
The Journal of Systems and Software 75 (2005) 193–204

www.elsevier.com/locate/jss
Enhancing Service Location Protocol for efficiency, scalability and
advanced discovery

Weibin Zhao *, Henning Schulzrinne

Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, Mailcode 0401, New York, NY 10027, USA

Received 18 March 2004; received in revised form 21 March 2004; accepted 3 April 2004

Available online 7 June 2004

Abstract

This paper presents three new mechanisms for the Service Location Protocol (SLP): mesh enhancement, preference filters and

global attributes. The mesh enhancement simplifies Service Agent (SA) registrations and improves consistency among Directory

Agents (DAs) by defining an interaction scheme for DAs and supporting automatic registration distribution among peer DAs.

Preference filters facilitate processing of search results (e.g., finding the best match) in SLP servers (DAs and SAs) to reduce the

amount of data transferred to the client for saving network bandwidth. Global attributes allow using a single query to search

services across multiple types. These mechanisms can improve SLP efficiency and scalability and support advanced discovery such as

discovering multi-access-point services and multi-function devices. We expect that these techniques can also be applied to other

service discovery systems.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Service discovery; Service Location Protocol; Peer relationship; Full mesh; Registration distribution; Preference filters; Global attributes
1. Introduction

As computing continues moving towards a network-

centric model, finding and making use of available ser-
vices such as printing, display and file sharing in the

network becomes increasingly important. To use a ser-

vice, a device such as a computer or personal digital

assistant needs to know the access point 1 of the service,

which traditionally depends on a priori knowledge or

manual configuration. As more devices are network

enabled and more services are available on networks,

properly configuring devices for better utilizing available
services involves non-trivial administrative overhead.

Moreover, administrative configuration becomes diffi-

cult or even impossible when devices move from a fixed
*Corresponding author. Tel.: +1-2127490908; fax: +1-2126660140.

E-mail addresses: zwb@cs.columbia.edu (W. Zhao),

hgs@cs.columbia.edu (H. Schulzrinne).
1 In IP networks, a service access point is specified by a tuple: IP

address, port number and access protocol (such as FTP or HTTP),

which can often be encoded into a URL.

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2004.04.011
managed network to a constantly changing or unman-

aged network. Consider the following three application

scenarios. First, as a mobile device often relies on ser-

vices provided by other devices, it needs to discover
available services when it moves to a new network.

Secondly, in an ad-hoc network (e.g., a disaster rescue

setting), administrative configuration is unlikely to be

possible and effective since devices need to learn about

each other dynamically and cooperate. Lastly, for home

networks, low cost and ease of use are dominant design

considerations, making administrative configuration

unsuitable. In recognizing the need to reduce adminis-
trative configuration as much as possible and enable

automated service discovery, many companies, stan-

dards bodies and consortia are actively developing ser-

vice discovery technology. As a result, various service

discovery systems and protocols are emerging in recent

years, such as the Service Location Protocol (SLP)

(Guttman et al., 1999b), Jini (Waldo, 1999), Universal

Plug and Play (UPnP, 2004), Rendezvous (Apple, 2004),
Salutation (Salutation, 2004), Universal Description

Discovery and Integration (UDDI, 2004), and the

Bluetooth Service Discovery Protocol (SDP) (Bluetooth,

mail to: zwb@cs.columbia.edu


194 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
2004). Although different systems address the service

discovery problem at various levels in various ways, they

all support the same basic functionality, namely map-

ping service descriptions or specifications to service ac-

cess points. By using service discovery technology, a

device no longer needs to know its service access points
via a priori knowledge, instead it can just specify the

characteristics of its desired services, which will be

automatically mapped into available service access

points in any network that supports service discovery.

One of the widely used service discovery protocols is

SLP, which is an IETF (Internet Engineering Task

Force) proposed standard for service discovery in IP

networks. As more applications (Kempf and Montene-
gro, 2001; Naugle et al., 2001; Bakke et al., 2003; Zhao

and Schulzrinne, 2004c; Poynor, 2001) employ SLP for

various discovery purposes, we saw a need to improve

SLP efficiency and scalability, and support new discov-

ery scenarios such as discovering multi-access-point

services and multi-function devices. In this paper, we

present three new mechanisms for SLP: mesh enhance-

ment, preference filters and global attributes. The mesh
enhancement simplifies Service Agent (SA) registrations

and improves consistency among Directory Agents

(DAs) by defining an interaction scheme for DAs and

supporting automatic registration distribution among

peer DAs. Preference filters facilitate processing of

search results (e.g., finding the best match) in SLP

servers (DAs and SAs) to reduce the amount of data

transferred to the client for saving network bandwidth.
Global attributes allow using a single query to search

services across multiple types.

The rest of this paper is organized as follows. We first

give some background for service discovery and SLP in

Section 2. Then we describe three proposed SLP mech-

anisms: mesh enhancement, preference filters and global

attributes in Section 3–5, respectively. Finally, we dis-

cuss our implementation in Section 6, give experimental
results and their evaluation in Section 7, list related

work in Section 8, and conclude in Section 9.
2. Background

2.1. Service discovery

In a service discovery system, a common service

description framework is needed for service providers,

referred to as servers, and service users, referred to as

clients, to describe service characteristics so that they

can understand each other properly. In general, each

service can be described using a set of attribute-value

pairs, with each attribute-value pair specifying one

property of the service. There are two ways to organize
attributes: a flat structure where all attributes are at the

same level, and a hierarchical structure where attributes
can be at different levels. For examples, SLP simply puts

attribute-value pairs into a list, whereas UPnP and

UDDI use XML to describe a hierarchy of attributes.

Although Resource Description Framework (RDF,

2004) has been proposed as the service description for-

mat for interoperability between service discovery sys-
tems (Reynolds, 2001), so far there is no service

description standard yet.

While service advertisements from servers usually

include all attributes of services, service search requests

from clients only include attributes of interest, which

may just specify a desired service type or class such as

printer, or give additional desired service properties such

as color printer and printing speed. In general, any
service search request can be specified by a search filter

such as those used in SLP and Lightweight Directory

Access Protocol (LDAP) (Howes, 1997), which is a

logical expression about attributes of interest and their

desired values. The matching of a service search request

with a service advertisement leads to a discovery. Al-

though service discovery systems bear similarity to web

search engines as they both provide matches for search
requests, they differ in that service discovery uses attri-

bute-based matching whereas web search uses keyword-

based matching, and thus a match in the former has a

specific meaning while a match in the latter may have

different meanings in different contexts.

