment.

Grid technologies allow “coordinated resource sharing and problem solving in dy-
namic, multi-institutional organizations” [12], with a focus on large-scale computa-
tional problems and complex applications. The sharing in Grid is broader than sim-
ply file exchange; it can involve direct access to computers, software, data, and other
resources. In contrast, DotSlash employs inter-web-site collaborations to handle web
hotspots effectively, with an emphasis on overload control at web servers and dissemi-
nating popular files to a large number of clients.
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Fig. 1. An example for DotSlash rescue relationships

3 DotSlash Overview

DotSlash uses a mutual-aid rescue model. A web server joins a mutual-aid community
by registering itself with a DotSlash service registry, and contributing its spare capacity
to the community. In case of being heavily loaded, a participating server discovers and
uses spare capacities at other servers in its community via DotSlash rescue services. In
our current prototype, DotSlash is intended for a cooperative environment, and thus no
payment is involved in obtaining rescue services.

In DotSlash, a web server is in one of the following states at any time: SOS state if
it gets rescue services from others, rescue state if it provides rescue services to others,
and normal state otherwise. These three states are mutually exclusive: a server is not
allowed to get a rescue service as well as to provide a rescue service at the same time.
Using this rule can avoid complex rescue scenarios (e.g., a rescue loop where S1 re-
quests a rescue service from S2, S2 requests a rescue service from S3, and S3 requests
a rescue service from S1), and keep DotSlash simple and robust without compromising
scalability. Throughout this paper, we use the notation origin server and rescue server
in the following way. When two servers set up a rescue relationship, the one that ben-
efits from the rescue service is the origin server, and the one that provides the rescue
service is the rescue server. Fig. 1 shows an example of rescue relationships for eight
web servers, where an arrow from Sy to Sx denotes that Sy provides a rescue service
to Sx. In this figure, S1 and S2 are origin servers, S3, S4, S5 and S6 are rescue servers,
and S7 and S8 have not involved themselves with rescue services.

3.1 Rescue Examples

In DotSlash, an origin server uses HTTP redirect and DNS round robin to offload client
requests to its rescue servers, and a rescue server serves as a reverse caching proxy for
its origin servers. There are four rescue cases: (1) HTTP redirect (at the origin server)
and cache miss (at the rescue server), (2) HTTP redirect and cache hit, (3) DNS round
robin and cache miss, and (4) DNS round robin and cache hit. We show examples for
case 1 and 4 next; case 2 and 3 can be derived similarly.

In Fig. 2, the origin server is www.origin.com with IP address 1.2.3.4 (referred to as
So), and the rescue server is www.rescue.com with IP address 5.6.7.8 (referred to as Sr).
Sr has assigned an alias www-vh1.rescue.com to So, and So has added Sr’s IP address
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Fig. 2. Rescue examples

to its round robin local DNS. Fig. 2(a) gives an example for case 1, where client C1

follows a ten-step procedure to retrieve http://www.origin.com/index.html:

1. C1 resolves So’s domain name www.origin.com;
2. C1 gets So’s IP address 1.2.3.4;
3. C1 makes an HTTP request to So using http://www.origin.com/index.html;
4. C1 gets an HTTP redirect from So as http://www-vh1.rescue.com/index.html;
5. C1 resolves Sr’s alias www-vh1.rescue.com;
6. C1 gets Sr’s IP address 5.6.7.8;
7. C1 makes an HTTP request to Sr using http://www-vh1.rescue.com/index.html;
8. Sr makes a reverse proxy request to So using http://www.origin.com/index.html

because of a cache miss for http://www-vh1.rescue.com/index.html;
9. So sends the requested file to Sr;

10. Sr caches the requested file, and returns the file to C1.

Fig. 2(b) gives an example for case 4, where client C2 follows a four-step procedure
to retrieve http://www.origin.com/index.html:

1. C2 resolves So’s domain name www.origin.com;
2. C2 gets Sr’s IP address 5.6.7.8 due to DNS round robin at So’s local DNS;
3. C2 makes an HTTP request to Sr using http://www.origin.com/index.html;
4. C2 gets the requested file from Sr because of a cache hit.

4 DotSlash Design

The main focus of DotSlash is to allow a web site to build an adaptive distributed web
server system in a fully automated way. DotSlash consists of dynamic virtual hosting,
request redirection, workload monitoring, rescue control, and service discovery.

4.1 Dynamic Virtual Hosting

Dynamic virtual hosting allows a rescue server to serve the content of its origin servers
on the fly. Existing virtual hosting (e.g., Apache [4]) needs advance configurations:
registering virtual host names in DNS, creating DocumentRoot directories, and adding



directives to the configuration file to map virtual host names to DocumentRoot directo-
ries. DotSlash handles all these configurations dynamically.

