
DotSlash: An Automated Web Hotspot Rescue System
with On-demand Query Result Caching†

Weibin Zhao, Henning Schulzrinne
Department of Computer Science

Columbia University
New York, NY 10027

{zwb,hgs}@cs.columbia.edu

Abstract— DotSlash is an automated web hotspot rescue sys-
tem. This paper presents DotSlash Qcache services that allow a
web site to use on-demand distributed query result caching to
greatly reduce the workload at read-mostly databases. DotSlash
Qcache services complement DotSlash rescue services; together
they provide a comprehensive solution to address different
bottlenecks at multi-tier web sites.

I. INTRODUCTION

Web hotspots, also known as flash crowds or the Slashdot
effect [1], are short-term dramatic load spikes that could
seriously degrade the service quality of affected web sites. To
handle web hotspots cost-effectively, we developed DotSlash,
a self-configuring and scalable rescue system [22], [23].

This paper presents DotSlash Qcache services, which allow
a web site to use on-demand distributed query result caching
to greatly reduce the workload at read-mostly databases. The
novelty of this work is on-demand caching based on load
conditions: caching remains inactive as long as the load
is normal, but is activated once the load is heavy. This
approach offers good data consistency for normal load and
good scalability with relaxed data consistency under heavy
load. DotSlash Qcache services complement DotSlash rescue
services; together they provide a comprehensive solution to
address different bottlenecks at multi-tier web sites.

The remainder of this paper is organized as follows. We
discuss related work in Section II, introduce DotSlash system
architecture in Section III, describe the design of DotSlash
Qcache services in Section IV, evaluate our prototype system
in Section V, and conclude in Section VI.

II. RELATED WORK

A large body of existing work on web hotspots [8], [19],
[14] have focused on static content. To improve the application
server scalability, application programs or components [16],
[2] can be offloaded from the origin server. Recently, Olston
et al. [12] proposed a scalability service for databases using
multicast-based consistency management. Although their sys-
tem aims at broader web applications, its scalability gain under
heavy load is unclear. In contrast, our system targets read-
mostly databases and scales well under dramatic load spikes.

†This work was supported in part by the National Science Foundation
(ANI-0117738).

Server

Database
Server

Application
Server
Web

Client
Driver

Data

Fig. 1. DotSlash Application Model

Caching is very effective for web content distributions. Web
caching [7], [6] can cache HTML pages or page fragments,
whereas database caching [3], [5] can cache data from back-
end databases. While caching in existing systems is active in
all cases, our query result caching is activated only under
heavy load, which minimizes the effect of caching on con-
sistency while improving the system scalability.

Replication [15], [18] is a widely used mechanism for
database scalability. Our current prototype uses a single back-
end database server, which can be extended to support dis-
tributed database servers by incorporating database replication
into our system.

Database clustering [13], [11] is a mechanism at the
database server tier to pool database servers together for high
availability and performance. DotSlash is a solution at the
web/application server tier for scalability. Our system and
database clustering are orthogonal, and they can be used
together at dynamic content web sites.

III. DOTSLASH SYSTEM ARCHITECTURE

The application model for our system is the standard three-
tier web architecture as shown in Figure 1, where application
programs running at the application server access application
data stored in the database server through a data driver.

A. DotSlash Usage Models

DotSlash allows different web sites to form a mutual-aid
community, and use spare capacity in the community to relieve
web hotspots experienced by any individual site. We consider
three types of mutual-aid communities: open communities that
are intended for a cooperative environment, closed communi-
ties that use authentication to only admit authorized web sites,
and flood-insurance closed communities that employ tokens as
well as authentication to promote the incentive for providing
DotSlash rescue services and reduce abuse.



Client

Origin Server

Rescue Server

Database

ServerServer

Web/Application

Data Driver

Query Result Cache

Database

ServerServer

Web/Application

Data Driver

Query Result Cache

Fig. 2. Enabling query result caching in DotSlash

B. DotSlash Rescue Services

DotSlash rescue services enable a web site to build an
adaptive distributed web server system on the fly and replicate
application programs dynamically, which relieve a spectrum
of bottlenecks ranging from access network bandwidth to web
servers and application servers. An origin web server discovers
suitable rescue servers via wide-area service location, allocates
them for temporary use, and redirects client requests to them.
DotSlash uses DNS round robin as the first level crude load
distribution, and uses HTTP redirect as the second level fine-
grained load balancing. When a rescue relationship is set up,
the rescue server assigns a unique virtual host name to the
origin server, which is used by the origin server in its HTTP
redirects to the rescue server. Also, the origin server adds the
rescue server’s IP address to its local DNS for round robin. A
rescue server works as a reverse caching proxy for its origin
server, and serves the content of its origin server on the fly.