Multicast and directories are two widely used mech-

anisms for service discovery. When only multicast is

used, services are discovered in a peer-to-peer fashion in
two ways. In passive discovery, servers periodically

multicast their service advertisements, and clients listen

to these advertisements. Clients compare received ser-

vice advertisements with their desired service require-

ments to determine matching services. In active

discovery, clients multicast their service search requests,

and servers listen to these requests. A server compares

received service search requests with its service adver-
tisement; if there is a match, the server unicasts its ser-

vice advertisement to the client. Although multicast can

enable a device to be fully auto-configured (IETF, 2004)

in a network segment, it usually cannot scale to a large

number of devices, and it is not generally supported in

wide-area networks. In the directory-centric service

discovery model, directory services accept service

advertisements from servers, and answer service search
requests from clients. Servers register their services with

directories, and clients search services at directories, all

using unicast. In order to discover directory services,

multicast can be used for an intranet, such as in SLP and

Jini, but well-known directories are often assumed for

the Internet, such as in UDDI. In addition, Dynamic

Host Configuration Protocol (DHCP) (Droms, 1997)

can be used to get directory service information in local-
area networks (Perkins and Guttman, 1999), and DNS

SRV (Gulbrandsen et al., 2000) can be used to obtain



W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204 195
directory service information for given DNS domains

(Zhao et al., 2004).

2.2. Service Location Protocol

The Service Location Protocol (SLP) (Guttman et al.,
1999b) provides a flexible framework for service dis-

covery in IP networks. It supports both directory-centric

and peer-to-peer discovery models, and enables power-

ful service filtering and browsing. SLP uses general

Universal Resource Locators (URLs) (Berners-Lee

et al., 1998) or the ‘‘service:’’ URL scheme (Guttman et

al., 1999a) to specify service locations or service access

points. Each service has a service type. For examples,
service:printer:lpr://mandolin.cs.columbia.edu is a

printing service, and ftp://ftp.cs.columbia.edu is an FTP

service. Service characteristics are described using a list

of attribute-value pairs, such as ‘‘speed¼ 15 ppm, res-

olution¼ 1200 dpi’’ for a printing service. SLP uses

service scopes to arrange services into groups, which can

indicate geographic locations (e.g., ‘‘New York’’),

administrative groupings (e.g., ‘‘Law School’’), or other
categories (e.g., ‘‘Emergency’’). Each service registration

is valid only for its specified service lifetime (e.g., 2 h),

and will be removed from directory services when it has

expired. In other words, SLP service registrations are

soft states, and need to be refreshed.

SLP has three types of entities: User Agents (UAs),

Service Agents (SAs), and Directory Agents (DAs). Fig.

1 illustrates their relationships. UAs initiate service
discovery on behalf of clients by querying all SAs via

multicast or a DA, if available, via unicast. UAs use

three types of SLP messages: a service type request

(SrvTypeRqst) message to get a list of available ser-

vice types in a service type reply (SrvTypeRply) mes-

sage, an attribute request (AttrRqst) message to get a

list of attributes for a given service type or service in-

stance in an attribute reply (AttrRply) message, and a
service request (SrvRqst) message with a search filter

(or attribute predicate) specifying characteristics of the

desired service to get a list of URLs giving the locations

of matching services in a service reply (SrvRply) mes-

sage. SrvTypeRqst, SrvTypeRply, AttrRqst and

AttrRply messages allow a client to browse available

service types and their attributes, which can be used to

construct service queries in SrvRqst messages. Given
the desired service type, and a set of attributes describ-
Acknowledgement via Unicast

Registration via Unicast

Reply via Unicast

Request via Unicast

Request via Multicast

Reply via Unicast

Client

UA SA

DA

Service

Fig. 1. SLP system architecture.
ing the service, SLP derives the service access points

(URLs) for clients. SAs work on behalf of services by

responding directly to UA queries, and registering with

DAs, if they exist, via service registration (SrvReg)

messages. SAs can also deregister services from DAs

using service deregistration (SrvDeReg) messages. DAs
serve as centralized information repositories by accept-

ing SA registrations and answering UA queries. DAs

can be discovered in two ways. For passive DA dis-

covery, UAs and SAs simply listen for unsolicited DA

advertisement (DAAdvert) messages sent periodically

by DAs to an administratively scoped multicast address

(Meyer, 1998). UAs and SAs can actively discover DAs

by multicasting a DA discovery SrvRqst message
whose service type is ‘‘service:directory-agent’’. DAs

answer each DA discovery request with a unicast DA-

Advert message.

SLP achieves scalability by using DAs and service

scopes, and thus efficiently supports service discovery in

systems of different scales. In small SLP deployments,

DAs are usually not needed. UAs multicast requests to

all SAs, and SAs respond via unicast. Since this multi-
cast-based discovery cannot scale to a large number of

SAs and UAs, DAs are introduced in mid-size SLP

deployments, where SAs register services with DAs, and

UAs search services at DAs, all using unicast. In large

SLP deployments, DAs are arranged into different

scopes to provide further scalability, e.g., services in the

Law School and Business School of Columbia Univer-

sity can be assigned to different scopes.
3. Mesh enhancement

3.1. Motivation

DAs allow SLP to scale to large deployments that

may span large geographic regions. To avoid a single
point of failure, each scope needs to have multiple DAs.

However, SLP DAs do not interact with each other,

thus SAs are required to register services with all DAs in

their scopes. This simple approach has two disadvan-

tages. First, it places too heavy a burden on SAs since

they not only need to discover and register with all

existing DAs, but also need to re-register when new DAs

are discovered or old DAs are found to have rebooted.
In other words, an SA needs to constantly monitor all

DAs in its scope. This burden becomes an issue of effi-

ciency and scalability when many devices provide ser-

vices and each of them uses an SA. Secondly, in large

deployments it is hard to guarantee that all SAs can

discover all DAs in their scopes, leading DAs in the

same scope to have inconsistent registrations. To rem-

edy this situation, we designed the SLP mesh enhance-
ment (mSLP). The rationale behind mSLP is that

distributing registrations to multiple DAs should be

http://service:printer:lpr://mandolin.cs.columbia.edu
ftp://ftp.cs.columbia.edu


DA2 (S1, S2)DA3 (S2, S3)DA1 (S1, S2)

(S1, S2)

(S2)

DA4 (S3)

(S3)

(S2)

Fig. 2. An example of the mSLP scope-based fully meshed peering DA

architecture for four DAs (DA1 to DA4) and three scopes (S1 to S3).
An edge between two DAs means that they are peers.

196 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
taken care of by DAs instead of by SAs because there

are far fewer DAs than SAs. It is more efficient and

scalable for SLP to have a smaller number of powerful

DAs but many lightweight SAs.

3.2. Design overview

mSLP defines a scope-based fully meshed peering DA

architecture. For each scope, all DAs that serve the

scope form a fully meshed peer relationship, similar to

Internal Border Gateway Protocol (IBGP) (Rekhter and

Li, 1995). In mSLP, DAs that share one or multiple

scopes are peers. Each pair of peer DAs maintain a

single peering connection 2 between them no matter how
many scopes they share. Fig. 2 shows an example of this

peering DA architecture for four DAs and three scopes.

To keep consistent registrations for their shared scopes,

two peer DAs exchange new registrations via their

peering connection by using direct forwarding and anti-

entropy––these two mechanisms will be described fur-

ther in Section 3.4.

mSLP employs a full-mesh topology mainly for sim-
plicity and reliability. We anticipate that each scope has

a small number of DAs, thus mSLP should be sufficient

for a mesh size on the order of tens or below. Moreover,

large DA meshes can be avoided by splitting scopes. For

example, if scope S has n DAs and n is too large, we can

split S into two finer scopes S1 and S2, with n1 DAs for S1
only, n2 DAs for S2 only, and n3 DAs for both S1 and S2,
and n1 þ n2 þ n3 ¼ n. In this way, instead of having a
large full mesh of size n, now we have two smaller full

meshes of size n1 þ n3 and n2 þ n3, respectively.

