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Abstract

We propose DotSlash, a self-configuring and scalable
rescue system, for handling web hotspots at dynamic
content web sites. To support load migration for dy-
namic content, an origin web server sets up needed
rescue servers drafted from other web sites on the fly,
and those rescue servers retrieve the scripts dynamically
from the origin web server, cache the scripts locally,
and access the corresponding database server directly.
We have implemented a prototype of DotSlash for the
LAMP configuration, and tested our implementation us-
ing the RUBBoS bulletin board benchmark. Experi-
ments show that by using DotSlash a dynamic content
web site can completely remove its web server bottle-
neck, and can support a request rate constrained only by
the capacity of its database server.

1 Introduction
Handling web hotspots (also known as flash crowds or
the Slashdot effect [1]) at dynamic content web sites is a
challenging problem. First, a dynamic content web site
is more likely to be overwhelmed by flash crowds be-
cause the request rate it supports is often much lower
than that of a static content web site [9] since gener-
ating dynamic web pages consumes more CPU cycles
than serving static web pages. Secondly, many existing
caching mechanisms are designed for static content, and
cannot be applied to dynamic content directly [9, 10, 20].
Furthermore, a dynamic content web site typically has a
three-tier architecture as illustrated in Figure 1: a front-
end web server handles the HTTP requests from clients,
an application server implements the business logic, and
a back-end database server stores the content. Depend-
ing on different applications and system configurations,
different servers in the infrastructure may become the
bottleneck [4, 8].

In our earlier work [21], we have developed Dot-
Slash, a self-configuring and scalable rescue system
for handling web hotspots for static content effectively.
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Figure 1: The three-tier architecture for dynamic content
web sites

Here, we extend the DotSlash framework to support web
hotspot rescue for dynamic content.

Dynamic content can be generated using different
technologies, such as PHP, Active Server Pages (ASP),
Java Server Pages (JSP), Java Servlets, and Enterprise
Java Beans (EJB). PHP is the most popular dynamic
web technology used with Apache, and Apache is the
most popular web server. Thus, we discuss DotSlash
in the context of the widely used LAMP configuration
(Linux, Apache, MySQL, and PHP), and expect that
similar techniques can be applied to other configurations
of dynamic content web sites [8, 18]. In the LAMP con-
figuration as shown in Figure 2, PHP is a module of
the Apache web server, and the web server and database
server are usually running on separate machines.

Amza et al. [4] show that different applications may
have different bottlenecks in the LAMP configuration.
The database server is the bottleneck for the TPC-W
benchmark [19] that models online bookstores such as
amazon.com. But the web server is the bottleneck for
the RUBiS benchmark [15] that models auction sites
such as eBay, and for the RUBBoS benchmark [16]
that models bulletin board sites such as Slashdot. We
focus on the web server bottleneck in this paper, and
will address the database server bottleneck in the next
stage of this project. Our approach is as follows. When
a web server is heavily loaded, it drafts a number of
rescue servers from other web sites on the fly, and
redirects a fraction of client requests to those rescue
servers. To serve redirected client requests, a rescue
server retrieves the PHP scripts dynamically from its ori-
gin server, caches the scripts locally, and accesses the
corresponding database server directly. We have imple-
mented a prototype of DotSlash for the LAMP config-
uration, and tested our implementation using the RUB-
BoS bulletin board benchmark [4]. Experiments show
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Figure 2: The LAMP configuration for dynamic content
web sites

that by using DotSlash a dynamic content web site can
completely remove its web server bottleneck, and can
support a request rate constrained only by the capacity
of its database server.

The remainder of this paper is organized as follows.
We discuss related work in Section 2, give an overview
of the DotSlash architecture in Section 3, and describe
dynamic script replication in Section 4. We present ex-
perimental results and evaluations in Section 5, and con-
clude in Section 6.