C. DotSlash Qcache Services

DotSlash Qcache services allow an origin server and its
rescue servers to use on-demand query result caching to reduce
the database workload at the origin server. Since the data driver
intercepts all database queries, we enhance it with query result
caching without changing the application API and database
interface. In our prototype system [20], we use the common
LAMP (Linux, Apache, MySQL, and PHP) configuration, and
extend the original PHP data driver for MySQL databases with
a query result cache. Figure 2 illustrates how to enable query
result caching in DotSlash. Note that a client request can be
redirected from the origin server to the rescue server via either
DNS round robin or HTTP redirect.

IV. THE DESIGN OF DOTSLASH QCACHE SERVICES

A. Caching Features

Our query result caching is on-demand, self-configuring,
distributed, and transparent to web users and applications.

The control of our on-demand caching is based on two
factors, namely the web server’s DotSlash state and load
region. A web server has three DotSlash states: SOS state if
it gets rescue services from others, rescue state if it provides

Cache On

Cache On

Cache Off

SOS State

Rescue State

State
Normal

Lower Threshold

Upper Threshold
Heavy Load

Light Load

Desired Load

Cache Off

Cache OffCache On

Fig. 3. DotSlash on-demand query result caching

rescue services to others, and normal state otherwise. DotSlash
uses two configurable parameters, lower threshold ρl and
upper threshold ρu, to define three load regions: light load
region [0, ρl), desired load region [ρl, ρu], and heavy load
region (ρu, 100%]. Our current prototype system measures
network and CPU utilization.

Figure 3 shows the control of our on-demand caching.
Caching is activated if a web server is in the SOS state (i.e.,
an origin server), or if a web server is in the rescue state
(i.e., a rescue server), or if a web server is in the normal state
and its load is above the upper threshold. On the other hand,
caching is de-activated when an origin server switches from
the SOS state to the normal state, or when a rescue server
switches from the rescue state to the normal state, or when
a web server is in the normal state and its load is below the
lower threshold.

When an origin server sets up its rescue servers, it passes the
query result caching control parameters to its rescue servers.
By doing so, a rescue server can manage cached objects based
on the instructions from the origin server. In this way, an origin
server can set up a distributed query result caching system on
the fly using one set of control parameters.

By default, each web/application server has its own, co-
located query result cache. An origin server can obtain more
query result caches as it drafts more rescue servers. Using
co-located query result caches is well-suited for DotSlash
in terms of resource utilization efficiency because our query
result caching is on demand, and the cache server is idle
most of time. Note that our system can use a dedicated query
result cache server which is shared among an origin server
and its rescue servers, or among a subset of rescue servers.
Doing so can reduce the workload at the origin database server.
However, a shared cache may become a potential performance
bottleneck, and accessing a remote cache incurs longer delays.

Without the need to change client-side web browsers and
server-side application programs, our query result caching is
easy to deploy. Furthermore, we provide a way for web users
to bypass our query result caching. Our current prototype



TABLE I
DOTSLASH CACHING-ENHANCED DATA DRIVER

Cache Bypass Rescue Database Database
On Cache Request Write Read
no – – normal normal
yes no – turn off cache+DB
yes yes no normal DB+cache
yes yes yes redirect redirect

system uses the HTTP Cache-Control header for this purpose
as follows. If there is no-cache or max-age=0 in the HTTP
Cache-Control header of a client request, DotSlash will handle
that request without using query result caching.

B. Caching-enhanced Data Driver

Our caching-enhanced data driver is designed with the
following considerations. First, rescue servers only handle
read-only queries; all write queries are handled by the origin
web server. This is mainly for security reasons because an
origin server is unlikely to allow rescue servers to update
its databases. Secondly, under heavy load we turn off write
queries temporarily for regular users, but still allow site
administrators to perform necessary updates. This is mainly for
scalability considerations because a large number of read/write
contentions can seriously degrade the database performance.
We use an application-specific caching TTL to bound the
staleness of cached objects. Note that this design targets
hotspot rescue for read-mostly databases, which are common
for content management systems (CMS), blogs, and web
forums. It does not aim to be applicable to all web applications.

Our caching-enhanced data driver handles database queries
based on three factors, namely the web server’s query re-
sult caching state, the client request HTTP Cache-Control
header, and the client request type. For a client request, if
its HTTP Host header uses an origin server’s name such as
www.origin.com, or an assigned virtual host name such as
vh1.www.rescue.com, then the request type is rescue; otherwise
the request type is regular.

