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Abstract— DotSlash is an automated web hotspot rescue sys-
tem, which allows different web sites to form a mutual-aid
community, and use spare capacity in the community to relieve
web hotspots experienced by any individual site. DotSlash rescue
services enable a web site to build an adaptive distributed web
server system on the fly and replicate application programs
dynamically, which relieve a spectrum of bottlenecks ranging
from access network bandwidth to web servers and application
servers. This paper presents DotSlash Qcache services that allow
a web site to use on-demand distributed query result caching
to greatly reduce the workload at read-mostly databases. The
novelty of this work is that our query result caching is on demand
and operated based on load conditions, which offers good data
consistency for normal load and good scalability with relaxed
data consistency under heavy load. DotSlash Qcache services
complement DotSlash rescue services; together they provide a
comprehensive solution to address different bottlenecks at multi-
tier web sites. Experiments show that using DotSlash a web site
can increase its maximum request rate supported by a factor of
10 for the RUBBoS read-only mix.

I. INTRODUCTION

Web hotspots are short-term dramatic load spikes, which
can seriously degrade the service quality of affected web sites.
Traditionally, a web site has a fixed set of resources, leaving
it unable to handle a large load increase without significant
overprovisioning. Since web hotspots are rare events, it is
uneconomical to invest in more powerful infrastructure that
is idle most of time. Small web sites often cannot afford
a solution that employs server clusters, mirrored servers, or
commercial content delivery networks (CDNs) [2]. However, a
few such sites will invariably experience their “fifteen minutes
of fame”, typically by being mentioned on a high-volume news
site such as Slashdot or CNN. Such flash crowds or “Slashdot
effect” [1] will routinely cause small web sites to collapse.

To handle web hotspots cost-effectively, we developed Dot-
Slash, a self-configuring and scalable rescue system [38],
[39], which allows different web sites to form a mutual-
aid community, and use spare capacity in the community
to relieve web hotspots experienced by any individual site
[9]. DotSlash rescue services enable a web site to build an
adaptive distributed web server system on the fly and replicate
application programs dynamically, which relieve a spectrum
of bottlenecks ranging from access network bandwidth to web
servers and application servers.
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To address the database server bottleneck, this paper
presents DotSlash Qcache services, which allow a web site to
use on-demand distributed query result caching to greatly re-
duce the workload at read-mostly databases. DotSlash Qcache
services complement DotSlash rescue services; together they
provide a comprehensive solution to address different bot-
tlenecks at multi-tier web sites. Although our query result
caching is not a new mechanism, its on-demand usage scenario
in DotSlash is novel. Traditionally, when query result caching
is enabled in a system, it stays on permanently. In contrast, our
query result caching in DotSlash is on demand and operated
based on load conditions: caching remains inactive as long as
the load is normal, but is activated once the load is heavy.
This approach offers good data consistency for normal load
and good scalability with relaxed data consistency under heavy
load.

The remainder of this paper is organized as follows. We
discuss related work in Section II, introduce DotSlash system
architecture in Section III, describe the design of DotSlash
Qcache services in Section IV, evaluate our prototype system
in Section V, and conclude in Section VI.

II. RELATED WORK

There have been a large body of work on improving the
web site scalability under web hotspots. Most of them ([13],
[34], [31], [21], [32], [11]) have focused on static content.
To improve the application server scalability, application pro-
grams or components [23], [2], [39] can be offloaded from
the origin server. Recently, Olston et al. [19] proposed a
scalability service for databases using multicast-based consis-
tency management. Although their system aims at broader web
applications, its scalability gain under heavy load is unclear. In
contrast, our system targets read-mostly databases and scales
well under dramatic load spikes.

Caching is very effective for web content distributions. Web
caching can cache HTML pages or page fragments at proxies
[10], web servers [8], application servers [14], [4], and edge
servers [2]. Database caching [3], [6], [15], [28] can cache
data from back-end databases at caches closer to application
servers. While caching in existing systems is active in all cases,
our query result caching is activated only under heavy load,
which minimizes the effect of caching on consistency while
improving the system scalability.