A rescue server generates needed virtual host names dynamically by adding a se-
quence number component to its configured name, e.g., host-vh<seqnum>.domain for
host.domain, where <seqnum> is monotonically increasing. Virtual host names are
registered using A records via dynamic DNS updates [28]. We have set up a domain
dot-slash.net that accepts virtual host name registrations. For example, www.rescue.com
can obtain a unique host name foo in dot-slash.net, and register its virtual host names
as foo-vh<seqnum>.dot-slash.net. A rescue server assigns a unique virtual host name
to each of its origin servers, which is used in the HTTP redirects issued from the corre-
sponding origin server.

As a rescue server, www.rescue.com may receive requests using three different kinds
of Host header fields: its configured name www.rescue.com, an assigned virtual host
name such as www-vh1.rescue.com, or an origin server name such as www.origin.com.
Its own content is requested in the first case, whereas the content of its origin servers
is requested in the last two cases. Moreover, the second case is due to HTTP redirects,
and the third case is due to DNS round robin. A rescue server maintains a table to map
assigned virtual host names to its origin servers. To map the Host header field of a
request, a rescue server checks both the virtual host name and the origin server name in
each mapping entry; if either one matches, the origin server name is returned. Due to
client-side caching, web clients may continue to request an origin server’s content from
its old rescue servers. To handle this situation properly, a rescue server does not remove
a mapping entry immediately after the rescue service has been terminated, but rather
keeps the mapping entry for a configured time such as 24 hours, and redirects such a
request back to the corresponding origin server via an HTTP redirect.

A rescue server works as a reverse caching proxy for its origin servers. For exam-
ple, when www.rescue.com has a cache miss for http://www-vh1.rescue.com/index.html,
it maps www-vh1.rescue.com to www.origin.com, and issues a reverse proxy request
for http://www.origin.com/index.html. Using reverse caching proxy offers a few advan-
tages. First, as files are replicated on demand, the origin server incurs low cost since it
does not need to maintain states for replicated files and can avoid transferring files that
are not requested at the rescue server. Second, as proxy and caching are functions sup-
ported by most web server software, it is simple to use reverse proxying to get needed
files, and use the same caching mechanisms to cache proxied files and local files.

4.2 Request Redirection

Request redirection [8, 6, 30] allows an origin server to offload client requests to its res-
cue servers, which involves two aspects: the mechanisms to offload client requests and
the policies to choose a rescue server among multiple choices. A client request can be
redirected by the origin server’s authoritative DNS, the origin server itself, or a redirec-
tor at transport layer (content-blind) or application layer (content-aware). Redirection
policies can be based on load at rescue servers, locality of requested files at rescue
servers, and proximity between the client and rescue servers.

DotSlash uses two mechanisms for request redirections: DNS round robin at the
first level for crude load distribution, and HTTP redirect at the second level for fine-



grained load balancing. DNS round robin can reduce the request arrival rate at the origin
server, and HTTP redirect can increase the service rate of the origin server because an
HTTP redirect is much cheaper to serve than the original content. Both mechanisms can
increase the origin server’s throughput for request handling.

We investigated three options for constructing redirect URIs: IP address, virtual
directory, and virtual host name. Using the rescue server’s IP address can save the
client’s DNS lookup time for the rescue server’s name, but the rescue server is un-
able to tell whether a request is for itself or for one of its origin servers. Using a virtual
directory such as /dotslash-vh, http://www.origin.com/index.html can be redirected as
http://www.rescue.com/dotslash-vh/www.origin.com/index.html. The problem is that it
does not work for embedded relative URIs. DotSlash uses virtual host names, which al-
lows proper virtual hosting at the rescue server, and works for embedded relative URIs.

In terms of redirection policies, DotSlash uses standard DNS round robin without
modifying the DNS server software, and uses weighted round robin (WRR) for HTTP
redirects, where the weight is the allowed redirect data rate assigned by each rescue
server. Due to factors such as caching and embedded relative URIs, the redirect data
rate seen by the origin server may be different from that served by the rescue server. For
simplicity, an origin server only controls the data rate of redirected files, not including
embedded objects such as images, and relies on a rate feedback from the rescue server
to adjust its redirect data rate (see Section 4.4 for details).