2 Related Work
Various approaches have been proposed to cache dy-
namic content. Web caching can cache entire HTML
pages or page fragments at proxies [10], web servers [9],
application servers [11, 5], and edge servers [2].
Database caching [3, 6, 12] can cache data from the
back-end database at database caches closer to the ap-
plication server. Complementary to existing caching
mechanisms, DotSlash allows a web site to expand its
capacity dynamically as load increases without admin-
istrator interventions. In particular, DotSlash allows a
web server to obtain additional computing capacity on
demand and replicate scripts dynamically.

In edge computing [2], application components can
be offloaded to edge servers, but manual configuration is
needed to choose the components to be offloaded and
where to deploy applications. In ACDN [13], appli-
cations can be deployed and re-deployed dynamically,
but manual administration is still involved such as creat-
ing a meta-file for each application to be replicated. In
contrast, DotSlash is self-managing by replicating each
script file on demand and fully automatically.

To address the database bottleneck, various schemes
for database caching and replication [3, 6, 12, 17, 14]
have been proposed. We plan to incorporate effective
mechanisms into DotSlash to automate data replication
for web hotspot rescue in the future.

3 The DotSlash Architecture
We provide a brief overview of the DotSlash architecture
here; a more complete description is given in [21].

DotSlash uses a mutual-aid rescue model, where dif-
ferent web sites form a mutual-aid community and use
spare capacity in the community to relieve web hotspots
experienced by any individual site. DotSlash consists of
service discovery, workload monitoring, request redirec-
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Figure 3: An example for dynamic script replication

tion, dynamic virtual hosting, and rescue control. Dot-
Slash allows a web site to build an adaptive distributed
web server system in a fully automated way: service dis-
covery [22] enables servers of different web sites to learn
about each other dynamically and collaborate without
any administrator intervention; dynamic virtual hosting
enables a rescue server to serve the content of its ori-
gin servers on the fly; and rescue control allows a web
server to tune its resource utilization by using rescue ac-
tions triggered automatically based on load conditions.

4 Dynamic Script Replication
To support load migration for dynamic content, we en-
hance DotSlash with dynamic script replication, which
allows a rescue server to dynamically replicate scripts
from its origin servers, and cache the scripts locally.
The motivation is that running scripts consumes a fair
amount of CPU cycles, and the CPU often becomes the
bottleneck for dynamic content web sites [4].

In DotSlash, an origin web server uses both DNS
round robin and HTTP redirect to offload a fraction
of client requests to its rescue servers [21]. For clar-
ity, we omit DNS name resolution steps, and give an
example that uses HTTP redirect to illustrate how dy-
namic script replication works. In Figure 3, the origin
server So is www.origin.com, and the rescue server Sr is
www.rescue.com. The client C takes the following steps
to retrieve http://www.origin.com/search.php?name=x:

1. C makes an HTTP request to So using
http://www.origin.com/search.php?name=x.

2. So sends an HTTP redirect to C as http://www-
vh1.rescue.com/search.php?name=x. Note that So

has already set up a rescue relationship with Sr.
3. C makes an HTTP request to Sr using http://www-

vh1.rescue.com/search.php?name=x.
4. Sr makes an HTTP request to So using

http://www.origin.com/search.php because of
a cache miss for the script file search.php.

5. So sends the script file search.php to Sr, and Sr

caches search.php locally.
6. Sr runs search.php?name=x to access the corre-

sponding database.
7. Sr gets the query results from the database.
8. Sr sends the query results to C.



4.1 Operations at the Rescue Server
When the rescue server Sr receives a request Q, it
checks whether Q is a redirected request for dynamic
content. If Q uses an alias of Sr such as www-
vh1.rescue.com, or uses an origin server’s name such as
www.origin.com, then Q is a redirected request. If the
requested file extension matches one of the configured
script extensions, then Q requests dynamic content. In
Apache, script extensions are configured using the di-
rective AddType, e.g., files with an extension of php or
phtml can be configured as PHP scripts using “AddType
application/x-httpd-php .php .phtml”.