Accordingly, a service registration that previously targets

for S now needs to be registered under both S1 and S2.
Another important mSLP design consideration is to

be fully backward compatible with SLP. mSLP strives to

be a lightweight enhancement to SLP by only defining a

new DAAdvert attribute––‘‘mesh-enhanced’’, a new
message extension––mesh forwarding (MeshFwd), and a

new message type––anti-entropy request (AntiE-

trpRqst). An SLP DA can be mesh-enhanced by

carrying the ‘‘mesh-enhanced’’ attribute keyword in its

DAAdvert message and supporting the mSLP func-

tionalities without affecting its old functionalities. Mesh-

enhanced DAs can be deployed incrementally and co-

exist with legacy SLP DAs in the same system.
mSLP offers a number of advantages. First, SA reg-

istrations can be simplified because no matter how many

DAs are present in a scope, an SA only needs to dis-

cover, monitor and register with any one of them for

that scope. Registrations will then be propagated auto-
2 A peering connection is a persistent connection (e.g., TCP) that

provides reliable and ordered transfers between two peers.
matically to other DAs. Secondly, consistency among

peer DAs can be improved as they periodically reconcile

their inconsistent registrations. Furthermore, newly
booted and rebooted DAs can catch up on all new

registrations at once from their peers purely through

DA interaction, without involving any SAs. Finally,

fewer TCP connections are needed when SAs register

with DAs via TCP. 3 Consider a scope that has n SAs

and m DAs. In SLP, each SA needs to connect to each

DA and register, thus n � m TCP connections are nee-

ded. But in mSLP, each SA only needs to connect to one
DA in the full mesh of m nodes and register, then reg-

istrations are propagated through the DA mesh, there-

fore only nþ m � ðm� 1Þ=2 TCP connections are

needed. Given any n > mP 2, we have n � m >
nþ m � ðm� 1Þ=2. For example, if n ¼ 100 and m ¼ 10,

then 1000 TCP connections are needed in SLP, but only

145 such connections are needed in mSLP.

3.3. Peer relationship management

In mSLP, a DA maintains a peer relationship to each

of its peers. A DA can learn about its peers via config-

uration, DHCP (Perkins and Guttman, 1999), and

DAAdvert multicast and unicast. A peer relationship

has three stages: setting up, maintaining, and tearing

down. To begin a peer relationship, one DA (say, DA1)
must first get the DAAdvert of another DA (say, DA2),

then DA1 initiates a peering connection to DA2, and

sends its DAAdvert along this peering connection to

ensure that DA2 will have its DAAdvert and be able to

identify this peering connection. Thus, only a single

peering connection will be established between DA1 and

DA2. Also in the setting up stage, two peer DAs ex-

change information about their existing peers, which
enables both DAs to learn about new peers incremen-

tally. After two DAs has set up a peer relationship, they

start to propagate new registrations and periodically

send a keep-alive message to each other. This keep-alive

mechanism enables a DA to detect network partitions
3 Service registrations in SLP can be performed via either TCP or

UDP, but a registration needs to use TCP if it is too large to fit into a

UDP packet.



W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204 197
and peer crashes. A DA will tear down a peer rela-

tionship when its peer’s keep-alive message has timed

out, when it has received its peer’s shutdown message, or

when its peer has closed the peering connection.

3.4. Registration propagation control

mSLP propagates registrations among peer DAs un-

der two constraints. First, two peer DAs exchange reg-

istrations only in their shared scopes. For example, as

DA1 and DA3 in Fig. 2 share one scope S2, they ex-

change registrations only in S2. Note that a multi-scoped

registration needs to be propagated properly in all tar-

geting scopes. For example, consider that DA3 in Fig. 2
receives a multi-scoped registration in scopes S2 and S3,
then this registration needs to be propagated to DA1,

DA2 and DA4 since all of them serve part of the tar-

geting scopes. The second constraint is that only new

registrations are exchanged between two peer DAs. To

achieve this, each registration uses a MeshFwd extension

to carry two pieces of control information: a version-

timestamp assigned by its SA, and an accept-id assigned
by its accepting DA. The accepting DA for a registra-

tion is the first DA that accepts the registration. An

accept-id has two components: accept-da (a unique

identifier for the accepting DA) and accept-timestamp.

All accept-timestamps assigned by the same DA must be

monotonically increasing. Therefore, all accept-ids are

unique; they define a total order for all registrations

accepted by the same DA and a partial order for all
registrations accepted by all DAs. mSLP uses accept-ids

for registration propagation control to ensure that any

registration accepted by any DA is distributed to all

targeting DAs exactly once. Specifically, a DA propa-

gates registrations in the increasing order of their ac-

cept-ids, i.e., registrations accepted by the same DA are

propagated in the increasing order of their accept-

timestamps, and registration accepted by different DAs
may be propagated in any order. Similarly, all version-

timestamps assigned by the same SA must be mono-

tonically increasing. Version-timestamps are used to

resolve different versions of the same registration: 4 a

new version will overwrite an old one, but not vise versa.

Since an SLP registration is updated only by one SA,

using version-timestamps is sufficient to identify the

most recent version for any registration.
mSLP distributes registrations among peer DAs in two

ways: anti-entropy and direct forwarding. Anti-entropy is

used for exchanging initial registrations when two peer

DAs find out about each other for the first time, and for

catching up on new registrations after failures. A DA
4 Different versions of the same registration have the same service

URL.
initiates an anti-entropy session by sending an AntiE-

trpRqstmessage to a peer. Then the peer replies with all

requested new registrations in the increasing order of

their accept-ids, and sends a service acknowledgment

(SrvAck) message at the end of the batch of new regis-

trations to indicate the processing of the corresponding
AntiEtrpRqst message has been completed. While in

anti-entropy, new registrations are pulled by the receiving

DA via an AntiEtrpRqst message and are sent in a

batch using a SrvAck message to signal the end of the

batch, in direct forwarding, new registrations are pushed

by the sending DA and are sent individually. More spe-

cifically, after a DA has sent all new registrations ac-

cepted by itself to a peer via anti-entropy, the DA starts to
forward any further incoming registrations accepted by

itself directly to the peer. This direct forwarding contin-

ues as long as the peer is alive and there is no failure. Note

that the direct forwarding of a registration only goes one

hop from its accepting DA to all targeting DAs.

