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Abstract 

Using a simple analytical model,’ this paper addresses 
the following question: Should the Internet retain its 
best-effort-only architecture, or should it adopt one 
that is reservation-capable? We characterize the differ- 
ences between reservation-capable and best-effort-only 
networks in terms of application performance and total 
welfare. Our analysis does not yield a definitive answer 
to the question we pose, since it would necessarily de- 
pend on unknowable factors such as the future cost of 
network bandwidth and the nature of the future traffic 
load. However, our model does reveal some interesting 
phenomena. First, in some circumstances, the amount 
of incremental bandwidth needed to make a best-effort- 
only network perform as well as a reservation capable 
one diverges as capacity increases. Second, in some 
circumstances reservation-capable networks retain sig- 
nificant advantages over best-effort-only networks, no 
matter how cheap bandwidth becomes. Lastly, we 
find bounds on the maximum performance advantage 
a reservation-capable network can achieve over best- 
effort architectures. 

1 Introduction 

The current, Internet offers a single class of best-effort 
service. That is, the Internet offers no guarantees 
about when (or even if) packets will be delivered, and 
clients need not ask permission before transmitting 
packets. This architecture has been tremendously suc- 
cessful in supporting data applications, as most re- 
cently demonstrated by the astonishing growth of In- 
ternet usage and the dramatic emergence of the World- 
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Wide-Web. While the Internet architecture has been 
an undeniable success for data applications, there are 
many who do not think the present Internet architec- 
ture provides sufficient support for audio, video, and 
other so-called real-time applications. The Internet re- 
search community has devoted much effort to designing 
an integrated services Internet architecture, which is 
an architecture capable of supporting real-t,ime appli- 
cations as well as data applications (see, for example, 
[4, 6, 7, 8, 10, 15, 181 and references therein for a small 
sampling of the research in this area). In a culmi- 
nation of these efforts, the Internet Engineering Task 
Force (IETF) recently promoted to Proposed Stan- 
dard extensions to the Internet architecture that will 
enable it to support reservations, in which resources 
(e.g., bandwidth) are set aside for a particular flow; see 
[2, 12, 13, 16, 171 for the relevant RFCs and l’or addi- 
tional supporting material. In this architecture, clients 
can still send best-effort packets, but in addition clients 
have the option of requesting a reservation for their 
flow.’ To obtain a reservation, a client requests a cer- 
tain amount (characterized by a traffic specifica.tion) 
and quality (specified by a service specification) of ser- 
vice; the network then decides whether or not it can 
satisfy this request,. While there are many mechanis- 
tic differences between the various integrated services 
proposals, they all share the two fundamental aspects 
that (1) applications have the ability to reserve band- 
width, and (2) the network exercises control - known 
as admission control - over these reservation requests 
so it can ensure the level of service given to reserved 
traffic. These are the two most fundamental concep- 
tual changes brought to the Internet by au integrated 
services architecture. 

During the past few years there has been a substan- 
tial research focus on the design details of this inte- 
grat,ed services architecture investigating, for instance, 
the ua.ture of the reservation prot,ocol, the behavior of 
measurement-based admission control algorithms, and 
the appropriate service model. The vigor and extent, 
of this research activity should not be interpreted as a 
sign of consensus about the wisdom of this endeavor. 
Simmering in the background has been a rather int,ense 
debate over the more fundamental question: are reser- 
vations necessary, or would the Int.ernet, be better off 

‘A flow, for the purposes of this paper, IS the traffic stream 
generated by a particular apphcat.lon 



retaining its be&effort-only architecture’? Advocates 
of reservations claim t,hat, high fidelit,y interactive audio 
and video applications need higher quality, and more 
predict,able, network service than that, delivered by the 
best-effort-only Internet. Opponents of reservations, 
on the other hand, contend that this is a simple mat- 
ter of provisioning; a reservation-capable network will 
not deliver saGsfactory service unless its blocking rate 
(the rate at, which it denies reservat,ion requests) is low, 
and at such provisioning levels best-effort networks will 
provide completely adequate service - service that is 
nearly as good as that of the reservation-capable net- 
work. Moreover, opponents maint,ain, any differential 
in quality can be offset, by adding a modest amount 
of additional capacity to the best-effort-only network 
which, when bandwidth becomes inexpensive, should 
be far cheaper than the added complexity of the pro- 
posed integrated services architectural extension. In 
addition, the most ardent, opponents claim that the 
adaptabi1it.y of modern network applications renders 
reservations unnecessary, since applications can adapt 
to whatever service the network offers.* 