Redirection needs to be avoided for communications between two collaborating
servers and for requests of getting server status information. On one hand, a request
sender (a web client or a web server) needs to bypass DNS round robin by using the
server’s IP address directly in the following cases: when a server initiates a rescue con-
nection to another server, when a rescue server makes a reverse proxy request to its
origin server, and when a client retrieves a server’s status information. On the other
hand, a request receiver (i.e., a web server) needs to avoid performing an HTTP redi-
rect if the request is from a rescue server, or if the request is for the server’s status
information.

4.3 Workload Monitoring

Workload monitoring allows a web server to react quickly to load changes. Major Dot-
Slash parameters are summarized in Table 1. We measure the utilization of each re-
source at a web server separately. According to a recent study [20], network bandwidth
is the most constrained resource for most web sites during hotspots. We focus on mon-
itoring network utilization ρn in this paper. We use two configurable parameters, lower
threshold ρl

n and upper threshold ρu
n, to define three regions for ρn: lightly loaded re-

gion [0, ρl
n), desired load region [ρl

n, ρu
n], and heavily loaded region (ρu

n, 100%]. Fur-
thermore, we define a reference utilization ρ̂n as (ρl

n + ρu
n)/2.

In DotSlash, we monitor outbound HTTP traffic within a web server, without relying
on an external module to monitor traffic on the link. We assume there is no significant
other traffic besides HTTP at a web server, and assume a web server has a symmetric
link or its inbound bandwidth is greater than its outbound bandwidth, which is true,
for example, for a web server behind DSL. Since a web server’s outbound data rate



Table 1. Major DotSlash parameters, where type C is for configurable parameters, type O is for
measured outputs, type I is for control inputs, and type D is for derived parameters

Parameter Description Type
ρl

n and ρu

n lower and upper threshold for network utilization, default 50% and 75% C
λm

d maximum data rate (kB/s) for outbound HTTP traffic C
τ control interval, default 1 second C
α used in exponentially weighted moving average filter, default 0.5 C
λd real data rate (kB/s) of outbound HTTP traffic O
λrd real redirect data rate (kB/s) O
λa

rd allowed redirect data rate (kB/s) I
Pr redirect probability I
ρn network utilization, ρn = λd/λm

d D
ρ̂n reference network utilization, ρ̂n = (ρu

n + ρl

n)/2 D
λ̂d reference data rate (kB/s), λ̂d = ρ̂nλm

d D
β adjustment factor for control inputs, β = ρn/ρ̂n D

is normally greater than its inbound data rate, it should be sufficient to only monitor
outbound HTTP traffic.

Due to header overhead (such as TCP and IP headers) and retransmissions, the
HTTP traffic rate monitored by DotSlash is less than the real traffic rate on the link.
Since the header overhead is relatively constant and other overheads are usually small,
to simplify calculation, we use a configurable parameter λm

d to denote the maximum
data rate for outbound HTTP traffic, where λm

d = BU , B is the network bandwidth,
and U is the percentage of bandwidth that is usable for HTTP traffic. We perform a
special accounting for HTTP redirects because they may account for a large percentage
of HTTP responses and their header overhead is large compared to their small sizes. For
an HTTP redirect response of n bytes, its accounting size Ar = (n+O)U bytes, where
O is the header overhead. A web server sends five TCP packets for each HTTP redirect:
one for establishing the TCP connection, one for acknowledging the HTTP request, one
for sending the HTTP response, and two for terminating the TCP connection. The first
TCP header (SYN ACK) is 40 bytes, and the rest four TCP headers are 32 bytes each.
Thus, O = (40 + 32 ∗ 4) + 20 ∗ 5 + (14 + 4) ∗ 5 = 358 bytes, which includes the TCP
and IP headers, and the Ethernet headers and trailers.

4.4 Rescue Control

Rescue control allows a web server to tune its resource utilization by using rescue ac-
tions that are triggered automatically based on load conditions. To control ρn within
the desired load region [ρl

n, ρu
n], overload control actions are triggered if ρn > ρu

n, and
under-load control actions are triggered if ρn < ρl

n. To control the utilization of multi-
ple resources, overload control actions are triggered if any resource is heavily loaded,
and under-load control actions are triggered if all resources are lightly loaded.

Origin servers and rescue servers use different control parameters. An origin server
controls the redirect probability Pr by increasing Pr if ρn > ρu

n and decreasing Pr if



ρn < ρl
n, whereas a rescue server controls the allowed redirect data rate λa

rd for each
of its origin servers by decreasing λa

rd if ρn > ρu
n and increasing λa

rd if ρn < ρl
n. An

origin server should ensure the real redirect data rate λrd ≤ λa
rd, but a rescue server

may experience λrd > λa
rd.