If Q is a redirected request for dynamic content such
as http://www-vh1.rescue.com/search.php?name=x,
then Sr maps Q’s URI to a script file, and sets the
needed environment variables for retrieving PHP scripts
if there is a cache miss. In Apache, environment
variables for sub-processes are set in a per request
table subprocess env. DotSlash sets three environment
variables: Origin Server which specifies the origin
server’s name, Origin Port which specifies the origin
server’s port number for web requests, and Script Root
which specifies the root directory for replicated scripts.
Since Sr may need to retrieve and cache scripts from
multiple origin servers, a request URI is mapped to
its script file as Script Root/Origin Server/URI Path,
where URI Path is the path part of the request URI.
For example, Q’s URI is mapped to a script file Qf as
Script Root/www.origin.com/search.php.

If Qf exists, the script will be executed normally; oth-
erwise, a “file not found” error will be triggered, and be
handled by a 404 handler as follows. If Script Root is set
(i.e., a redirected request for dynamic content), the Dot-
Slash inclusion function dots include is invoked; oth-
erwise, a regular “file not found” message is returned.
Dynamic script replication is performed by dots include
using the following steps.

1. Retrieve the script file from So using
http://Origin Server:Origin Port/URI Path;

2. Add a header H to the retrieved script file for han-
dling file inclusions (see Section 4.3 for details);

3. Set query variables (extracted from the query part
of the request URI) in $ GET or $ POST;

4. Run the script by invoking the native PHP include.

File locking is used to ensure that partially retrieved
script files are not used by concurrent requests.

4.2 Operations at the Origin Server
When the origin server So receives a request Q, it checks
whether Q is from a rescue server (based on its rescue
server list, see [21] for details), and whether Q is for
dynamic content. If so, So will return the script file to
the rescue server instead of running the script.

4.3 File Inclusions in Replicated Scripts
In PHP, file inclusions are supported via include, require,
include once, and require once statements. A challeng-
ing issue here is that a replicated script running at a res-
cue server may include files located at the origin server.

We investigated two options for handling file inclu-
sions in replicated scripts: renaming and error han-
dler. The renaming approach is to rename each PHP
inclusion statement to the DotSlash inclusion function
dots include after a script is replicated from the origin
server to the rescue server. This approach is applica-
ble to all PHP inclusion statements, but it needs to parse
each replicated script file. The error handler approach
is to use a customized error handler for each replicated
script file. In PHP, if a file to be included does not exist,
an error will be triggered. Thus, we can use a customized
error handler to catch file inclusion errors, and replicate
needed script files dynamically.

We employ the error handler approach in DotSlash
mainly because it is easier to build. We add a
header H to each replicated script file, which uses
set error handler to set the error handler to the Dot-
Slash error handler dots error. As a wrapper function
of dots include, dots error implements the PHP error
handler API, and invokes dots include in case of a file
inclusion error.

4.4 Implementation
DotSlash functions, dots include and dots error, can
be implemented as PHP user functions written in PHP
scripts, or as PHP native functions written in C and com-
piled as the DotSlash extension to the PHP module. For
efficiency considerations, we implement dots include
and dots error as PHP native functions.

5 Evaluation
We use R to denote the maximum request rate supported
by a web server. Our goal is to improve a web server’s
R by using DotSlash.

5.1 Experimental Setup
We have performed experiments in our local area net-
works, where we use a cluster of 30 Linux machines
connected via 100 Mb/s fast Ethernet. These machines
have two different configurations. The low-end config-
uration (LC) has a 1 GHz Intel Pentium III CPU, and
512 MB of memory, whereas the high-end configuration
(HC) has a 2 GHz AMD Athlon XP CPU, and 1 GB
of memory. They all run Redhat 9.0, with Linux kernel
2.4.20-20.9.