Server

Database
Server

Application
Server
Web

Client
Driver

Data
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Replication is a widely used mechanism for database scala-
bility. Ganymed [22] separates update from read-only transac-
tions, and routes updates to a main database server and queries
to read-only database copies. GlobeDB [27] uses partially
replicated databases based on data partition to reduce update
traffic. Our current prototype uses a single back-end database
server, which can be extended to support distributed database
servers by incorporating database replication into our system.

Database clustering [7], [20], [18] is a mechanism at the
database server tier to pool database servers together for high
availability and performance. DotSlash is a solution at the
web/application server tier for scalability. Our system and
database clustering are orthogonal, and they can be used
together at dynamic content web sites.

III. DOTSLASH SYSTEM ARCHITECTURE

A. Application Model

We consider the standard three-tier web architecture, shown
in Figure 1. Application programs running at the application
server access application data stored in the database server
through a data driver, which is normally a system component
of the application server. The data driver provides a standard
API for web applications to store and retrieve data in back-end
databases. In our prototype system, we use the common LAMP
(Linux, Apache, MySQL, and PHP) configuration, where the
PHP module resides in the Apache web server.

B. DotSlash Usage Models

DotSlash allows different web sites to form a mutual-aid
community, and use spare capacity in the community to relieve
web hotspots experienced by any individual site. A mutual-
aid community has a set of DotSlash service registries, which
use mSLP [40] to replicate service registration information
from each other automatically. A mutual-aid community may
set up a DNS domain to allow DotSlash service registries
to be discovered via DNS SRV [41]. A web server joins a
mutual-aid community by registering itself with any DotSlash
service registry in the community, and contributing its spare
capacity to the community. Under heavy load, a participating
web server discovers and uses spare capacity at other web
servers in the community via DotSlash rescue services.

We consider three types of mutual-aid communities, namely
open communities, closed communities, and flood-insurance
closed communities. An open mutual-aid community is in-
tended for a cooperative environment; it is simple, but it
does not provide security measures against attacks or abuse.
A closed mutual-aid community performs authentication in
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Fig. 2. Enabling query result caching in DotSlash

accepting service registrations, choosing rescue server candi-
dates, and accepting rescue requests. Thus, only authorized
web sites can join a closed mutual-aid community. To in-
crease the incentive for providing DotSlash rescue services
and reduce abuse, a flood-insurance closed community can
be used, which employs tokens in addition to authentication.
An authorized web site obtains tokens from the community
authority by paying an insurance premium. To secure a rescue
relationship, the origin server needs to transfer one token to
the rescue server.

C. DotSlash Rescue Services

In DotSlash, a web site not only has a fixed set of origin
servers, but also has a changing set of rescue servers drafted
from other sites. DotSlash rescue services allow an origin
server to draft and release rescue servers fully automatically
based on its load conditions. An origin web server discovers
suitable rescue servers via wide-area service location, either
among peer servers or from a dedicated pool of rescue servers,
allocates them for temporary use, and redirects client requests
to them. The rescue process is completely self-managing and
transparent to clients.

DotSlash uses DNS round robin as the first level crude load
distribution, and uses HTTP redirect as the second level fine-
grained load balancing. When a rescue relationship is set up
between two web servers, the rescue server assigns a unique
virtual host name to the origin server, which is used by the
origin server in its HTTP redirects to the rescue server. Also,
the origin server adds the rescue server’s IP address to its local
DNS for round robin.

In DotSlash, a rescue server can serve the content of its
origin server on the fly. A rescue server works as a reverse
caching proxy for its origin server. It maps client requests
either to its own content or to the content of its origin server.
In addition to caching static content from the origin server,
a rescue server replicates PHP scripts dynamically from the
origin server, and accesses databases at the origin server.

D. DotSlash Qcache Services

DotSlash Qcache services allow an origin server and its
rescue servers to use on-demand query result caching to reduce



TABLE I
THREE CONFIGURATIONS IN USING DOTSLASH

Configuration Bottlenecks Addressed Used By
Dots Apache Network and web server All sites
Dots Apache + Network, web server, Dynamic
Dots PHP and application server sites
Dots Apache + Network, web server, Dynamic
Dots PHP + application server, sites
Dots MySQL and database server

the database workload at the origin server. Since the data
driver (as shown in Figure 1) intercepts all database queries,
we enhance it with query result caching without changing
the application API and database interface. In our prototype
system, we extend the original PHP data driver for MySQL
databases with a query result cache. Figure 2 illustrates how
to enable query result caching in DotSlash. Note that a client
request can be redirected from the origin server to the rescue
server via either DNS round robin or HTTP redirect. Also
note that a rescue server may need to access remote databases
at the origin server in addition to its local databases. We will
discuss DotSlash data driver control in details in Section IV-B.