We use the following control strategies. A configurable parameter τ denotes the
control interval, which is the smallest time unit for performing workload monitoring and
rescue control. Other time intervals are specified as a multiple of the control interval.
To handle stochastics, we apply an exponentially weighted moving average filter to ρn,
Pr and λa

rd. Using ρn as an example, ρn(k) = αρn(k − 1) + (1 − α)ρn(k), where
ρn(k) is the current raw measurement, ρn(k) is the filtered value of ρn(k), ρn(k − 1)
is the previous filtered value, and α is a configurable parameter with a default value
0.5. If multiple rescue server candidates are available, the one with the largest rescue
capacity should be used first. This policy can help an origin server to keep the number
of its rescue servers as small as possible. Minimizing the number of rescue servers can
reduce their cache misses, and thus reduce the data transfers at the origin server.

The DotSlash rescue protocol (DSRP) is an application-level request-response pro-
tocol using single-line pure text messages. A request has a command string (starting
with a letter) followed by optional parameters, whereas a response has a response code
(three digits) followed by the response string and optional parameters. DSRP defines
three requests: SOS for initiating a rescue relationship, RATE for adjusting a redirect
data rate, and SHUTDOWN for terminating a rescue relationship. An SOS request is
always sent by an origin server, and a RATE request is always sent by a rescue server,
but a SHUTDOWN request may be sent by an origin server or a rescue server. To initiate
a rescue relationship, an origin server sends an SOS request to a chosen rescue server
candidate. The request has the following parameters: the origin server’s fully qualified
domain name, its IP address, and its port number for web requests. When a web server
receives an SOS request, it can accept the request by sending a “200 OK” response or
reject the request by sending a “403 Reject” response. A “200 OK” response has the
following parameters: a unique alias of the rescue server assigned to the origin server,
the rescue server’s IP address, the rescue server’s port number for web requests, and the
allowed redirect data rate that the origin server can offload to the rescue server.

Fig. 3 summarizes DotSlash rescue actions and state transitions. We describe rescue
actions in each state next. The normal state has two rescue actions: initial allocation and
initial rescue. For the first case, if a web server is heavily loaded (i.e., ρn > ρu

n), then
it needs to allocate its first rescue server, set Pr to 0.5, and switch to the SOS state. For
the second case, if a web server receives a rescue request and it is lightly loaded (i.e.,
ρn < ρl

n), then it can accept the rescue request, set λa
rd to (ρ̂n − ρn)λm

d or a smaller
value determined by a rate allocation policy, and switch to the rescue state.

The SOS state has four rescue actions: increase Pr, additional allocation, decrease
Pr, and release. For the first case, if an origin server is heavily loaded and it has unused
redirect capacity (i.e., λrd < λa

rd), then it needs to increase Pr until Pr reaches 1.
For the second case, if an origin server is heavily loaded and it has run out of redirect
capacity (i.e., λrd equals λa

rd), then it needs to allocate an additional rescue server so as
to increase its redirect capacity. For the third case, if an origin server is lightly loaded
and it still redirects requests to rescue servers (i.e., Pr > 0), then it needs to decrease
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Fig. 3. DotSlash rescue actions and state transitions

Pr until Pr reaches 0. For the last case, if an origin server has been lightly loaded and
has not redirected requests to rescue servers (i.e., Pr is 0) for a configured number of
consecutive control intervals, then it needs to release all rescue servers. Fig. 4 gives
the algorithm for adjusting Pr at an origin server, which increases Pr if ρn > ρu

n, and
decreases Pr if ρn < ρl

n. The adjustment is controlled by parameter β = ρn/ρ̂n, where
β > 1 for increase since ρn > ρu

n > ρ̂n, and β < 1 for decrease since ρn < ρl
n <

ρ̂n. Further, the adjustment is smoothed by using an exponentially weighted moving
average filter with α = 0.5. To avoid infinite convergence, an increase from above 0.99
is set to 1, and a decrease from below 0.1 is set to 0. To react quickly to load spikes, an
increase from below 0.5 is set to 0.5.

The rescue state has five rescue actions: decrease λa
rd, heavy-load shutdown, in-

crease λa
rd, additional rescue, and idle shutdown. For the first case, if a rescue server

is heavily loaded and its λa
rd > 0, then it needs to decrease λa

rd until λa
rd reaches 0.