mSLP supports two types of anti-entropy sessions:

complete and selective. Complete anti-entropy (Petersen

et al., 1997) is the traditional way to perform anti-en-
tropy, in which all registrations that have an accept-id

greater than any specified accept-id in the AntiE-

trpRqst or have an accept-da not specified in the

AntiEtrpRqst are solicited. Selective anti-entropy

(Zhao and Schulzrinne, 2002) is our proposed new way

to perform anti-entropy, in which only registrations that

have an accept-id greater than any specified accept-id in

the AntiEtrpRqst are solicited. Selective anti-entropy
enables two DAs to perform partial anti-entropy in the

granularity of one accept-da, i.e., all registrations ac-

cepted by the same DA. Selective anti-entropy is a

generalization of traditional anti-entropy, and is more

flexible to support scope-based replication in mSLP and

support complex partial replication in general. Next, we

use an example to show how selective anti-entropy dif-

fers from complete anti-entropy. Consider a scope that
has three DAs: DA1, DA2 and DA3. DA2 has registra-

tions accepted by DA1, DA2 and DA3. If DA1 sends a

selective AntiEtrpRqst to DA2 using an accept-id list

as {(DA2, T2)}, then DA1 only requests registrations

that are accepted by DA2 and have an accept-timestamp

greater than T2. If DA1 sends a complete AntiE-

trpRqst to DA2 using the same accept-id list as before,

then DA1 requests all registrations accepted by DA1 and
DA3, in addition to those registrations accepted by DA2

and having an accept-timestamp greater than T2.
4. Preference filters

4.1. Motivation

Because an SLP server, whether a DA or SA, does

not perform any processing on search results, all



198 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
matching service entries are returned from the server to

the client in no particular order. This works fine in small

SLP deployments, but may not scale to large deploy-

ments. Consider the following scenarios. First, if too

many services match a search request, the search results

may exhaust client network and storage resources. Sec-
ondly, a client may just want to find a few services that

satisfies its requirements rather than all of them. Sending

unneeded results to the client will waste network and

server resources. Finally, a client may want to weigh the

relative suitability of matching services based on some

criteria, which calls for sorting search results. Sorting at

the server is more efficient than sorting at the client since

the former does not need to pass the attributes of
matching services to the client just for sorting purposes.

Reducing the amount of data transferred to the client is

useful when the client uses a low bandwidth channel,

such as a wireless channel. A good example showing the

need for processing search results at SLP servers is the

best-match search, such as finding a printer that has

the shortest queue. For this discovery, an SLP UA needs

to get information for all printers, sort them based on
the queue length attribute, and choose the one with the

shortest queue. This procedure is inefficient when there

are many printers.

4.2. Design

Preference filters are designed to facilitate flexible

processing of search results, and are specified via SLP
extensions attached to SrvRqst messages. Fig. 3 shows

the processing of a SrvRqst message that has a search

filter and a preference filter: first the search filter is ap-

plied to the service registration database generating a set

of matching services, then the preference filter is applied

to the matching services generating a set of preferred

services.

Although the format of preference filters could be
designed in a way similar to SLP and LDAP search

filters (Howes, 1997), we employ a simpler approach

based on composition. We choose select and sort as two

basic preference filters and design the corresponding

SLP Select and Sort extensions (Zhao et al., 2002)

for specifying them, then we use these two basic filters to

compose generic preference filters.

The Select extension is used by a UA in the
SrvRqst message to limit the maximum number (say,
Preference FilterSearch Filter

Preferred ServicesMatching ServicesService Database

Fig. 3. The processing of a SrvRqst that has a search filter and a

preference filter.
n) of results to be returned, and is used by an SLP server

in the corresponding SrvRply message to indicate the

total number (say, m) of search results. If n < m, then
only the first n search results are returned, otherwise all

m search results are returned. As a special case, a UA

may set n to 0 to obtain the number of search results
without retrieving the results themselves.

The Sort extension carries a sort key list. Each sort

key has a key name (i.e., an attribute name), a type

specifier (‘‘s’’ for string and ‘‘i’’ for integer), an ordering

specifier (‘‘+’’ for increasing and ‘‘)’’ for decreasing),

and an optional reference value. Although SLP has five

attribute types (integer, string, boolean, opaque and

keyword), we only consider integer sort and string sort
since keyword attributes 5 never need to be sorted, and

boolean and opaque attributes can be sorted as strings if

needed. Integer keys may have a reference value, as in

speed:i:+:12, causing the sort to be based on the distance

to the reference value, 12.

A generic preference filter is a list of select and sort

filters observing the following rules: (1) two basic filters

of the same type, whether select or sort, cannot be
adjacent to each other; (2) if the same number of sort

and select filters are used, the last one must be a select

filter; and (3) for two select filters s1 and s2, if s1 appears
earlier than s2, then the selected number of results

specified in s1 must be greater than that in s2.
Next we show some examples of preference filters, in

which select(n) denotes a select filter and sort(sort-key-

list) denotes a sort filter. Finding the best match is
accomplished via a sort filter followed by a select filter,

e.g., ‘‘sort(load:i:+), select(1)’’ for the least loaded

service, ‘‘sort(speed:i:)), select(1)’’ for the fastest ser-

vice, and ‘‘sort(price:i:+:12), select(1)’’ for the service

with a price closest to 12 charging units. Other complex

preference filterings include ‘‘sort(speed:i:-), select(3)’’

for the three fastest services, ‘‘sort(speed:i:),load:i:+),
select(1)’’ for the least loaded service among the fastest,
and ‘‘sort(speed:i:)), select(3), sort(load:i:+), se-

lect(1)’’ for the least loaded service among the three

fastest.
5. Global attributes

5.1. Motivation

A local attribute describes a service property specific

to certain service type whereas a global attribute de-

scribes a service property common to all service types.

Local attributes and global attributes differ in how they
5 SLP keyword attributes have no values.



W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204 199
are defined, named and used. Currently, SLP only sup-

ports local attributes in that each service type defines its

own attribute set via a service template (Guttman et al.,

1999a); an attribute name is unique only within its ser-

vice type (i.e., two different service types may use the

same attribute name); and an attribute is always used
along with its service type. As more service properties

are identified as being common to all service types, such

as transport protocol, we saw a need to introduce global

attributes into SLP for efficiency and advanced discov-

ery. Without such a mechanism, a UA needs three steps

to find all services supporting Stream Control Trans-

mission Protocol (SCTP) (Stewart et al., 2000): sending

a SrvTypeRqst message to obtain a list of service
types, then using a separate SrvRqst message to search

services of each type, and finally combining the search

results. As a SrvRqst message can only search services

of a single type, nþ 1 searches are needed for n service

types, which is inefficient if n is large.

5.2. Basic design

To enable global attributes in SLP, we need to assign

a separate namespace to global attributes, define them

via attribute templates, and using them properly in

searching services across multiple service types. Since a

global attribute can be used with any service type, if it

has the same name as a local attribute, then there will be

a confusion on which is which. Therefore, a separate

namespace is needed for global attributes. To follow the
common practice of prefixing an attribute name with its

service type, we use the ‘‘service-’’ prefix in global

attribute naming. Note that XML (Bray et al., 2000)

also uses prefixes to define its namespaces. We define a

global attribute via an attribute template (Zhao and

Schulzrinne, 2004b). Any service type that uses a global

attribute imports the attribute’s definition into its service

template, similar to the C include and Java import
mechanisms. In this way, a global attribute only has one

definition, and can be used consistently for all service

types. A global attribute can appear in any place where a

local attribute is appropriate. In a SrvRqst message,

when local attributes are used, exactly one service type

must be specified; but when only global attributes are

used, multiple service types or a service type wildcard

can be specified. Thus, using a single SrvRqst message
can search services across multiple or all service types.