E. DotSlash Configurations

Our open-source prototype implementation of DotSlash [36]
has three major components: Dots Apache, Dots PHP, and
Dots MySQL. Dots Apache is an Apache module that sup-
ports basic DotSlash functions including workload monitor-
ing, rescue server discovery, rescue relationship management,
request redirection, dynamic virtual hosting, and dynamic
DNS update. Dots PHP is an extension for the PHP module
of Apache that supports replicating PHP scripts dynami-
cally. Dots MySQL is a caching-enhanced PHP data driver
for MySQL databases that supports caching database query
results on demand. DotSlash can be used in three different
configurations as shown in Table I, where Dots Apache and
Dots PHP provide DotSlash rescue services, and Dots MySQL
provides DotSlash Qcache services.

IV. THE DESIGN OF DOTSLASH QCACHE SERVICES

A. Caching Features

On-demand query result caching is a unique feature of
DotSlash Qcache services: caching remains inactive as long
as the load is normal, but is activated once the load is heavy.
The control of our on-demand query result caching is based
on two factors, namely the web server’s DotSlash state and
load region. A web server has three DotSlash states: SOS
state if it gets rescue services from others, rescue state if it
provides rescue services to others, and normal state otherwise.
DotSlash uses two configurable parameters, lower threshold
ρl and upper threshold ρu, to define three load regions: light
load region [0, ρl), desired load region [ρl, ρu], and heavy load
region (ρu, 100%]. DotSlash measures utilization of different
resources, e.g., our current prototype system measures network
and CPU utilization. A web server’s load region is determined
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Fig. 3. DotSlash on-demand query result caching, where caching is activated
(cache on) or de-activated (cache off) based on the web server’s DotSlash state
(normal, SOS, or rescue) and load region (desired load, heavy load, or light
load).

as follows: the server is in the heavy load region if any
resource is heavily loaded, in the light load region if all
resources are lightly loaded, and in the desired load region
otherwise.

We show the control of our on-demand query result caching
in Figure 3. Caching is activated if a web server is in the SOS
state (i.e., an origin server), or if a web server is in the rescue
state (i.e., a rescue server), or if a web server is in the normal
state and its load is above the upper threshold. On the other
hand, caching is de-activated when an origin server switches
from the SOS state to the normal state, or when a rescue server
switches from the rescue state to the normal state, or when a
web server is in the normal state and its load is below the
lower threshold.

Self-configuration is an important feature of our system.
When an origin server sets up its rescue servers, it passes the
query result caching control parameters to its rescue servers.
By doing so, a rescue server can manage cached objects based
on the instructions from the origin server. In this way, an origin
server can set up a distributed query result caching system on
the fly using one set of control parameters.

Distributed caching is a natural feature of our system. By
default, each web/application server has its own, co-located
query result cache. An origin server can obtain more query
result caches as it drafts more rescue servers. Using co-located
query result caches is well-suited for DotSlash in terms of
resource utilization efficiency because our query result caching
is on demand, and the cache server is idle most of time. Note
that our system can use a dedicated query result cache server
which is shared among an origin server and its rescue servers,
or among a subset of rescue servers. Doing so can reduce
the workload at the origin database server. However, a shared
cache may become a potential performance bottleneck, and
accessing a remote cache incurs longer delays (see Section
V-D for experimental results).

Our query result caching is transparent to web users and



applications. Without the need to change client-side web
browsers and server-side application programs, our system
is easy to deploy. Furthermore, we provide a way for web
users to bypass our query result caching. Our current prototype
system uses the HTTP Cache-Control header for this purpose
as follows. If there is no-cache or max-age=0 in the HTTP
Cache-Control header of a client request, DotSlash will handle
that request without using query result caching.