This research was initiated in an attempt to for- 
malize some of these claims and provide a more solid 
footing for this debate. This paper introduces a sim- 
ple analytical model in which we can more concretely 
pose the question of whether the Internet should adopt 
a reservation-capable architecture or retain its best- 
effort-only architecture. This model is not intended 
to be a complete representation of reality, but is in- 
stead intended merely to illustrate, in an accessible and 
tractable fashion, some of the essential issues. While 
we hope t,o inform the debate, by providing an intellec- 
tual framework in which the debate can constructively 
continue. we do not in any way expect that this work 
will settle the debate. since the relative merits of the 
t,wo architectures depend on many practical concerns 
- such as the future cost, of bandwidth and the burden 
of architectural complexity - that are inputs to, not 
outputs of, our model. In the spirit of full disclosure, 
we admit that we (the authors) are biased in favor of 
reservations; we strived to keep our analysis as neutral 
as possible, but we obviously aren’t the best judges of 
our success in that regard. 

To evaluate a network architect,ure, one must ask 
how well it meets user needs. For a user employing a 
given network application, the utility - or value - the 
user derives from that application will depend on the 
application’s performance (e.g., the picture quality for 
video, the sound quality for audio applications, etc.); 
the application’s performance, in turn, depends on the 
nature of the network service the application receives. 
Net,work architectures are intended to provide a high 
degree of total utility (the sum of utility over all net- 
work users). For the simple case where a single link 
has a fixed load of k ident,ical applications, it has been 
shown in [14] that for certain classes of utility functions 
the reservation-capable architecture provides a higher 
level of t,otal utility. We review that, derivation here, 
in Section 2, since our subsequent work will build on 
these results. 

However, optimizing utility is not the only design 
goal; competing with it is the goal of keeping the net- 
work architecture simple. The complexit-y of the net,- 
work architecture is hard to quantify, and we do not at- 
tempt to do so here, but it is clear that any integrated 
services architecture is significantly more complex t,han 
a. best,-effort-oniy architecture. The key question, then, 
is whether or not the performance advantage of reser- 
vation-capable networks alluded to above is significant. 
If this utility difference is quite small then there is lit- 
tle reason to incorporat,e reservations into the Internet 
architecture, since the burden of adding significant ad- 
ditional complexity t,o the Internet, architecture would 
far outweigh the small increase in utility it would bring. 
We initially address this question in Sections 3 and 4 
through the use of a variable load model that extends 
the fixed load model used in [14]. Our results for this 
variable load model show that the answer to the ques- 
tion we posed depends critically on characteristics of 
the network load and on the nature of application util- 
ity. We find that, under many conditions in our vari- 
able load model, the arguments of the opponents of 
reservations are largely correct. However, we also find 
that, under certain conditions, the incremental band- 
width needed to equalize performance in the two kinds 
of networks increases as the capacity increases. We 
also show that in a subset of these cases in our vari- 
able load model, reservation-capable networks retain a 
significant, but bounded, performance advantage over 
best-effort networks, no matter how cheap bandwidth 
becomes. In Section 5 we consider two extensions to 
the variable load model that increase the performance 
advantage of reservation-capable networks. We con- 
clude in Section 6 with a brief discussion of our results. 

2 Fixed Load Model 

The key difference between a best-effort-only architec- 
ture and a reservation-capable one is that, in the for- 
mer, flows are never denied access to the network -- 
they can send packets whenever they want - whereas 
in a reservation-capable architecture the network can 
deny reservation requests. The question we address 
here, reviewing the material in [14] to provide nec- 
essary context, is: does denying reservation requests 
result. in an increase in utility under some conditions, 
or does allowing all flows access to the network always 
maximize utility? 

We do this by considering a very simple fixed load 
model. We consider a single link of capacity C and we 
assume that the load on this link is, at any one time, 
comprised of L identical flows. We further assume that 
the bandwidth is allocated evenly among these Ii flows, 
so that each flow receives the same bandwidth share $?. 