For example, to find all services supporting SCTP, we

can use a SrvRqst message that has a service type

wildcard, and a search filter (or attribute predicate) of

‘‘service-transport-protocol¼ sctp’’.
Using global attributes can improve SLP efficiency.

First, global attributes only need to be defined once.

Afterwards, they can be imported into any service
template. This avoids defining the same attribute

repeatedly in different service templates, and ensures a
consistent definition. Secondly, by using global attri-

butes, a single SrvRqst message can search services

across multiple service types, which is more efficient

than using multiple SrvRqst messages, one for each

service type.

5.3. Advanced discovery

Using global attributes can accelerate the standardi-

zation of common service properties and support ad-

vanced discovery scenarios. As good examples, we can

define service identifier and device identifier as global

attributes. Service identifiers and device identifiers are

URIs (Berners-Lee et al., 1998), e.g., UUIDs (2004).
Each of them uniquely and persistently identifies a ser-

vice or a device.

While service identifiers are used as service keys in

Jini (Waldo, 1999) and UDDI (2004), SLP uses service

URLs as service keys. Since a service may change its

URLs (e.g., when the service moves), retrieving a service

based on its service URLs may not always be feasible.

To remedy this situation, we can define service identifier
as a global attribute so that a client can always find a

service based on its service identifier whether the service

has changed its URLs. Using service identifiers, we can

also discover multi-access-point services that provide the

same service at different access points residing at the

same device. For example, a printer that supports IPP

(Herriot et al., 2000) and LPR access protocols may

have two URLs service:printer:ipp://mpp.example.com
and service:printer:lpr://mpp.example.com. A multi-

access-point service advertises each access point sepa-

rately, but all advertisements use the same service

identifier to indicate that they point to the same service.

A client can discover all advertisements of a multi-ac-

cess-point service by specifying the service identifier and

the service type in a SrvRqst message.

Using device identifiers, we can discover multi-
function devices that provide different types of services

at the same device. For example, a device that supports

printing and scanning services may have two URLs

service:printer://print.example.com and service:scan-

ner://scan.example.com. A multi-function device

advertises each service type separately, but all adver-

tisements use the same device identifier to indicate that

they reside at the same device. A client can discover all
advertisements of a multi-function device by specifying

the device identifier and a wildcard service type (or all

the service types the device supports) in a SrvRqst

message.

Using service identifiers and device identifiers to-

gether, we can discover replicated services, namely the

same service being provided at different devices. A rep-

licated service advertises the same service at each device
separately, and all advertisements use the same service

identifier but different device identifiers. In contrast, all

http://service:printer:ipp://mpp.example.com
http://service:printer:lpr://mpp.example.com
http://service:printer://print.example.com
http://service:scanner://scan.example.com
http://service:scanner://scan.example.com


200 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
advertisements of a multi-access-point service residing at

a single device use the same service identifier and the

same device identifier.
6. Implementation

We have implemented the mesh enhancement, pref-

erence filters and global attributes in our release of en-

hanced SLP; the source code can be found at (Zhao and

Schulzrinne, 2004d). To support the mesh enhancement,

DAs need to manage peer relationships by maintaining a

peer table, and need to control registration propagations

by maintaining a summary vector for all registrations as
well as an accept-id and a version-timestamp for each

registration. At the same time, SAs need to use the

MeshFwd extension in their registrations, but UAs do

not need to be changed. To support preference filters and

global attributes, an SLP server only needs to slightly

adjust its processing of SrvRqst messages. For a

SrvRqst message with a preference filter, the filter is

ignored during the search, and then the filter is applied to
the search results. When the filter has multiple select and

sort filters, they must be processed in order, with the

output of one filter as the input of the next filter. The

output of the last filter is returned to the client. For a

SrvRqst message that uses local attributes, it should

have exactly one service type, and is handled as before.

For a SrvRqstmessage that uses only global attributes,

it may have multiple service types or a service type
wildcard. In this case, the service type information is

ignored during the search, and then those search results

that do not match any of the specified service types are

discarded.
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

time (seconds)

nu
m

be
r 

of
 r

eg
is

tr
at

io
n 

en
tr

ie
s

ankara (without failure)
ottawa (with failure)

Fig. 4. Without using mSLP: consistency between two peer DAs at

host ankara and host ottawa after ottawa recovers from two failures

during ½90; 440� and ½1150; 1320� s.
7. Evaluation

To evaluate the proposed enhancements, we carried

experiments in our local-area network (LAN) and on

PlanetLab (PlanetLab, 2004). In the LAN, we use a

cluster of 30 machines; each has a 1 GHz Intel Pentium

III CPU, and 512 MB of memory. They all run Redhat

9.0 with Linux kernel 2.4.20-20.9, and are connected via

100 Mb/s fast Ethernet. PlanetLab consists of more than

300 nodes all over the world; each has a CPU of at least
1 GHz clock rate, and has at least 1 GB of memory.

They all run Redhat 9.0 with Linux kernel 2.4.22-

r3_planetlab, and use PlanetLab software 2.0. Planet-

Lab nodes have four types of network connections: DSL

lines, Internet2, North America commodity Internet,

and outside North America.

We implemented SLP DAs with the proposed

enhancements using Java 1_4_2_03, and implemented
SLP SAs and UAs using C. We evaluate each

enhancement individually by comparing the results
when the enhancement is enabled with that when the

enhancement is disabled.

7.1. Mesh enhancement

To show the benefits of using mSLP, we measure
consistency between two peer DAs after one recovers

from failures. In this experiment, we run two DAs, one

SA, and one UA, all at local machines, and they are all

in the same scope. The SA performs n different regis-

trations repeatedly at a fixed interval of Ir seconds, and
the lifetime of each registration is set to Ir � ðnþ 1Þ
seconds. Thus, each registration is refreshed every

R ¼ Ir � n seconds, and each DA should have n regis-
tration entries at steady state. The UA queries both DAs

at a fixed interval of Iq seconds to find out how many

registration entries each DA has. Since the UA does not

need to retrieve the entries themselves, it attaches a

preference filter ‘‘select(0)’’ to each query. The SA (or

UA) times out a registration (or query) if it cannot get a

response after T seconds, in which case the DA is as-

sumed to be failed (crashed or separated from the net-
work). The experimental parameters are set as follows:

n ¼ 100, Ir ¼ 6 s, R ¼ Ir � n ¼ 600 s, Iq ¼ 10 s, and T ¼ 1

s.