B. Caching-enhanced Data Driver

Our caching-enhanced data driver is designed with the
following considerations. First, rescue servers only handle
read-only database queries; all write database queries are
handled by the origin web server. This is mainly for security
reasons because an origin server is unlikely to allow rescue
servers to update its databases. Secondly, under heavy load we
turn off write queries temporarily for regular users, but still
allow site administrators (or a small group of premium users)
to perform necessary updates. This is mainly for scalability
considerations because database systems often use locking
(e.g., table locking in MySQL) to control concurrent read/write
accesses to the same database table, and a large number of
read/write contentions can seriously degrade the database per-
formance (see Section V-E for experimental results). Finally,
under heavy load we provide different consistency guarantees
for site administrators and regular users. The former can
continue to perform both read and write queries, and get
an up-to-date view of database states without using query
result caching, whereas the latter can only perform read-only
queries, and get a delayed view of database states by using
query result caching. We use an application-specific caching
TTL to bound the staleness of cached objects. Note that this
design targets hotspot rescue for read-mostly databases, which
are common for content management systems (CMS), blogs,
and web forums. It does not aim to be applicable to all
web applications, e.g., it should not be used by e-commerce
sites (modeled by benchmarks such as RUBiS [25] and TPC-
W [33]) that have frequent updates and strong consistency
requirements.

Our caching-enhanced data driver handles database queries
based on three factors, namely the web server’s query result
caching state, the client request HTTP Cache-Control header,
and the client request type. Our query result caching is a per-
server state, which is on or off as illustrated in Figure 3.
A client request can bypass our query result caching using
the HTTP Cache-Control header as described in Section IV-
A. A rescue server distinguishes two types of client requests,
regular and rescue, based on the request’s HTTP Host header.
If the HTTP Host header uses an origin server name such
as www.origin.com, or an assigned virtual host name such as
vh1.www.rescue.com, then the request is treated as a rescue
request, otherwise as a regular request.

We show the control of our caching-enhanced data driver
in Table II. There are four cases. For case 1, query result
caching is off. Then any database query is handled normally
by forwarding the query directly to the database. For case

TABLE II
DOTSLASH CACHING-ENHANCED DATA DRIVER, WHICH HANDLES

DATABASE QUERIES BASED ON THE WEB SERVER’S QUERY RESULT

CACHING STATE (ON OR OFF), THE CLIENT REQUEST HTTP
CACHE-CONTROL HEADER (BYPASS CACHING OR NOT), AND THE CLIENT

REQUEST TYPE (RESCUE OR REGULAR).

Case Cache Bypass Rescue Database Database
On Caching Request Write Read

1 no – – normal normal
2 yes no – turn off cache+DB
3 yes yes no normal DB+cache
4 yes yes yes redirect redirect

2, query result caching is on and caching is not bypassed.
Then any write query (i.e., the SQL insert, update, or delete
statement) is turned off, and an error message, such as “Due
to heavy load, write operations to databases at web site
http://www.origin.com have been temporarily turned off”, is
returned. At the same time, any read-only query (i.e., the
SQL select statement) is handled as follows. The query is
checked against the query result cache. If there is a cache
hit, the query result is obtained from the cache and returned
to the application immediately. In case of a cache miss, the
query is submitted to the corresponding database, which can
be a local database or a remote database at the origin server;
then the query result is obtained from the database, saved to
the query result cache, and returned to the application. For
case 3, query result caching is on, caching is bypassed, and
the request is a regular request. Then any database query is
forwarded directly to the database. For a read-only query, the
query result is saved to the query result cache before being
returned to the application. For case 4, query result caching is
on, caching is bypassed, and the request is a rescue request.
Then the request is redirected back to the origin web server
via HTTP redirect, which ensures that a client request that
needs to bypass caching can always be handled by the origin
web server. For this purpose, an origin server does not apply
HTTP redirect to client requests that need to bypass caching.
However, client requests could be distributed to rescue servers
due to the origin server’s DNS round robin. This is why we
need to use HTTP redirect in case 4. Note that a rescue server
uses the origin server’s IP address in its HTTP redirects to
bypass the origin server’s DNS round robin mechanism.