For the second case, if a rescue server is heavily loaded and its λa
rd is 0, then it needs

to shutdown the rescue relationship. When a rescue server has shutdown all rescue re-
lationships, it switches to the normal state. For the third case, when a rescue server is
lightly loaded and λa

rd < λ̂d, then it can increase λa
rd. Note that a rescue server should

not increase λa
rd if λrd is far below λa

rd. For the fourth case, if a rescue server is lightly
loaded, and it receives a new rescue request, then it can accept the rescue request, and
assign a λa

rd to the new origin server. By doing so, the rescue server will have multiple
origin servers, and a separate λa

rd is assigned to each origin server. For the last case, if
a rescue server has an origin server whose λrd has been 0 for a configured number of
consecutive control intervals, then the rescue server should shutdown the rescue rela-
tionship so as to release rescue resources in case of the origin server failure or network
separation. Fig. 5 gives the algorithm for adjusting λa

rd at a rescue server, which de-
creases λa

rd if ρn > ρu
n, and increases λa

rd if ρn < ρl
n. This algorithm is very similar

to the algorithm shown in Fig. 4. However, these two algorithms make adjustments in
opposite directions because their adjusting factors are β and 1/β, respectively. We keep
the adjusting factor for λa

rd within the range of [0.5, 2] to avoid over-reacting adjust-
ments. Also, we keep the filtered value of λa

rd as an integer.



// Compute β
β = ρn/ρ̂n;

// Increase Pr if ρn > ρu

n

if (Pr < 1) {
if (Pr < 0.5) {

Pr = 0.5;
} else if (Pr > 0.99) {

Pr = 1;
} else {

t = min(βPr, 1);
Pr = αPr + (1 − α)t;

}
}

// Decrease Pr if ρn < ρl

n

if (Pr > 0) {
if (Pr < 0.1) {

Pr = 0;
} else {

t = βPr;
Pr = αPr + (1 − α)t;

}
}

Fig. 4. Algorithm for adjusting Pr at an origin server

// Compute β
β = ρn/ρ̂n;
if (β < 0.5) {

β = 0.5;
} else if (β > 2) {

β = 2;
}

// Decrease λa

rd if ρn > ρu

n

if (λa

rd > 0) {
t = λa

rd/β;
λa

rd = (int)(αλa

rd + (1 − α)t);
}

// Increase λa

rd if ρn < ρl

n

if (λa

rd < λ̂d) {
t = min(λa

rd/β, λ̂d);
λa

rd = (int)(αλa

rd + (1 − α)t);
}

Fig. 5. Algorithm for adjusting λa

rd at a rescue server

4.5 Service Discovery

Service discovery allows servers of different web sites to learn about each other dy-
namically and collaborate without any administrator intervention. DotSlash uses the
Service Location Protocol (SLP) [13] since it is an IETF proposed standard for service
discovery in IP networks, and it is flexible, lightweight and powerful. Based on the
SLP mesh enhancement (mSLP [33]), DotSlash uses multiple well-known service reg-
istries that maintain a fully-meshed peer relationship. A web server can use any service
registry to register its information and to search information about other web servers.
Service registrations received by one registry will be propagated to other registries as
soon as possible, and anti-entropy [32] is used to ensure consistency among all ser-
vice registries. Only a small number of such service registries are needed for reliability
and scalability. All of them serve the scope “DotSlash” (reserved for DotSlash rescue
services) so that they will not affect local service discovery.

The template for DotSlash rescue services has the following attributes: the domain
name for the web server, its IP address which is used to bypass DNS round robin, its
port number for web requests, its port number for DotSlash rescue services, and the
current allowed redirect data rate λa

rd computed as max((ρ̂n −ρn)λm
d , 0). A web server

performs service registrations and searches periodically with a configurable interval τr

and τs, respectively. To get ready for load spikes, a web server maintains a list of rescue
server candidates. A DotSlash service search request uses preference filters [34] that
allow the registry to sort the search result based on λa

rd and to only return the desired
number of matching entries, which is useful if many entries match a search request.



Mod_dots

Apache

Dotsd

HTTP SLPDNS

mSLP DABIND

Another
Dotsd

Internet

Shared Memory

Client

DSRPDSRP

DSRP: DotSlash Rescue Protocol

PSfrag replacements

S1

S2

S3

S4

S5

S6

S7

S8

C1

C2

Pr

λa

rd

Fig. 6. DotSlash software architecture

5 Implementation

We use Apache [4] as our base system since it is open source and is the most popular
web server [19]. Fig. 6 shows the DotSlash software architecture. DotSlash is imple-
mented as two parts: Mod dots and Dotsd. Mod dots is an Apache module that sup-
ports DotSlash functions related to client request processing, including accounting for
each response, HTTP redirect, and dynamic virtual hosting. Dotsd is a daemon that
accomplishes other DotSlash functions, including service discovery, dynamic DNS up-
dates, and rescue control and management. For convenience, Dotsd is started within
the Apache server, and is shutdown when the Apache server is shutdown. Dotsd and
Mod dots share control data structures via shared memory. DNS servers and DotSlash
service registries are DotSlash components external to the Apache server. We use BIND
as DNS servers, and use mSLP Directory Agents (DAs) as DotSlash service registries.
A web server interacts with other web servers via its Dotsd using DSRP carried by TCP.