Each Aow represents an application whose perfor- 
mance or utility r as a function of the bandwidth b 
allotted it is given hy the function r(b). We assume 
that, a(o) = 0 (i.e., when the application receives zero 
bandwidth it provides no value) and that a(m) = 1 
(i.e., when the application receives as much bandwidth 
as it, wants, it provides a value of 1). At. bandwidths 
0 < b < 1, different applications have different levels of 
performance. but, in all cases x(b) is a nondecreasing 
function. We model a flow that, requested a reserva- 
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tion but, was denied service as receiving zero bandwidth 
(b = 0) and so has zero utility (r = 0). 

If all flows are given service, the t,otal utilit,y of 
the net,work is given by V(k) E kx($). If the func- 
tion I;(k) is increasing then utilit,y is maximized by 
always allowing all flows access to the network. In this 
case, the best-effort-only architecturr, which admits all 
flows, provides the higher tot,al utilit,y. 

However, if t,he function V(n) is maximized at some 
finite value li,,,, t.hen if k > k,,, the utiljt? would bca 
maximized by denying service to the additional flows 
k marS1, km,, $2, , Ic. Such denial of service requires 
an integrated services architecture. 

Thus. t,he nature of the function V(I;) determines 
which architecture produces the higher utility. In turn, 
the nature of t,he function V(k) depends on the charac- 
ter of the utility function x(b). There are two general 
results of interest. First. if there exists some neighbor- 
hood of the origin in which the function x is convex 
but not concave (i.e., is convex, but not linear in the 
whole region), then there exists some L,,, such that 
V(k,,,) > V(lc) for all Ic > k,,,. For such functions 
A, admission control should keep the number of users 

at or below L,,,. Second, if the function K is every- 
where strictly concave, then V(k) is a strictly mono- 
tonically increasing function of I;. In this case, access 
should never be denied and so admission control is not 
needed. The next question, then, is: what do real ap- 
plication utility functions look like? 

The traditional data applications, like electronic 
mail and file transfer, are somewhat elastic, in that 
they are not particularly sensitive to individual packet 
delays, and typically do not have hard real-time con- 
straints. This suggests that while giving such applica- 
tions additional bandwidth certainly aids performance, 
the marginal improvement for additional bandwidth 
decreases in b and so r(b) is strictly concave every- 
where. Thus, V(k) is always maximized when no users 
are denied access; the current best-effort-only archit,ec- 
ture is ideal for such elastic applications. 

At the opposite end of the spectrum are rigid appli- 
cations, which need their data to arrive within a given 
delay bound (and performance does not improve if data 
arrives earlier than this bound). Traditional telephony 
is an example of such a rigid application, as are other 
applications that rely on circuit-switched service. For 
such applications needing ?I units of bandwidth 

r(b) = 0 for all b < 6 an,d r(b) = 1 for all b 2 6 (1) 

and so the function V(k) is given by 

V(k)=0 I;>; 
1 

and V(k)= k k 5 4 

and thus admission control is clearly necessary here to 
constrain usage at or under k,,,(C) = [$J. Appli- 
cations whose utility curves give rise to finite k,,,(C) 
are deemed to be inelastzc, and function better with a 
reservation-capable architecture. 

These t,wo extreme cases - elastic and rigid applica- 
tions - illustrate the fact, that the telephone and Inter- 
net network architect,ures were hot,h designed to meet, 
the needs of t,heir original class of applications; rigid 
applicat)ions perform bett,er with reservations, and dat,a 

applicat,ion fare better without them. 

Adaptive Utihty Function 

Figure 1: The performance curve A(b) for a rate and 
delay adapt,ive application. 

However, video and voice applications are becoming 
much more common on the Internet, and these Internet 
voice/video applications are not built to expect circuit- 
switched service. Instead, they are designed to adapt 
to the currently available bandwidth and to variations 
in packet delay.3 It appears, due to human perceptual 
factors, that minimal levels of bandwidth are not very 
useful, so that at low bandwidths the marginal utility 
of additional bandwidth is fairly small. Similarly, at 
high bandwidths the signal quality is quite good and 
so the marginal utility of additional bandwidth at high 
bandwidths is also small. At intermediate levels, when 
the signal quality first starts to he viable, the marginal 
utility of extra bandwidth is significant. 