C. Query Result Cache

The data driver uses the query result cache via two interface
functions: check in and check out. The check in function takes
the query string, query result, and caching TTL as input
parameters, serializes the query result into a byte stream, and
saves it to the caching storage engine. The check out function
takes the query string as the input parameter and retrieves
the query result. For a cache hit, the check out function de-
serializes the query result byte stream into the original query
result data structure and returns a pointer to the result structure.
In case of a cache miss, the check out function returns a NULL



pointer.
Both disk and memory can be used as our caching storage

engine. Due to performance considerations, we choose to
use a memory storage engine called memcached [17], which
employs a client-server model. At the server side, a daemon
maintains cached objects in dynamically allocated memory.
Each cached object is a key-value pair with an expiration
time. At the client side, we use an open-source C library
libmemcache [16] to access the cache. In the check in function,
we first use the ELF hash algorithm [5] to map the query
string into a cache key, and then store the query string and
the query result as the cache value, using the caching TTL
as the expiration time. Note that different query strings might
be mapped into the same cache key with a small probability,
which is less than 1% in our experiments. To handle this type
of hash conflicts, we let the new query and its result overwrite
the old one. This strategy keeps our system simple without
losing much performance. In the check out function, we use
the same ELF hash algorithm to map the query string into a
cache key. If a cached object is found for the key, we check
whether the stored query string matches the input query string.
If so, it is a cache hit; otherwise, it is a cache miss.

V. EVALUATION

We use the maximum request rate supported by a web site
as the major performance metric. We evaluate DotSlash rescue
services and Qcache services individually as well as together
through experiments, and examine the system performance
improvement in different situations.

A. Benchmark Description

We evaluate our prototype system using the RUBBoS bul-
letin board benchmark [24], which is modeled after an online
news forum like Slashdot [29]. The database has a size of 439
MB, and contains 500, 000 users and 2 years of stories and
comments. There are 15 to 25 stories per day, and 20 to 50
comments per story. RUBBoS has two major workload mixes,
read-only and submission. Note that for the same request rate,
the read-only mix causes a higher workload at the database
than the submission mix due to two reasons. First, each pre-
generated story has 20 to 50 comments, whereas a newly
submitted story has only a few comments or no comments
at all. Secondly, each emulated RUBBoS client always starts
with, and often returns to the Stories Of The Day page, which
has the most recent 10 stories.

B. Experimental Setup
In our previous work [38], [39], we have evaluated Dot-

Slash rescue services across wide area networks and in our
local area network. The goal of this paper is to address the
database server CPU bottleneck by enabling on-demand query
result caching in DotSlash. For the convenience of managing
experiments and without loss of generality, all experiments
described in this paper are performed in our local area network.

We use a cluster of Linux machines connected via 100
Mb/s fast Ethernet. These machines have three different con-
figurations. Each web/application server has a 3 GHz Intel
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Pentium 4 CPU and 2 GB of memory, running Red Hat
Enterprise Linux AS v.3 with Linux kernel 2.4.21-32.0.1.EL.
The database server has a 2 GHz AMD Athlon XP CPU and
1 GB of memory, running Red Hat 9.0 with Linux kernel
2.4.20-20.9. Each client emulator machine has a 1 GHz Intel
Pentium III CPU and 512 MB of memory, running Red Hat
9.0 with Linux kernel 2.4.20-20.9.

All web/application servers run Apache 2.0.49, configured
with PHP 4.3.6, worker multi-processing module, proxy mod-
ules, cache modules, and our Dots Apache. Also, the PHP
module includes our Dots PHP and Dots MySQL. By default,
memcached works as a co-located cache server with a storage
space limit of 200 MB. When it works as a shared cache server,
memcached has a storage space limit of 1 GB. The database
server runs MySQL 4.0.18 using the default MyISAM stor-
age engine. To enhance MyISAM performance under heavy
updates, we configure MySQL with delay key write=all to
delay writing index data to disk [35]. To support a large
number of concurrent connections, we configure MySQL with
open files limit=65535 and max connections=8192. We use
our dot-slash.net domain for dynamic DNS updates, and use
the enhanced Service Location Protocol [37] for rescue server
discovery.

C. Caching TTL

In DotSlash, each web server has a configurable parameter
called caching TTL, which is used to control how long query
results can be cached. This parameter is passed from an origin
server to all its rescue servers; and a rescue server caches
query results from an origin server based on the origin server’s
caching TTL parameter.