The control data in shared memory are divided into two parts: a workload meter
for the web server itself, and a peer table for collaborating web servers. The peer ta-
ble maintains accounting information of redirected traffic for peers. Traffic accounting
is performed in two time scales: the current control interval and the server’s lifetime
(from the server’s starting time to now). The former accounting is used to trigger res-
cue actions, and the corresponding counters are reset to zero at the end of the current
control interval. The latter accounting allows computing various average traffic rates by
sampling the corresponding counters at desired time intervals.

Dotsd is implemented using pthread. It has two main threads: a control thread and a
a DSRP server. The control thread runs at the end of each control interval for processing
tasks that need to be done periodically such as computing the current workload level,
triggering rescue actions if needed, and checking whether it needs to perform service
discovery. The DSRP server accepts connections from other Dotsds and creates a new
thread for processing each accepted connection. Dotsd also includes three clients: a
DNS client for dynamic DNS updates, an SLP Service Agent for service registrations,
and an SLP User Agent for service searches.

Mod dots handles traffic accounting, performs HTTP redirects for an origin server,
supports dynamic virtual hosting for a rescue server, and implements a content handler
for /dotslash-status so that a request for http://host.domain/dotslash-status can retrieve
the current DotSlash status for the web server host.domain.



6 Evaluation

For a web server, we use two performance metrics D and R, where D is the maximum
data rate of HTTP responses delivered to clients, and R is the maximum request rate
supported. Our goal is to improve a web server’s D and R by using DotSlash rescue
services. For a web server without using DotSlash, its D and R can be estimated as λm

d

and λm
d /(F + H), respectively, where F is the average size of requested files, and H is

the average HTTP header size of responses, assuming the CPU is not a bottleneck. For
any web server, the maximum rate of HTTP redirects it can support can be estimated
as λm

d /Ar, where Ar is the accounting size for an HTTP redirect. Thus, a web server
can improve its R and D by using DotSlash as follows. If it only uses HTTP redirect to
offload client requests, its R is bounded by λm

d /Ar, and its D is bounded by R(F +H).
However, a web server can use DNS round robin to overcome this scaling limitation so
as to further improve its R and D.

We performed experiments in our local area networks (LANs) and on PlanetLab [21]
for two goals. First, given a web server with a constraint on its outbound bandwidth,
we want to improve its R and D by using DotSlash rescue services, and aim to achieve
an improvement close to the analytical bound, i.e., the web server can handle a request
rate close to λm

d /Ar when only HTTP redirect is used. Second, we want to confirm that
our workload control algorithm works as expected.

6.1 Workload Generation

We use httperf [18] to generate workloads. If the request rate to be generated is high,
multiple httperf clients are used, each running on a separate machine. To simulate web
hotspots, a small number of files are requested repeatedly from a web server. Each
request uses a separate TCP connection. Thus, the request rate equals the connection
rate. We made two enhancements to httperf to facilitate experiments on DotSlash. First,
we extended httperf to handle HTTP redirects automatically since an httperf client needs
to follow HTTP redirects in order to complete workload migrations from an origin
server to its rescue servers. Second, we wrote a shell script to support workload profiles.
A workload profile specifies a sequence of request rates and their testing durations,
which is convenient for describing workload changes.

For a web server, its R and D are determined as follows. We use httperf clients
to issue requests to the web server, starting at a low request rate, and increasing the
request rate gradually until the web server gets overloaded. A client uses 7 seconds [9]
as the timeout value for getting each response. If more than 10% [9] of issued requests
time out, a client declares the web server as being overloaded. For a sequence of testing
request rates that are monotonically increasing, r1 < r2 < · · ·, if the web server gets
overloaded at ri, then R = ri−1. For all testing request rates, up to R, the maximum
data rate delivered to clients is D.

6.2 Experimental Setup

In our LANs, we use a cluster of 30 Linux machines, which are connected using 100
Mb/s fast Ethernet. These machines have two different configurations, CLIC and iDot.