We run a varying number of web servers in different
experiments. All web servers run Apache 2.0.49, con-
figured with PHP 4.3.6, worker multi-processing mod-
ule, proxy modules, cache modules, and our DotSlash



module. The PHP module includes our DotSlash exten-
sion, which implements the DotSlash inclusion function
dots include and the DotSlash error handler dots error.
In all experiments, we run one database server on an
HC machine denoted as DB HC. The database server
runs MySQL 4.0.18. To support a large number of
concurrent connections, we configure MySQL with
open files limit=65535, and max connections=2048.

We test our prototype system using the RUBBoS
benchmark [4]. It has 19 PHP scripts, and the size of
script files varies between 1 KB and 7 KB. The database
has a size of 439 MB, and contains 500, 000 users and 2
years of stories and comments. There are 15 to 25 stories
per day, and 20 to 50 comments per story. The length of
story and comment bodies is between 1 KB and 8 KB.

We use RUBBoS clients to generate workloads. Each
RUBBoS client can simulate a few hundred HTTP
clients. An HTTP client issues a sequence of requests
using a think time that follows a negative exponential
distribution, with an average of 7 seconds [19]. If the
request rate to be generated is high, multiple RUBBoS
clients are used, each running on a separate machine.
We use 7 seconds [7] as the timeout value for getting the
response for a request. If more than 10% [7] of issued re-
quests time out, the web server is considered overloaded.

5.2 Effectiveness
To show the effectiveness of DotSlash, we measure R
at an origin web server from the client side in different
cases, based on whether DotSlash is used or not, and
whether the origin server runs on an HC machine or on
an LC machine.

In the first experiment, we run the origin web server
on an HC machine denoted as Orig HC, and DotSlash is
disabled. Figure 4 shows the experimental results. We
denote the total number of HTTP clients as Nc. The
request rate at Orig HC increases as Nc increases. The
measured R is 118 requests/second obtained when Nc =
900. When Nc reaches 1100, 11% of requests time out.
At this workload, the CPU utilizations of Orig HC and
DB HC are 100% and 45%, respectively. Clearly, the
web server is the bottleneck, although it has the same
hardware configuration as the database server.

In the second experiment, the origin web server still
runs on Orig HC, but DotSlash is enabled, and rescue
servers are added automatically as load increases. All
rescue web servers run on LC machines. We also show
the experimental results in Figure 4, but for Nc ≥ 500
only since Orig HC does not use any rescue server when
Nc ≤ 400. The measured R is 245 requests/second ob-
tained when Nc = 1900, and Orig HC uses 9 rescue
servers. When Nc reaches 2200, the database server
DB HC gets overloaded, where 16% of requests time
out, and Orig HC uses 10 rescue servers. At this work-
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Figure 4: The request rate and timeout rate for the origin
web server Orig HC in two cases, namely without using
DotSlash verses using DotSlash

load, the CPU utilizations of Orig HC and DB HC are
60% and 100%, respectively, and the CPU utilizations
of all rescue servers are below 60%.

Comparing the above two experiments, we have two
results. First, in terms of the R supported by Orig HC,
we have 245/118 > 2, meaning that we doubled the
performance by using DotSlash. Secondly, based on the
CPU utilization, we can observe that when DotSlash is
used, the origin web server is no longer a bottleneck,
and the performance is constrained only by the database
server. To further verify this observation, we repeat the
above two experiments by running the origin web server
on an LC machine denoted as Orig LC so that we have
a low-end origin web server and a high-end database
server. To save space, we summarize the experimental
results as follows without showing figures.

Without using DotSlash, the measured R is 49 re-
quests/second obtained when Nc = 500. Orig LC gets
overloaded when Nc reaches 600, where 21% of re-
quests time out. When DotSlash is used, the measured
R is 245 requests/second obtained when Nc = 1900,
and Orig LC uses 10 rescue servers. DB HC gets over-
loaded when Nc reaches 2200, where 16% of requests
time out, and Orig LC uses 12 rescue servers. Thus,
we have 245/49 = 5, meaning that we improved the
R at Orig LC by 500% by using DotSlash. The reason
for using 10 rescue servers to get this improvement is
that the origin server and rescue servers have a CPU uti-
lization close to 50% because we have configured the
desired load region in our experiments as [45%, 70%].
More specifically, Orig LC can support a rate of 49 re-
quests/second with 100% CPU utilization. Thus, to sup-
port a rate of 245 requests/second, we need 5 such web
servers with 100% CPU utilization, or equivalently, we
can use 11 such web servers (i.e., 1 origin server and 10
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Figure 5: The request rate and redirect rate at the origin
server Orig LC and the rescue rate at the 9 rescue servers
(Resc LC1, ..., Resc LC9)