In the first case, mSLP is disabled, and the SA reg-

isters with both DAs. In a duration of 2000 s, the DA at

host ankara works properly, but the DA at host ottawa

crashes in two time periods: ½90; 440� s and ½1150; 1320�
s. Fig. 4 shows the number of registration entries at both
DAs sampled by the UA. For each sample, if the re-

sponse from a DA has timed out, then the UA marks the

number of registration entries at that DA as )1. We

observe that ottawa misses m service registrations when

it fails during ½t0; t1�, where m ¼ n � ðt1 � t0Þ=R assuming

t1 � t0 6R. When ottawa recovers from failures, it has m



0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

20

40

60

80

100

time (seconds)

nu
m

be
r 

of
 r

eg
is

tr
at

io
n 

en
tr

ie
s

ankara (without failure)
ottawa (with failure)

Fig. 6. Using mSLP: consistency between two peer DAs at host ankara

and host ottawa after ottawa recovers from two failures during ½90; 440�
and ½1150; 1320� s.

W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204 201
registration entries less than ankara during ½t1; t0 þ R�,
catches up missing entries during ½t0 þ R; t1 þ R�, and has

the same registration entries as ankara after t1 þ R if it

does not have new failures. Thus, ottawa needs to take a

refresh interval of R seconds to catch up all missing

registrations. When the UA queries ottawa during
½t1; t1 þ R�, it gets incomplete service information.

To quantify the relationship between missing entries

and failure duration, we use l to denote the average

percentage of missing entries in the first R seconds after

a DA recovers from failures, and use q to denote the

ratio of failure duration over refresh interval R. We first

consider q 2 ½0; 1�. In the above experimental setup, the

missing entries in ½t1; t0 þ R� is n � q, and the average
missing entries in ½t0 þ R; t1 þ R� is n � q=2. Thus, we can
compute l as follows:

l ¼ n � q � ð1� qÞ � Rþ n � q=2 � q � R
R � n � 100%

¼ q � ð2� qÞ=2 � 100%

Fig. 5 shows the relationship between l and q for

q 2 ½0; 1�. We observe that l increases as q increases, and

l ¼ 0 when q ¼ 0, and l ¼ 50% when q ¼ 1. If q > 1,
the DA will expire all registration entries when it

recovers. Thus, l ¼ 50% when q > 1, which is the same

as q ¼ 1.

In the second case, mSLP is enabled. For each reg-

istration, the SA only registers with one DA: it ran-

domly chooses one DA to register; if the response from

the chosen DA has timed out, then it registers with

another DA. Fig. 6 shows the experimental results,
where the failure scenario is the same as that in the first

case. We observe that when both DAs are alive, each

registration is propagated from one DA to another DA

automatically via mSLP. Also, when ottawa recovers
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

ρ

µ 
(p

er
ce

nt
ag

e)

Fig. 5. The relationship between l and q for q 2 ½0; 1�, where l is the

average percentage of missing entries in the first R seconds after a DA

recovers from failures, and q is the ratio of failure duration over re-

fresh interval R.
from failures, it gets all missing registrations at once

from ankara via mSLP quickly, which takes about 100

ms in our experiments. Thus, when both DAs are alive,

the UA can always get the same consistent reply whether

it queries ottawa or ankara. In other words, mSLP can
effectively fix the inconsistency problem among peer

DAs after one of them recovers from failures.

To quantify the consistency improvement by using

mSLP, consider the probability that a UA gets incom-

plete service information. Assuming each DA has an

availability of p1, and q6 1, then the probability that a

DA has incomplete service information is

p2 ¼ ð1� p1Þ=q. Thus, the probability that a UA gets
incomplete service information from two DAs is

p3 ¼ p2 � 50%þ p2 � 50%þ p22 when mSLP is not used,

but is p4 ¼ p22 when mSLP is used. For example, if

p1 ¼ 99:9%, and q ¼ 0:1, then p2 ¼ 1%, p3 ¼ 1:01%, and

p4 ¼ 0:01%, where the probability that a UA gets

incomplete service information has been reduced by two

orders of magnitude by using mSLP.

7.2. Preference filters

To show the benefits of using preference filters, we

measure the response time of a query when many entries

match the query. As an example, consider the usage

scenario in DotSlash (Zhao and Schulzrinne, 2004a),

where different web servers register with mSLP DAs,

and a web server discovers and utilizes spare capacity at
other web servers to relieve its load spikes. Although

many registered web servers may have spare capacities,

a web server only needs to use a few of them in case of

load spikes. In this experiment, we run one DA and one

SA at local machines, and run two UAs at PlanetLab

nodes, one at gtidsl1 which is behind a DSL line, and

another one at ucla1 which connects to Internet2. The



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

number of service types

tim
e 

us
ed

 (
se

co
nd

s)

without using global attributes
using global attributes

Fig. 8. Using global attributes versus without using global attributes:

the time used for performing location-based queries from the Planet-

Lab node gtidsl1.

202 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
SA registers with the DA to simulate service registra-

tions performed by n web servers with different spare

capacities, where n varies from 10 to 1000. The two UAs

query the DA to obtain information about spare

capacities at available web servers. For each n, each UA

queries in two cases: (1) without using preference filters,
all n entries are retrieved, and (2) by using the following

preference filters ‘‘sort(spare-capacity:i:)), select(10)’’,
only entries with the top 10 largest spare capacities are

retrieved. We use TCP in the first case since the reply

size can be quite large, but use UDP in the second case

since the reply size is small and fixed.

Fig. 7 shows the experimental results. We observe

that without using preference filters, the response time
increases as the number of matching entries n increases

since the DA needs to process more entries, and send

more data to the UA. Further, when the reply size gets

larger, the low bandwidth UA at gtidsl1 takes signifi-

cantly more time to get the reply than the high band-

width UA at ucla1. In contrast, by using preference

filters, the response time only increases slightly as n in-

creases since the reply size is unchanged, but the DA
needs a slightly more time to process a larger number of

matching entries. The difference of response times is

mainly due to the difference of reply sizes. When pref-

erence filters are used, the reply size if fixed, which is 927

bytes for all n 2 ½10; 1000�. But when preference filters

are not used, the reply size increases as n increases,

which is 920 bytes when n ¼ 10, 9020 bytes when

n ¼ 100, and 90 020 bytes when n ¼ 1000.

7.3. Global attributes

To show the benefits of using global attributes, we

measure the time used for completing a location-based
0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

number of matching entries

re
sp

on
se

 ti
m

e 
(s

ec
on

ds
)

gtidsl1 without preference filters
ucla1 without preference filters
gtidsl1 with preference filters
ucla1 with preference filters

Fig. 7. Using preference filters versus without using preference filters:

the response time measured from two PlanetLab nodes, gtidsl1 and

ucla1, where gtidsl1 is behind a DSL line, and ucla1 connects to In-

ternet2.
query. As an example, consider the problem of finding

all services at a given location, where a number of dif-

ferent types of services exist, such as printer, projector,

and fax. In this experiment, we run one DA and one SA

at local machines, and run one UA at the PlanetLab

node gtidsl1. The SA registers n types of services with

the DA, where n varies from 1 to 20. The UA queries the
DA to find services at a given location. Without using

global attributes, the UA needs to use nþ 1 queries,

where one query for obtaining the service type list, and a

separate query for each service type. Using global

attributes, the UA only needs to use one query by

specifying a service type wildcard.