The former has a 1 GHz Intel Pentium III CPU, and 512 MB of memory, whereas the
latter has a 2 GHz AMD Athlon XP CPU, and 1 GB of memory. They all run Redhat 9.0,
with Linux kernel 2.4.20-20.9. PlanetLab consists of more than 300 nodes distributed
all over the world, each with a CPU of at least 1 GHz clock rate, and has at least 1
GB of memory. PlanetLab nodes have four types of network connections: DSL lines,
Internet2, North America commodity Internet, and outside North America. They all run
Redhat 9.0, with Linux kernel 2.4.22-r3 planetlab, and PlanetLab software 2.0.

We set up the DotSlash software in three steps. First, we compile Apache 2.0.48
with the worker multi-processing module, the proxy modules, the cache modules, and
our DotSlash module. We configure Apache as follows. Since reverse proxying is taken
care of by DotSlash automatically, no proxy configuration is needed. Caching is con-
figured with 256 KB of memory cache, and 10 MB of disk cache, and the maximum
file size allowed in memory cache is 20 kB. For the DotSlash module, we only con-
figure λm

d . Second, we use BIND 9.2.2 as the DNS server software, and set up a DNS
domain dot-slash.net. All rescue servers register their virtual host names in this domain
via dynamic DNS updates. Currently, we have tested DotSlash workload migrations
via HTTP redirect, without using DNS round robin. Third, we set up a DotSlash ser-
vice registry using an mSLP DA. Each web server registers itself with this well-known
service registry, and discovers other web servers by looking up this registry.

6.3 Experimental Results on PlanetLab

We run a web server on a PlanetLab DSL node, planetlab1.gti-dsl.nodes.planet-lab.org
(referred to as gtidsl1), for which the outbound bandwidth is the bottleneck. We run
httperf on a local CLIC machine. Ten files are requested repeatedly from gtidsl1, with
an average size of 6 KB [30]. Our goal is to measure, from the client side, gtidsl1’s R
and D in two cases, namely without using DotSlash versus using DotSlash.

For the first case, DotSlash is disabled. The request rate starts at 1 request/second,
increases to 20 requests/second, with a step size of 1, and each request rate lasts for 60
seconds. Fig. 7(a) shows the experimental results. In this figure, gtidsl1 gets overloaded
at 10 requests/second, where 14% of requests, 84 out of 600, time out. Thus, R is 9
requests/second. The measured D is 53.9 kB/s, attained when the request rate is R.

For the second case, DotSlash is enabled. We set gtidsl1’s λm
d to 53.9 kB/s. To

provide needed rescue capacity for gtidsl1, we run another web server on a local iDot
machine (named maglev), and its λm

d is set to 2000 kB/s. The request rate starts at 4
requests/second, increases to 200 requests/second, with a step of 4, and each request rate
lasts for 60 seconds. Fig. 7(b) shows the experimental results. In this figure, when the
request rate reaches 8 requests/second, the origin server gtidsl1 starts to redirect client
requests via HTTP redirects to the rescue server maglev. As the request rate increases,
the redirect rate increases accordingly. Eventually, gtidsl1 redirects almost all clients
requests to maglev. In this experiment, gtidsl1 gets overloaded at 92 requests/second,
where 25% of requests, 1404 out of 5520, time out. Thus, R is 88 requests/second. The
measured D is 544.1 kB/s, attained when the request rate is 84 requests/second.

Comparing the results obtained from the above two cases, we have 88/9 = 9.78,
and 544.1/53.9 = 10.1, meaning that by using DotSlash rescue services, we got about
an order of magnitude improvement for gtidsl1 on its R and D, even if only HTTP
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Fig. 7. The data rate and request rate for a PlanetLab DSL node gtidsl1 in two cases, note different
scales of ordinates

redirect is used. To show the effectiveness of DotSlash, we also compare R with its
analytical bound λm

d /Ar below. In this experiment, we only measured λm
d at gtidsl1,

without knowing its outbound bandwidth B. To be conservative, we use U = (F +
H)/(F +H +O) = 95%, where F = 6 KB, H = 250 bytes, and O = 358 bytes. Here
the header overhead O for a single-request HTTP transaction is the same as that for an
HTTP redirect (calculated in Section 4.3). Since the size of an HTTP redirect response
is n = 227 bytes in the experiment, we have Ar = (n + O)U = 556 bytes. As a result,
R is bounded by λm

d /Ar = 53.9 ∗ 1000/556 = 97 requests/second, and we achieved
88/97 = 91% of its analytical bound.