In general, the caching TTL for query results is an
application-dependent parameter since different applications
may need to use different caching TTLs based on their data
consistency requirements. For RUBBoS, we use 60 seconds
as the caching TTL because it is good enough to bound the
staleness of cached objects in RUBBoS.



TABLE III
SUMMARY OF EXPERIMENTAL RESULTS FOR RUBBOS READ-ONLY MIX

Test Max Rate Compared Compared Rescue
Case (reqs/s) to READ to READr Servers

READ 117 100%

READc 125 107%

READr 249 213% 100% 4

READr,c 1151 984% 462% 15

READr,sc 828 708% 333% 13

There is a trade-off in choosing the caching TTL parame-
ter: decreasing this parameter will improve data consistency,
whereas increasing this parameter will improve caching perfor-
mance. Figure 4 shows the relationship between the caching
TTL and query result cache hit ratio in a set of 10-minute
experiments for the RUBBoS read-only mix. We observe that
the cache hit ratio increases as the caching TTL increases.
For our chosen caching TTL 60 seconds, the cache hit ratio
is 89.4%.

D. Results for Read-only Mix

We first test our prototype system using the RUBBoS read-
only mix. Depending on whether rescue servers are available,
whether query result caching is enabled, and whether each
web/application server has a co-located cache or uses a shared
cache server running on a separate machine, we have five test
cases for the read-only mix as follows.

• READ: no rescue, no cache.
• READc: no rescue, with a co-located cache.
• READr: with rescue, no cache.
• READr,c: with rescue, with a co-located cache.
• READr,sc: with rescue, with a shared cache.
Table III summarizes our experimental results for the

RUBBoS read-only mix. Without using DotSlash rescue and
Qcache services, a web server can only support a request rate
of 117 requests/second. The request rate supported increases
to 249 requests/second by only using DotSlash rescue services
with 4 rescue servers, and increases to 1151 requests/second
by using DotSlash rescue and Qcache services together with 15
rescue servers. Compared to READ, READr and READr,c

achieve an improvement of 213% and 984%, respectively.
Compared to READr, READr,c achieves an improvement
of 462%. Next, we give details for each test case using the
read-only mix.

Figure 5 shows the experimental results for READ and
READc, where rescue servers are not available. We give the
CPU utilization for the web server and database server in
Figure 5(a), and present the request rate supported in Figure
5(b). We observe that the web server CPU is the bottleneck.
When the load is light with 300 clients, caching is not
activated. Thus, we have the same CPU utilization for READ

and READc. When the load is heavy with 840 clients, caching
is turned on, and we can observe a big difference in CPU
utilization. The database server CPU utilization is 41% in
READ, but is only 6% in READc, meaning that caching
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Fig. 5. Experimental results for the RUBBoS read-only mix when rescue
servers are not available

is very effective in reducing the database workload. At the
same time, the web server CPU utilization decreases from
91% to 86% by using caching, indicating that getting query
results from the cache incurs less cost than accessing the
database directly. The maximum request rate supported is 117
and 125 requests/second in READ and READc, respectively.
The cache hit ratio is 91% in READc. In summary, even
without using rescue servers, query result caching is useful
under heavy load. However, caching itself cannot remove the
web server bottleneck.

Figure 6 shows the experimental results for READr,
READr,c, and READr,sc, where a varying number of rescue
servers are used. By using a sufficient number of rescue
servers, the origin web server is no longer a bottleneck. We
give the CPU utilization for the origin database server and
the shared cache server used in READr,sc in Figure 6(a),
present the request rate supported in Figure 6(b), and display
the average response time in Figure 6(c).

For READr, the origin database server gets overloaded
quickly without using query result caching. The maximum
request rate supported is 249 requests/second, obtained using



1800 clients and 4 rescue servers. Under this load, the origin
database server CPU utilization is 97%.