rescue servers) with 5 ∗ 100%/11 = 45% CPU utiliza-
tion.

From the above experiments, we can observe that us-
ing DotSlash can completely remove the web server bot-
tleneck, and the performance of a dynamic content web
site is constrained only by its database server. Also,
when DotSlash is used, it does not make much differ-
ence as to using a high-end web server or a low-end
web server. For example, to support a rate of 245 re-
quests/second, Orig HC uses 9 rescue servers whereas
Orig LC uses 10 rescue servers.

5.3 Workload Control and Migration
DotSlash monitors workload by maintaining a number
of counters for outbound HTTP traffic and CPU utiliza-
tion, and allows these counter values to be retrieved con-
veniently via http://host.domain/dotslash-status?auto.
By sampling these counters at a desired interval, we can
calculate the needed average values of request rate, redi-
rect rate, rescue rate, and CPU utilization.

To show how workload is controlled and migrated at
the server side, we perform the following experiment.
The origin web server runs on Orig LC, and all rescue
web servers run on LC machines, denoted as Resc LC1,
..., Resc LCn. DotSlash is enabled, and rescue servers
are added automatically as load increases. We run 5
RUBBoS clients, all using the same workload profile to
issue requests to Orig LC. Each RUBBoS client sim-
ulates 340 HTTP clients, thus a total of 1700 HTTP
clients are simulated. We start one RUBBoS client at
a time, with an interval of 1 minute, and each RUBBoS
client runs for 8 minutes. We run a shell script to get the
DotSlash status from all servers at an interval of 30 sec-
onds. Figure 5 shows the request rate and redirect rate
at Orig LC and the rescue rate at the 9 rescue servers in
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Figure 6: The CPU utilization for the origin server
Orig LC, the 9 rescue servers (Resc LC1, ..., Resc LC9),
and the database server DB HC

a duration of 15 minutes. We can observe the following
results. First, the redirect rate at Orig LC increases as
the request rate increases, meaning that excess workload
is migrated from Orig LC to its rescue servers via redi-
rects. Secondly, the serving rate (i.e., the request rate mi-
nus the redirect rate) at Orig LC decreases as the redirect
rate increases because redirects consume CPU cycles.
Also, the serving rate should be 22–34 requests/second
for the desired CPU load region of [45%, 70%] and a
capacity rate of 49 requests/second, but the real serv-
ing rate is bit smaller, 20–30 requests/second, due to the
redirect overhead. Finally, the rescue rate at all 9 rescue
servers is about 25 requests/second, which is the work-
load that drives the CPU utilization to about 50% at res-
cue servers.

Figure 6 shows the CPU utilization for Orig LC, the 9
rescue servers, and DB HC. We can observe the follow-
ing results. First, Orig LC has successfully controlled
its CPU utilization to stay within 50–60%. Secondly, all
rescue servers have a CPU utilization of 45–55%, being
close to 50% mostly. Finally, when Nc reaches 1700,
DB HC has a CPU utilization around 95%, meaning that
without relieving the database server bottleneck, there is
not much potential to further increase the request rate.

6 Conclusions

In this paper, we have described DotSlash, a new sys-
tem for performing web hotspot rescue at dynamic con-
tent web sites. By supporting dynamic script replication,
DotSlash can completely remove the web server bottle-
neck for dynamic content web sites. In future work, we
plan to investigate mechanisms to relieve the database
server bottleneck for web hotspot rescue.
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