6.4 Experimental Results in LANs

In the previous section we have shown the performance improvement, measured from
the client side, for a web server by using DotSlash rescue services in a wide area net-
work setting. In this section we will show, via an inside look from the server side, how
workload is migrated from an origin server to its rescue servers. The workload mon-
itoring component in DotSlash maintains a number of counters for outbound HTTP
traffic, including total bytes served, the number of client requests served, the num-
ber of client requests redirected, and the number of requests served for rescuing oth-
ers. The values of these counters for a web server host.domain can be obtained from
http://host.domain/dotslash-status?auto. By sampling these counters at a desired inter-
val, we can calculate the needed average values of outbound data rate, request rate,
redirect rate, and rescue rate.

In this experiment, four machines, bjs, ottawa, lisbon, and delhi, run as web servers,
where bjs is an iDot machine, and the other three are CLIC machines. To emulate a
scenario where bjs works as an origin server with a bottleneck on its outbound band-
width, and the rest web servers work as rescue servers, we configured their λm

d as 1000,
7000, 5000, and 3000 kB/s, respectively. We run httperf on five CLIC machines, which
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Fig. 8. The request rates and data rates at the origin server bjs and its rescue servers

issue requests to bjs using the same workload profile. The maximum request rate is
400 ∗ 5 = 2000 requests/second, and the duration of the experiment is 15 minutes.
Ten files are requested repeatedly, with an average size of 4 KB. We run a shell script
to get the DotSlash status from the four web servers at an interval of 30 seconds. The
retrieved status data are stored in round-robin databases using RRDtool [22], with one
database for each web server. Fig. 8 shows the data rates and request rates for the four
web servers in a duration of 17 minutes.

We observe the following results from Fig. 8(a). First, bjs can support a request
rate of 2000 requests/second, which is close to λm

d /Ar, the analytical maximum rate
of HTTP redirects at bjs. Since Ar = (n + O)U = 468 bytes in this experiment,
where n = 227 bytes, O = 358 bytes, and U takes its default value 80%, we have
λm

d /Ar = 2140 requests/second. Second, the redirect rate at bjs increases as the re-
quest rate increases, and it is roughly the same as the request rate once it is above
1500 requests/second. The reason is that bjs increases redirect probability Pr as its
load increases. When the rate of HTTP redirects is greater than λm

d ρu
n/Ar = 1603 re-

quests/second, Pr will stay at 1, that is all client requests are redirected from bjs to
its rescue servers. Third, bjs allocates one rescue server at a time, and uses the one
with the largest rescue capacity first. When a new rescue server is added in, the rescue
rates at the existing rescue servers decrease. Also, the rescue rates at rescue servers are
proportional to their rescue capacities because of the WRR at bjs.

Comparing Fig. 8(b) and 8(a), we observe that rescue servers have similarly shaped
curves for their data rates and rescue rates. In contrast, as we expected, the origin
server bjs have quite different shapes for its the request rate and data rate curves:
its the request rate increases significantly from 200 requests/second at 1.5 minutes to
2000 requests/second at 11 minutes, but its data rate is roughly unchanged, staying at
λm

d ρu
n = 750 kB/s for the most part. This indicates that bjs has successfully migrated

its workload to its rescue servers under the constraint of its outbound bandwidth. Also,



we observe that when the request rate is between 1600 and 2000 requests/second, the
data rate at bjs goes above 750 kB/s, but still stays below λm

d = 1000 kB/s. This is
because bjs can only support a rate of 1600 requests/second for HTTP redirects with a
data rate of 750 kB/s. Furthermore, we observe that the total data rate of all web servers
has a maximum value of 9.7 MB/s, which is higher than 9.2 MB/s, the maximum data
rate measured from the httperf clients. The difference is due to our special accounting
for HTTP redirects. As described in Section 4.3, an HTTP redirect is 227 bytes, but is
counted as 468 bytes, which results in a rate increase of 241 ∗ 2000 = 0.482 MB/s for
2000 HTTP redirects.

7 Conclusion

We have described the design, implementation, and evaluation of DotSlash in this pa-
per. As a rescue system, DotSlash complements the existing web server infrastructure
to handle web hotspots effectively. It is self-configuring, scalable, cost-effective, easy to
use, and transparent to clients. Through our preliminary experimental results, we have
demonstrated the advantages of using DotSlash, where a web server increases the re-
quest rate it supported and the data rate it delivered to clients by an order of magnitude,
even if only HTTP redirect is used.

We plan to perform trace-driven experiments on DotSlash by using log files from
web hotspot events, and incorporate DNS round robin in the performance evaluation.
Also, we plan to investigate load migration for dynamic content, which will extend the
reach of DotSlash to more web sites. Our prototype implementation of DotSlash will
be released as open source software.
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