Table I shows the control of our caching-enhanced data
driver. There are four cases. For case 1, query result caching
is off. Any database query is handled normally by forwarding
the query directly to the database. For case 2, query result
caching is on and bypassing caching is false. Any write query
is turned off, and an error message is returned. Any read-only
query is handled as follows. Check the query against the query
result cache. For a cache hit, get the result from the cache, and
return it to the application. For a cache miss, submit the query
to the corresponding database, which can be a local database
or a remote database at the origin server; then get the query
result from the database, save it to the query result cache, and
return it to the application. For case 3, query result caching is
on, bypassing caching is true, and the request type is regular.
Any database query is forwarded directly to the database. For
a read-only query, save the query result to the query result
cache before returning it to the application. For case 4, query

result caching is on, bypassing caching is true, and the request
type is rescue. The request is redirected back to the origin
web server via HTTP redirect, which is to ensure that a client
request that needs to bypass caching can always be handled
by the origin web server. For this purpose, an origin server
does not apply HTTP redirect to client requests that need to
bypass caching. However, client requests could be distributed
to rescue servers due to the origin server’s DNS round robin.
This is why we need to use HTTP redirect in case 4. Note that
a rescue server uses the origin server’s IP address in its HTTP
redirects to bypass the origin server’s DNS round robin.

C. Query Result Cache

Both disk and memory can be used as our caching storage
engine. Due to performance considerations, we choose to
use a memory storage engine called memcached [10], which
employs a client-server model. At the server side, a daemon
maintains cached objects in dynamically allocated memory.
Each cached object is a key-value pair with an expiration
time. At the client side, we use an open-source C library
libmemcache [9] to access the cache. In the check in function,
we first use the ELF hash algorithm [4] to map the query
string into a cache key, and then store the query string and the
query result as the cache value, using the caching TTL as the
expiration time. In the check out function, we use the same
ELF hash algorithm to map the query string into a cache key.
If a cached object is found for the key, we check whether the
stored query string matches the input query string. If so, it is
a cache hit; otherwise, it is a cache miss.

V. EVALUATION

We evaluate DotSlash rescue services and Qcache services
individually as well as altogether using the RUBBoS bulletin
board benchmark [17]. We carry out experiments in our local
area network using a cluster of Linux machines connected
via 100 Mb/s fast Ethernet. All web/application servers run
Apache 2.0.49, configured with PHP 4.3.6. The database
server runs MySQL 4.0.18. We use our dot-slash.net domain
for dynamic DNS updates, and use the enhanced Service
Location Protocol [21] for rescue server discovery.

A. Results for Read-only Mix

We first test our system using the RUBBoS read-only
mix. Depending on whether rescue servers are available,
whether query result caching is enabled, and whether each
web/application server has a co-located cache or uses a shared
cache server running on a separate machine, we have five test
cases as follows.

• READ: no rescue, no cache.
• READc: no rescue, with a co-located cache.
• READr: with rescue, no cache.
• READr,c: with rescue, with a co-located cache.
• READr,sc: with rescue, with a shared cache.
Table II summaries the performance of our prototype system

for the RUBBoS read-only mix. Without using DotSlash



TABLE II
PERFORMANCE SUMMARY FOR RUBBOS READ-ONLY MIX

Test Max Rate Compared Compared Rescue
Case (reqs/s) to READ to READr Servers

READ 117 100%

READc 125 107%

READr 249 213% 100% 4

READr,c 1151 984% 462% 15

READr,sc 828 708% 333% 13

rescue and Qcache services, a web server can only sup-
port a request rate of 117 requests/second. The request rate
supported increases to 249 requests/second by only using
DotSlash rescue services with 4 rescue servers, and increases
to 1151 requests/second by using DotSlash rescue and Qcache
services together with 15 rescue servers. Compared to READ,
READr and READr,c achieve an improvement of 213%
and 984%, respectively. Compared to READr, READr,c

achieves an improvement of 462%.

B. Results for Submission Mix

Based on Section IV-B, DotSlash turns off database write
queries temporarily for regular users under heavy load. We
disable this feature in testing our system against the RUBBoS
submission mix, which has about 2% write queries. We choose
to do so for two reasons. First, turning off all write queries will
convert the submission mix into a read-only mix. Secondly,
allowing site administrators to perform necessary updates in
our system is roughly equivalent to having a small percentage
of write queries in the submission mix. Depending on whether
rescue servers are available and whether query result caching
is enabled, we have four test cases as follows.