One such utility function modeling adaptive but in- 
elastic applications, that we will use in our later anal- 
ysis, is given by: 

x(b) = 1 - e 
I? 

-r+b (2) 

where 6 = .62086.4 This function is depicted in Figure 

1; note that for small b, x(b) z c and that for large 

b r(b) z 1 - e-‘. While the function V(k) for this 
utility function has a peak at some finite k,;=(C) (be- 
cause of the convex neighborhood around the origin), 
the adaptive nature of the application means that the 
decrease in V(n) for k > k,,,(C) is much more gen- 
tle than the abrupt, drop from full utility L’(k) = k 
to zero utility V(k) = 0 that, rigid applications have 
as k passes through k,,,(C). Thus, while it is true 
that an integrated services archit,ecture produces su- 
perior performance for these adaptive audio and video 
applications. it is not at all clear that, the performance 

“Most current Internet audio and video applications are dr- 
lay adaptlvr but not. rate-adaptive, m that t.hey do not adjust 
thar sendmg rate, but do adjust to varymg packet delays See 
[14] for an elucidation of the differing utlllty curves between 
these two styles of adaptation For our treatment here, we as- 
sume that the apphcatmns are both rate and delay adaptwe. 
‘I’hls assumption makes the case for best-effort-only serwce 
stronger, by considering only those apphcations most sulted 
to best-effort. 

4Th1s value of K yields /c ,,,(C) = C’. faclhtatmg compar- 
,sons wtth thr rIgId case, which also has k,,,,jC‘) = f ’ 



advantage is of a significant magnitude. We address 
this issue in the next section. 

3 Variable Load Model 

The model from [14] reviewed in the previous section 
used a fixtsd load k of flows. If the applications are 
inelast,ic, the total utility is higher in a reservation- 
capable network when the offered load k is higher than 
I;,,,, (C). This does not t,ell us t,he likelihood of such 
overload condit,ions, and thus we cannot, evaluate the 
ext,ent of the performance advantage of the reservation- 
capable architecture. To quantify this performance ad- 
vantage, we extend the fixed load model from [14] to 
include varia.ble loads. The load on the net,work is de- 
scribed not, by a fixed number of inelastic flows, but, 
by a probability distribution of the number of inelas- 
tic flows on the link. To keep the level of complexity 
manageable, we do not model the dynamics of flows ar- 
riving and departing the network, but rather only con- 
sider a probability distribution of possible static loads. 

In what follows we use a mixture of numerical com- 
putations on a more realistic discrete model and an- 
alytical calculations on a more tractable continuum 
model. The two models are quite similar in spirit, 
if different. in detail (the probability distributions are 
slightly different and the adaptive utility functions are 
substantially different). The results of the two models 
are, at least in the asymptotic case of large C, com- 
pletely equivalent. We first present the discrete version 
of our variable load model. 

3.1 Discrete Model 

Let P(lc) denote the probability that there are t flows 
requesting service, and let % denote the average num- 
ber of flows requesting service: k;: = c,“=, P(k)lc. We 
assume that a. user’s utility is the average of her utility 
at these various load levels. In the best-effort-only ar- 
chitecture. each flow receives bandwidth % so the total 

utilit,y of the system, ~‘B(C), is given by: 

t-B(C) = 5 P(k)kn($ 
k=l 

We will use the notation B(C) to refer to the normal- 
ized utilitv: 

B(C) = y 

In the reservation-capable architecture, when Ic flows 
request service each of the min[k, lc,,,(C)] admitted 
flow receives bandwidth mn[k,l;C,,,( C)] ’ and each of the 

1:-min[l;, kmaX((c)] rejected flows gets zero bandwidth. 
The total utility of the system, I/R(C), is given by: 

k,,,(C) 
k;i(C) = c P(k)k+ 

k=l 

We use the notation R(C) to refer to the normalized 
utilitv: 

R(C) = y 

Clearly we have R(C) 2 B(C), with t,he inequaIIty 

strict if kmaZ(C)lr(&) > (kmaz(C)+l)x( kmortCj+, ) 
and P(kma, (C) + 1) > 0; these conditions always hold 
in the cases we consider, and so R(C) > B(C) in what 
follows. The key question, though, is whether this dif- 
ference is significant. 