Fig. 8 shows the experimental results. We observe

that without using global attributes, the total time used
increases as the number of service types increases. In

contrast, by using global attributes, the time used is

roughly unchanged. We also run the above experiment

using a local UA, and obtained a similar curve except

that the time used by the local UA is about two orders

of magnitude less than that of the UA at gtidsl1.
8. Related work

Fully meshed peer relationships are used in IBGP

(Rekhter and Li, 1995). While an IBGP node is only in

one mesh, a multi-scoped mSLP DA may belong to

multiple meshes. mSLP supports flexible selective anti-

entropy (Zhao and Schulzrinne, 2002) as well as tradi-

tional complete anti-entropy (Petersen et al., 1997).
UDDI also uses anti-entropy to replicate registries, but

only for full replications, whereas mSLP supports scope-

based partial replications.



W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204 203
A number of service discovery systems such as Jini

(Waldo, 1999) and UDDI (2004) support selecting and

sorting search results, but none of them support generic

preference filtering by composing these two basic oper-

ations. The LDAP sort control (Howes et al., 2000) and

paging control (Weider et al., 1999) come closest to our
proposed preference filters. But LDAP aims to send all

search results back to the client via the paging control,

whereas we simply try to send selected number of search

results to the client. Furthermore, we support reference-

based sorting and support composing multiple select

and sort filters.

Our work on SLP global attributes was motivated by

Guttman who describes how to use service identifiers as
SLP service keys in (Guttman, 2002). Guttman’s pro-

posal needs to use hierarchical attributes when a service

has multiple URLs with different properties. We believe

that it is simpler to keep service URLs as service keys

and define service identifier as a global attribute. Similar

to global attributes, Jini (Waldo, 1999) defines a set of

common entry classes in the net.jini.lookup.entry pack-

age. When a Jini search specifies multiple interfaces
(such as Toaster and FireAlarm), it means to find ser-

vices that implement all specified interfaces (logical

‘‘and’’). In contrast, when an SLP SrvRqst message

specifies multiple service types, it means to find services

of any specified type (logical ‘‘or’’).
9. Conclusion

This paper presented three new mechanisms for SLP:
the mesh enhancement that simplifies SA registrations

and improves the consistency of peer DAs, preference

filters that facilitate processing of search results in SLP

servers, and global attributes that allow using a single

query to search services across multiple types. These

mechanisms can improve SLP efficiency and scalability,

and support advanced discovery. Although we discuss

these techniques in the context of SLP, we expect that
they can also be applied to other service discovery sys-

tems. Preference filters and the mesh enhancement are

now experimental Request for Comments (RFCs) (Zhao

et al., 2002, 2003) after review by the IETF.
References

Apple, 2004. Rendezvous. Available from URL: <http://devel-

oper.apple.com/macosx/rendezvous/>.

Bakke, M., et al. 2003. Finding iSCSI targets and name servers using

SLP. Internet draft, Internet Engineering Task Force, work in

progress. Available from URL: <http://www.ietf.org/internet-

drafts/draft-ietfips-iscsi-slp-06.txt>.

Berners-Lee, T., Fielding, R., Masinter, L., 1998. Uniform resource

identifiers (URI): generic syntax. RFC 2396, Internet Engineering

Task Force. Available from URL: <http://www.rfc-editor.org/rfc/

rfc2396.txt>.
Bluetooth, 2004. Available from URL: <http://www.bluetooth.com>.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., 2000. Extensible markup

language (XML) 1.0 (second edition). W3C Recommendation

REC-xml-20001006, World Wide Web Consortium (W3C), Avail-

able from URL: <http://www.w3.org/XML/>.

Droms, R.E., 1997. Dynamic host configuration protocol. RFC 2131,

Internet Engineering Task Force. Available from URL: <http://

www.rfc-editor.org/rfc/rfc2131.txt>.

Gulbrandsen, A., Vixie, P., Esibov, L., 2000. A DNS RR for specifying

the location of services (DNS SRV). RFC 2782, Internet Engi-

neering Task Force. Available from URL: <http://www.rfc-edi-

tor.org/rfc/rfc2782.txt>.

Guttman, E., 2002. The serviceid: URI scheme for service location.

Internet draft, Internet Engineering Task Force, work in progress.

Available from URL: <http://www.ietf.org/internet-drafts/draft-

guttman-svrloc-serviceid-02.txt>.

Guttman, E., Perkins, C.E., Kempf, J., 1999a. Service templates and

service: Schemes. RFC 2609, Internet Engineering Task Force.

Available from URL: <http://www.rfc-editor.org/rfc/rfc2609.txt>.

Guttman, E., Perkins, C.E., Veizades, J., Day, M., 1999b. Service

location protocol, version 2. RFC 2608, Internet Engineering Task

Force. Available from URL: <http://www.rfc-editor.org/rfc/

rfc2608.txt>.

Herriot, R., Butler, S., Moore, P.G., 2000. Internet printing protocol/

1.1: Encoding and transport. RFC 2910, Internet Engineering Task

Force. Available from URL: <http://www.rfc-editor.org/rfc/

rfc2910.txt>.

Howes, T., 1997. The string representation of LDAP search filters.

RFC 2254, Internet Engineering Task Force. Available from URL:

<http://www.rfc-editor.org/rfc/rfc2254.txt>.

Howes, T., Wahl, M., Anantha, A., 2000. LDAP control extension for

server side sorting of search results. RFC 2891, Internet Engineer-

ing Task Force. Available from URL: <http://www.rfc-editor.org/

rfc/rfc2891.txt>.

IETF, 2004. Zero configuration networking working group. Available

from URL: <http://www.ietf.org/html.charters/zeroconfchar-

ter.html>.

Kempf, J., Montenegro, G., 2001. Finding an RSIP server with SLP.

RFC 3105, Internet Engineering Task Force. Available from URL:

<http://www.rfc-editor.org/rfc/rfc3105.txt>.

Meyer, D.L., 1998. Administratively scoped IP multicast. RFC 2365,

Internet Engineering Task Force. Available from URL: <http://

www.rfc-editor.org/rfc/rfc2365.txt>.

Naugle, J., Kasthurirangan, K., Ledford, G., 2001. TN3270E service

location and session balancing. RFC 3049, Internet Engineering

Task Force. Available from URL: <http://www.rfc-editor.org/rfc/

rfc3049.txt>.

Perkins, C.E., Guttman, E., 1999. DHCP options for service location

protocol. RFC 2610, Internet Engineering Task Force. Available

from URL: <http://www.rfc-editor.org/rfc/rfc2610.txt>.

Petersen, K., Spreizer, M.J., Terry, D.B., Theimer, M.M., Demers,

A.J., 1997. Flexible update propagation for weakly consistent

replication. In: ACM Symposium on operating systems principles,

Saint Malo, France.

PlanetLab, 2004. PlanetLab. Available from <http://www.planet-

lab.org/>.

Poynor, T., 2001. Automating infrastructure composition for internet

services. In: Systems Administration Conference (LISA). San

Diego, California.

RDF, 2004. Resource description framework. Available from URL:

<http://www.w3.org/RDF/>.