For READr,c, each web/application server uses a co-
located query result cache, which greatly reduces the database
workload. For 1800 clients, the origin web server uses 4 rescue
servers, and the measured request rate is 252 requests/second.
Under this load, the origin database server CPU utilization is
only 16%, which is a huge reduction compared to 97% CPU
utilization in READr. The maximum request rate supported
is 1151 requests/second, obtained using 8295 clients and 15
rescue servers. Under this load, the origin database server CPU
utilization is 83%, and the origin web server cache hit ratio is
87%. For an experiment of this scale with 8295 clients, we use
38 machines: 21 for emulating clients, 15 as rescue servers, 1
as the origin web server, and 1 as the origin database server.

For READr,sc, all web/application servers use a shared
query result cache server running on a separate machine,
which can further reduce the database workload. For 5400
clients, the origin database server CPU utilization is only 34%,
compared to 52% CPU utilization in READr,c. However, the
shared cache server itself becomes a bottleneck since it gets
loaded more quickly than the origin database server does.
The maximum request rate supported is 828 requests/second,
obtained using 7200 clients and 13 rescue servers. Under this
load, the CPU utilization for the origin database server and
the shared cache server is 45% and 85%, respectively, and
the cache hit ratio at the shared cache server is 93%. In
Figure 6(c), the average response time in READr,sc is much
longer than that in READr,c since using a shared cache incurs
longer delays for remote cache accesses. In general, a shared
cache is a single point of failure and a potential performance
bottleneck, and it incurs longer delays. Note that it is possible
to divide rescue servers into groups, and use a separate shared
cache in each group, which has the potential to keep the
shared cache in each group from being overloaded, and reduce
the database workload as much as possible. However, this
method incurs administrative overhead in forming groups and
determining the right size of each group. As our goal is to
build an autonomic system, we will not explore this approach
in more depth.

In summary, by using DotSlash rescue and Qcache services
together, a web site can improve its maximum request rate
supported by a factor of 10 for the RUBBoS read-only mix.
Although the major performance gain comes from the Qcache
services, the rescue services are the fundamental framework
upon which the Qcache services are built. Moreover, the
efficiency of the Qcache services depends on the cache hit
ratio.

E. Results for Submission Mix

Based on Section IV-B, DotSlash turns off database write
queries temporarily for regular users under heavy load. We
disable this feature in testing our prototype system against the
RUBBoS submission mix, which has about 2% write queries.
We choose to do so for two reasons. First, turning off all
write queries will convert the submission mix into a read-only
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TABLE IV
SUMMARY OF EXPERIMENTAL RESULTS FOR RUBBOS SUBMISSION MIX

Test Max Rate Compared Compared Rescue
Case (reqs/s) to SUB to SUBr Servers

SUB 180 100%

SUBc 174 97%

SUBr 580 322% 100% 4

SUBr,c 871 484% 150% 8

mix, which we have evaluated in the last section. Secondly,
allowing site administrators to perform necessary updates in
our system is roughly equivalent to having a small percentage
of write queries in the submission mix. Depending on whether
rescue servers are available and whether query result caching
is enabled, we have four test cases for the submission mix as
follows.

• SUB: no rescue, no cache.
• SUBc: no rescue, with cache.
• SUBr: with rescue, no cache.
• SUBr,c: with rescue, with cache.
Table IV summarizes our experimental results for the RUB-

BoS submission mix. Without using DotSlash rescue and
Qcache services, a web server can only support a request rate
of 180 requests/second. The request rate supported increases
to 580 requests/second by only using DotSlash rescue services
with 4 rescue servers, and increases to 871 requests/second
by using DotSlash rescue and Qcache services together with
8 rescue servers. Compared to SUB, SUBr and SUBr,c

achieve an improvement of 322% and 484%, respectively.
Compared to SUBr, SUBr,c achieves an improvement of
150%. Next, we give details for each test case using the
submission mix.

Figure 7 shows the experimental results for SUB and
SUBc, where rescue servers are not available. We give the
CPU utilization for the web server and database server in Fig-
ure 7(a), and present the request rate supported in Figure 7(b).
We observe that the web server CPU is the bottleneck. When
the load is light with 400 clients, caching is not activated.
Thus, we have the same CPU utilization for SUB and SUBc.
When the load is heavy with 1200 clients, caching is turned on.
However, the performance is not improved by only using query
result caching because it reduces the database workload but
increases the web server workload due to a low cache hit ratio,
and the web server is the bottleneck. The maximum request
rate supported is 180 and 174 requests/second in SUB and
SUBc, respectively. Note that the number of clients supported
is 1300 in SUB and 1240 in SUBc. The cache hit ratio is
76% in SUBc, which is much lower compared to around 90%
cache hit ratio in the RUBBoS read-only mix.