One way to answer that question would be to com- 
pare the numerical values of these two quantities, look- 
ing at the performance gap: 

6(C) = R(C) - B(C) 

Since the units of utility are somewhat arbitrary, this 
approach may be of limited value. Perhaps a bet- 
ter way of assessing significance is to determine how 
much additional bandwidth is needed to make a best- 
effort-only network have the same performance as the 
reservation-capable one. This is an important quantity 
given that arguments against the need for reservations 
suggest that the same performance can be achieved 
by adding a modest amount of additional capacity to 
a best-effort-only network. We can define the incre- 
mental bandwidth requirements A(C), called the band- 
width gap, via the relation: 

R(C) = B(C + A(C)) 

The reservation-capable architecture imposes the bur- 
den of additional complexity. The best-effort-only ar- 
chitecture allows one to avoid extra complexity, but it 
requires additional bandwidth in order to match the 
performance of the reservation-capable architecture. 
The bandwidth gap A(C) quantifies this bandwidth 
versus complexity tradeoff, and depends on the func- 
tions P(k) and r(b). 

In modeling r(b), we consider two separate cases, 
representing the two classes of inelastic applications 
discussed above: rigid and adaptive. Rigid applica- 
tions have utility functions given by Equation 1 (with 
6 = 1) and the adaptive applications have utility func- 
tions as given by Equation 2. Our choice of the partic- 
ular form of the adaptive utility function is arbitrary, 
and represents an extremely adaptive function in that 
it provides non-negligible marginal utility over a wide 
range of bandwidths. 

In modeling P(k), we claim no special wisdom about 
the nature of future network loads. To cover a. broad 
spectrum of possibilities, we consider three quite dif- 
ferent load distributions P(k): 

Poisson P(k) = G 

Exponential P(k) = (1 - e-p)e-pk 

Algebraic P(k) = -& 

Note that k = v in the Poisson distribution and i = 
(e” - 1)-l in the exponential distribution. The power 
i in the algebraic distribution controls the asymptotic 
rat,e of decrease in P(k); we only consider cases where 
z > ;’ so that. i is well defined. The constants v and 
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X are chosen so that the probability function is nor- 
malized, 1 = c,“=, f’(k). We introduce two parame- 
ters (rather than just sett,ing X to zero and taking a 
simple power law) so t.hat we can vary the average of 
the distribution while holding the asymptotic power 
law z fixed. In all of our numerical calculations. we 
set li = 100. Note again that, we do not justify these 
load distribut,ions by any detailed arrival and depar- 
ture processes, There are t,oo many unknown aspects 
of what these might be in reality. especially in terms 
of correlations and diurnal rhythms, and so instead we 
just model their resulting stationary distributions. 

We now ha.ve six cases to investigate: two choices 
for the utility function r(b), combined with three choices 
for the load dist,ribut,ion P(k). Since solving the vari- 
ous quantities of interest analytically is difficult in this 
discrete variable load model, we instead numerically 
evaluatr these quant,ities. This allows us to do our 
modeling without regard for tractability. However, 
since our numerical calculations are necessarily done 
over a finite range of C values, it is impossible to make 
definitive conclusions about the asymptotic (large C) 
behavior of the various quantities based on these com- 
putations; for that we need analytical calculations, to 
which we now turn.5 

3.2 Continuum Model 

We augment our treatment of the variable load model 
by introducing a continuum version, where the variable 
k varies continuously from 0 to 00. This model, while 
requiring some additional simplifications, is more an- 
alytically tractable than the discrete model. However, 
these simplifications do not affect the asymptotic be- 
havior of the quantities we examine. In the continuum 
model, the formulae for I/R(C) and ~B(C) become: 

and 

J 
02 I/n(C) = 

0 

In our continuum model, we only consider the ex- 
ponential and algebraic load distributions, as they are 
most easily computable.6 In addition, to make the al- 
gebraic distribution more tractable, we consider the 
form P(k) = (L - l)k-; for I; > 1 and P(k) = 0 for 
k < 1. Moreover, since the calculations are no longer 
tractable when we consider adaptive applications with 
utility funct,ions given by Equation 2, we use a modi- 
fied form of adaptive utility function in the continuum 
model. These ntilit,y function is parametrized by a 
constant, ~1, u E (0, l)$ and is given by the following: 

a(h) = 0 h < a 

h-a 
x(h) = l-a a < h < 1 

x(h) = 1 h > 1 

Note that, when u = 1 this reduces to the rigid case. 
Decreasing a represents increasing levels of adaptiv- 
it,y of the application. For all (L > 0. I;,,,(C) = C, 
so the calculations of OR are identical to the rigid 
case, but the best-effort results are significantly al- 
tered. When n = 0, the utilit,y function is no longer 
inelastic and VR(C) = VB(C). 