• SUB: no rescue, no cache.
• SUBc: no rescue, with cache.
• SUBr: with rescue, no cache.
• SUBr,c: with rescue, with cache.
Table III summarizes the performance of our prototype

system for the RUBBoS submission mix. Without using Dot-
Slash rescue and Qcache services, a web server can only
support a request rate of 180 requests/second. The request
rate supported increases to 580 requests/second by only using
DotSlash rescue services with 4 rescue servers, and increases
to 871 requests/second by using DotSlash rescue and Qcache
services together with 8 rescue servers. Compared to SUB,
SUBr and SUBr,c achieve an improvement of 322% and
484%, respectively. Compared to SUBr, SUBr,c achieves an
improvement of 150%.

VI. CONCLUSIONS

In this paper, we have described how to enable on-demand
distributed query result caching in DotSlash for handling web
hotspots effectively. Through our experimental results, we
have demonstrated that using DotSlash rescue and Qcache ser-
vices together is very effective for read-mostly databases, e.g.,
a web site can improve its maximum request rate supported
by a factor of 10 for the RUBBoS read-only mix.

TABLE III
PERFORMANCE SUMMARY FOR RUBBOS SUBMISSION MIX

Test Max Rate Compared Compared Rescue
Case (reqs/s) to SUB to SUBr Servers

SUB 180 100%

SUBc 174 97%

SUBr 580 322% 100% 4

SUBr,c 871 484% 150% 8

REFERENCES

[1] S. Adler. The Slashdot effect: An analysis of three Internet publications.
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEffect.html.

[2] Akamai homepage. http://www.akamai.com/.
[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A

dynamic data cache for web applications. In International Conference
on Data Engineering (ICDE), Bangalore, India, March 2003.

[4] Andrew Binstock. Hashing rehashed. Dr. Dobb’s, April 1996.
[5] C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald.

Adaptive database caching with DBCache. IEEE Data Engineering
Bulletin, 27(2):11–18, June 2004.

[6] J. Challenger, P. Dantzig, A. Iyengar, M. Squillante, and L. Zhang. Ef-
ficiently serving dynamic data at highly accessed web sites. IEEE/ACM
Transactions on Networking, 12(2):233–246, April 2004.

[7] A. Datta, K. Dutta, H. Thomas, D. Vandermeer, and K. Ramamritham.
Proxy-based acceleration of dynamically generated content on the world
wide web: An approach and implementation. ACM Transactions on
Database Systems, 29(2):403–443, June 2004.

[8] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing content
publication with Coral. In USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI), San Francisco, California,
March 2004.

[9] libmemcache homepage. http://people.freebsd.org/˜seanc/libmemcache/.
[10] memcached homepage. http://www.danga.com/memcached/.
[11] MySQL cluster. http://www.mysql.com/products/database/cluster/.
[12] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. M. Maggs, and T. C.

Mowry. A scalability service for dynamic web applications. In The
Conference on Innovative Data Systems Research (CIDR), Asilomar,
CA, January 2005.

[13] Oracle real application clusters (RAC).
http://www.oracle.com/technology/products/database/clustering/index.html.

[14] V. Padmanabhan and K. Sripanidkulchai. The case for cooperative net-
working. In International Workshop on Peer-to-Peer Systems (IPTPS),
Cambridge, Massachusetts, March 2002.

[15] C. Plattner and G. Alonso. Ganymed: Scalable replication for transac-
tional web applications. In ACM/IFIP/USENIX International Middle-
ware Conference, Toronto, Canada, October 2004.

[16] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on the edge: A
platform for replicating Internet applications. In International Workshop
on Web Caching and Content Distribution (WCW), Hawthorne, NY,
September 2003.

[17] RUBBoS: Rice university bulletin board system.
http://www.cs.rice.edu/CS/Systems/DynaServer/RUBBoS/.

[18] S. Sivasubramanian, G. Alonso, G. Pierre, and M. v. Steen. GlobeDB:
Autonomic data replication for web applications. In International World
Wide Web Conference (WWW), Chiba, Japan, May 2005.

[19] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson. Reliability and
security in the CoDeeN content distribution network. In Annual Usenix
Technical Conference, Boston, Massachusetts, June 2004.

[20] Weibin Zhao and Henning Schulzrinne. DotSlash—an automated web
hotspot rescue system project. http://dotslash.sourceforge.net/.

[21] Weibin Zhao and Henning Schulzrinne. Service location protocol
enhancements project. http://mslp.sourceforge.net/.

[22] Weibin Zhao and Henning Schulzrinne. DotSlash: A self-configuring
and scalable rescue system for handling web hotspots effectively. In
International Workshop on Web Caching and Content Distribution
(WCW), Beijing, China, October 2004.

[23] Weibin Zhao and Henning Schulzrinne. DotSlash: Handling web
hotspots at dynamic content web sites. In IEEE Global Internet
Symposium, Miami, Florida, March 2005.