Figure 8 shows the experimental results for SUBr and
SUBr,c, where a varying number of rescue servers are used.
By using a sufficient number of rescue servers, the origin web
server is no longer a bottleneck. We give the origin database
server CPU utilization in Figure 8(a), present the request rate
supported in Figure 8(b), and display the rate of locks waited
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Fig. 7. Experimental results for the RUBBoS submission mix when rescue
servers are not available

for at the origin database server in Figure 8(c).

Based on Figure 8(a) and 8(b), we observe that the origin
database server CPU utilization at the peak rate is only 58%
and 70% in SUBr,c and SUBr, respectively, which are much
lower compared to over 80% CPU utilization in the RUBBoS
read-only mix. This leads us to locate other bottlenecks in
the system besides the database CPU utilization. In fact,
for the RUBBoS submission mix, the rate of database locks
waited for becomes a performance bottleneck well before the
database CPU gets overloaded. MySQL uses table locking
in its default storage engine MyISAM to control concurrent
read/write accesses to the same database table. Table locking
allows many threads to read from a table at the same time; but
a thread must get an exclusive write lock to write to a table.
During an update to a database table, all other threads that
need to access this particular table must wait until the update
is done. In MySQL, the number of table access contentions
caused by table locking is indicated by a status variable
called table locks waited. In the RUBBoS submission mix,
both read and write access rates go up as the number of clients



increases. As a result, the rate of locks waited for increases. At
certain point, the number of table access contentions increases
abruptly, which causes the database performance to degrade
seriously. Using query result caching reduces the read access
rate to the origin database, which in turn reduces the number
of table access contentions as well as the database workload.

For SUBr, query result caching is not used. As the load
increases, the read access rate to the origin database increases
quickly along with the write access rate. The maximum request
rate supported is 580 requests/second, obtained using 4103
clients and 4 rescue servers. Under this load, the origin
database server has a 70% CPU utilization, and an average
of 4 locks waited for per second.

For SUBr,c, each web/application server uses a co-located
query result cache, which greatly reduces the read access rate
to the origin database. The maximum request rate supported is
871 requests/second, obtained using 6400 clients and 8 rescue
servers. Under this load, the origin database server has a 58%
CPU utilization, and an average of 22 locks waited for per
second. The origin web server cache hit ratio is 70%.

In summary, by using DotSlash rescue and Qcache services
together, a web site can improve its maximum request rate
supported by a factor of 5 for the RUBBoS submission mix,
where the major performance gain comes from the rescue
services. Comparing this performance improvement with that
of the read-only mix, we observe a difference of a factor of
2. The main reason is that write queries not only reduce the
cache hit ratio, but also increase database access contentions.
To allow single-server databases to survive web hotspots,
DotSlash turns off write queries temporarily for regular users
under heavy load.

VI. CONCLUSIONS

In this paper, we have described how to enable on-demand
distributed query result caching in DotSlash for handling web
hotspots effectively. We have discussed the DotSlash system
architecture and the design of DotSlash Qcache services, and
evaluated DotSlash rescue and Qcache services individually as
well as together. Through our experimental results, we have
demonstrated that using DotSlash rescue and Qcache services
together is very effective for hotspot rescue at dynamic content
web sites with read-mostly databases. For example, using
DotSlash a web site can increase its maximum request rate
supported by a factor of 10 for the RUBBoS read-only mix.

For future work, we plan to investigate how the hotspot
rescue techniques we developed in DotSlash can be applied
to other systems beyond web servers. Handling short-term
dramatic load spikes caused hotspots is an issue common to
many Internet servers such as game servers, SOAP servers
[30], and SIP proxy servers [26]. Similar issues may also arise
in other types of systems such as peer-to-peer systems and
Grid computing systems [12]. Currently, our prototype system
[36] only supports open mutual-aid communities. We plan to
add security mechanisms to our system to against attacks, and
enable insurance mechanisms in our system to promote the
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incentive for providing DotSlash rescue services and reduce
abuse.
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