3.3 Results 

We now address the six cases. For each of the three 
different load distributions, we first, consider rigid ap- 
plications, and then adaptive ones. In each case, we 
begin with the relevant results of the numerical calcu- 
lations using the discret,e model and then, where ap- 
propriat,e, augment the discussion with results from the 
continuum model. 

The Poisson load distribution describes a situation 
where the load is fairly tightly controlled within a re- 
gion around t,he average, and excursions to large (or 
small) loads are extremely rare. This describes the be- 
havior of a Poisson arrival process with uncorrelated 
and independent departure processes. The results here 
arc the closest (of our three load distributions) to the 
fixed load model. Figure 2a shows the performance 
functions for reservations and best-effort, B(C) and 
R(C), and Figure 2b shows A(C) for Poisson load and 
rigid applications. Note that for small C (by which we 
mean C < i) R(C) is close to linear in C (with slope 
i, and recall that iE- = 100) while B(C) is almost zero 
throughout most of this region. The difference in per- 
formance 6(C) = R(C) - B(C) reaches a peak of 0.8 
and the bandwidth gap A(C) reaches a peak of 80, and 
so both gaps are significant in this region. However, 
as soon as C is slightly greater than I, both R(C) and 
B(C) are very close to unity, and even closer together, 
and so both 6(C) and A(C) vanish extremely quickly 
(faster than exponentially). 

Figures 2d and 2e show the functions R(C), R(C), 
and A(C) for Poisson load and adaptive applications. 
In contrast to the rigid case, the R(C) and B(C) curves 
are quite close for all but the smallest C; this reflects 
the fact, that adaptive applications tolerate overload 
conditions reasonably well, and so the performance 
under best effort does not degrade so severely. Note 
that, the R(C) curve continues to increase well past, 
C’ = ]c. This is because the utility r(h) continues to 
increase for h > &, reflecting that adaptive ap- 
plications not. only to1erat.e overload conditions better, 
they also take advantage of underload conditions more 
effectively tha.n rigid applications. As for the perfor- 
mance and bandwidth gaps, the maximum values of 
6(C) and A(C) are substantially lower than in the rigid 
case. As before, in the region c’ > i both of these dif- 
ference curves vanish superexponentially. 

The exponential load distribution describes a situ- 
at,ion where the load is not peaked around the average, 
but instead decays over the whole range at an exponen- 
tial rat,e. Figures 3a and 3b show the functions B(C), 
R(( ‘)> and A( C’) for rxponential load and rigid ap- 
plicatious. The performance curves, R(C) and B(C). 



increase more gradually than in t,he Poisson case, re- 
flecting the greater variabilit,v in load levels. Addi- 
tional differences from the Poissou case are that B(C) 
is not vanishingly small when C < & nor is R(C) lin- 
ear, and so the performance gap 6(C) peaks at less 
than half the value of the Poisson peak. However, in 
the region C > &, S(C) decays more slowly in the ex- 
ponential case. At capacities of 2i and 4k with rigid 
applications, D(C) is approximately .27 and .07, respec- 
tively. For the Poisson distribution, 6(C) is less than 
lo-r5 at the same capacities. The biggest contrast 
with the Poisson case, though, is that the bandwidth 
gap A(C) is monotonically increasing throughout the 
entire domain. As capacity increases, the incremen- 
tal bandwidth needed to make best-effort performance 
equivalent, to reservations increases. 