Rekhter, Y., Li, T., 1995. A border gateway protocol 4 (BGP-4). RFC

1771, Internet Engineering Task Force. Available from URL:

<http://www.rfc-editor.org/rfc/rfc1771.txt>.

Reynolds, F., 2001. An RDF framework for resource discovery. In:

Semantic Web Workshop, Hong Kong, China.

Salutation, 2004. Available from URL: <http://www.salutation.org>.

http://developer.apple.com/macosx/rendezvous/
http://developer.apple.com/macosx/rendezvous/
http://www.ietf.org/internet-drafts/draft-ietfips-iscsi-slp-06.txt
http://www.ietf.org/internet-drafts/draft-ietfips-iscsi-slp-06.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.bluetooth.com
http://www.w3.org/XML/
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2782.txt
http://www.rfc-editor.org/rfc/rfc2782.txt
http://www.ietf.org/internet-drafts/draftguttman-svrloc-serviceid-02.txt
http://www.ietf.org/internet-drafts/draftguttman-svrloc-serviceid-02.txt
http://www.rfc-editor.org/rfc/rfc2609.txt
http://www.rfc-editor.org/rfc/rfc2608.txt
http://www.rfc-editor.org/rfc/rfc2608.txt
http://www.rfc-editor.org/rfc/rfc2910.txt
http://www.rfc-editor.org/rfc/rfc2910.txt
http://www.rfc-editor.org/rfc/rfc2254.txt
http://www.rfc-editor.org/rfc/rfc2891.txt
http://www.rfc-editor.org/rfc/rfc2891.txt
http://www.ietf.org/html.charters/zeroconfcharter.html
http://www.ietf.org/html.charters/zeroconfcharter.html
http://www.rfc-editor.org/rfc/rfc3105.txt
http://www.rfc-editor.org/rfc/rfc2365.txt
http://www.rfc-editor.org/rfc/rfc2365.txt
http://www.rfc-editor.org/rfc/rfc3049.txt
http://www.rfc-editor.org/rfc/rfc3049.txt
http://www.rfc-editor.org/rfc/rfc2610.txt
http://www.planet-lab.org/
http://www.planet-lab.org/
http://www.w3.org/RDF/
http://www.rfc-editor.org/rfc/rfc1771.txt
http://www.salutation.org


204 W. Zhao, H. Schulzrinne / The Journal of Systems and Software 75 (2005) 193–204
Stewart, R.J., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H.,

Taylor, T., Rytina, I., Kalla, M., 2000. Stream control transmission

protocol. RFC 2960, Internet Engineering Task Force. Available

from URL: <http://www.rfc-editor.org/rfc/rfc2960.txt>.

UDDI, 2004. Universal description discovery and integration. Avail-

able from URL: <http://www.uddi.org/>.

UPnP, 2004. Universal plug and play. Available from URL: <http://

www.upnp.org>.

UUID, 2004. Universal unique identifier. Available from URL:

<http://www.opengroup.org/onlinepubs/9629399/apdxa.htm>.

Waldo, J., 1999. The Jini architecture for network-centric computing.

Communications ACM 42 (7), 76–82.

Weider, C., Herron, A., Anantha, A., Howes, T., 1999. LDAP control

extension for simple paged results manipulation. RFC 2696,

Internet Engineering Task Force. Available from URL: <http://

www.rfc-editor.org/rfc/rfc2696.txt>.

Zhao, W., Schulzrinne, H., 2002. Selective anti-entropy. In: ACM

Symposium on Principles of Distributed Computing, Monterey,

California.

Zhao, W., Schulzrinne, H., 2004a. DotSlash: a scalable and efficient

rescue system for handling web hotspots. Technical Report CUCS-

007-04, Department of Computer Science, Columbia University.

Zhao, W., Schulzrinne, H., 2004b. Enabling global service attributes in

the service location protocol. Internet draft, Internet Engineering
Task Force, work in progress. Available from URL: <http://

www.ietf.org/internet-drafts/draft-zhao-slp-attr-03.txt>.

Zhao, W., Schulzrinne, H., 2004c. Locating IP-to-Public switched

telephone network (PSTN) telephony gateways via SLP. Internet

draft, Internet Engineering Task Force, work in progress. Avail-

able from URL: <http://www.ietf.org/internet-drafts/draft-zhao-

iptel-gwloc-slp-06.txt>.

Zhao, W., Schulzrinne, H., 2004d. Service location protocol enhance-

ments project. Available from URL: <http://www.cs.columbia.edu/

IRT/mslp>.

Zhao, W., Schulzrinne, H., Guttman, E., 2003. Mesh-enhanced service

location protocol (mSLP). RFC 3528, Internet Engineering Task

Force. Available from URL: <http://www.rfc-editor.org/rfc/

rfc3528.txt>.

Zhao, W., Schulzrinne, H., Guttman, E., Bisdikian, C., Jerome,

W., 2002. Select and sort extensions for the service location

protocol (SLP). RFC 3421, Internet Engineering Task Force.

Available from URL: <http://www.rfc-editor.org/rfc/rfc3421.

txt>.

Zhao, W., Schulzrinne, H., Guttman, E., Bisdikian, C., Jerome, W.F.,

2004. Remote service discovery in the service location protocol via

DNS SRV. Internet draft, Internet Engineering Task Force, work

in progress. Available from URL: <http://www.ietf.org/internet-

drafts/draft-zhao-slp-remote-da-discovery-06.txt>.

http://www.rfc-editor.org/rfc/rfc2960.txt
http://www.uddi.org/
http://www.upnp.org
http://www.upnp.org
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
http://www.rfc-editor.org/rfc/rfc2696.txt
http://www.rfc-editor.org/rfc/rfc2696.txt
http://www.ietf.org/internet-drafts/draft-zhaoslp-attr-03.txt
http://www.ietf.org/internet-drafts/draft-zhaoslp-attr-03.txt
http://www.ietf.org/internet-drafts/draft-zhaoiptel-gwloc-slp-06.txt
http://www.ietf.org/internet-drafts/draft-zhaoiptel-gwloc-slp-06.txt
http://www.cs.columbia.edu/IRT/mslp
http://www.cs.columbia.edu/IRT/mslp
http://www.rfc-editor.org/rfc/rfc3528.txt
http://www.rfc-editor.org/rfc/rfc3528.txt
http://www.rfc-editor.org/rfc/rfc3421.txt
http://www.rfc-editor.org/rfc/rfc3421.txt
http://www.ietf.org/internet-drafts/draft-zhaoslp-remote-da-discovery-06.txt
http://www.ietf.org/internet-drafts/draft-zhaoslp-remote-da-discovery-06.txt

	Enhancing Service Location Protocol for efficiency, scalability and advanced discovery
	Introduction
	Background
	Service discovery
	Service Location Protocol

	Mesh enhancement
	Motivation
	Design overview
	Peer relationship management
	Registration propagation control

	Preference filters
	Motivation
	Design

	Global attributes
	Motivation
	Basic design
	Advanced discovery

	Implementation
	Evaluation
	Mesh enhancement
	Preference filters
	Global attributes

	Related work
	Conclusion
	References