We can articulate this behavior more precisely in 
the continuum model. For rigid applications, the con- 
tinuum equations become (recalling that k,,,(C) = 
C): 

J 
C 

1;;?(C) = dkP(k)k + C dkP(k) 
0 

and 

J 

c 
V&C) = dkP(k)k 

0 

For the exponential distribution P(k) = @e-Ok, we 
find that, v,(C) = $(l -e -Oc(l + PC’)) and &(C) = 

$(l - e-O’). In addition, a(C) = Ce-sc and A(C) is 

the solution to PA(C) = ln(1 + ,B(C + A(C))) which 
grows asymptotically like @$ for large C. Thus, the 

bandwidth gap grows logarithmically for exponential 
loads and rigid applications. This is a somewhat sur- 
prising result, in that it says that as you increase the 
overprovisioning in the limit C >> I; it takes increas- 
ingly more bandwidth to render the performance of 
the two archit,ectures the same. At first it might seem 
puzzling t,hat the performance gap 6(C) is decreasing 
while the bandwidth gap A(C) is increasing; the phe- 
nomena is most easily understood by noting that A(C) 

can be approximated by g so if the derivative B’(C) 
is decreasing faster than the gap 6(C) then A(C) is 
an increasing function. Thus, even though the perfor- 
mance gap is shrinking, the increase in utility per unit 
of bandwidth is shrinking faster, so it takes increas- 
ingly more bandwidth to make up this performance 
difference. 

This behavior disappears in the adaptive case. Fig- 
ures 3d and 3e show the functions B(C), R(C), and 
A(C) for exponential load and adaptive applications. 
The R(C) and B(C) curves are much closer together. 
The peak of the performance gap 6(C) is reduced by 
a factor of 10 and it, has a value less than .Ol when 
capacity equals 2i, and less than ,001 when capacity 
equals 4&. Note that after hitting a peak of 9, the 
bandwidth gap A(C) decreases for c’ > k. 

In the continuum model, (recalling that, a is a pa- 
rameter in the cont,inuum adaptive utility function) we 

JC 
find I,‘n(C) = i(l - $$ + e). In this case. 

6(C) = e(l - e-s). A(C) is the solution t,o 

PA(C) = -In(l - u) + ln(l - ac-“‘(Cltt(‘)) ). For 

large C, A z 9, so the bandwidth performance 

gap goes to a constant (as opposed to the logarithmic 
growt,h we found in the rigid case). Thus, the expo- 
nential distribution illustrates the profound difference 
between rigid and adaptive applications, and the qual- 
itative, not just quantitative, impact adaptivity has 
on the tradeoffs between reservation-capable and best- 
effor&only architectures. 

The algebraic distribution is like the exponential 
distribution in that, it, decreases over the whole range, 
but here the decrease is much slower. Figures 4a and 
4b show the functions B(C), R(C), and A(C) for alge- 
braic load and rigid applications, with t = 3.0 (recall 
that z is the power of the algebraic distribution). The 
gap between the R(C) and B(C) remains substantial 
over a wide range of C’s (for instance taking on the val- 
ues of .20 at, C = 2t! and .lO at C = 41;), and so, while 
the performance gap S(C) peaks at a fairly low value 
it decays quite slowly. In contrast, the bandwidth gap 
A(C) increases linearly throughout the entire domain. 

Figures 4d and 4e show the functions B(C), R(C), 
and A(C) for algebraic load and adaptive applications. 
The performance gap between the R(C) and B(C) is 
much less than with rigid applications, but the increas- 
ing nature of A(C) remains unchanged, although the 
slope is much less (decreased by a factor of over 20). 

The continuum calculations shed some light on the 
behavior of A(C). Recall that the algebraic distri- 
bution for the continuum model is given by P(k) = 
(t - l)k-” for k 2 1 and P(k) = 0 for k < 1. For rigid 
applications, vn(C) = s( 1 - C2--I) and ?‘n( C) = 

s(l - $-). The gaps are given by 6(C) = C2-’ 

and A(C) = C((.z - I)& - 1). Thus, the linear in- 
crease in A(C) applies for all powers z. For t = 3.0, 
t.he constant of proportionality is 1, similar to what we 
saw in our numerical calculations in the discrete case. 

Not,e t,hat in the limit, as z - 2+, A(C) = (e - 1)C. 
We conjecture that this limit represents the greatest 
asymptotic advantage reservations can have over best- 
effort-only in our basic variable load model.’ If so, 
this means that in the worst asymptotic case in this 
variable load model, best-effort-only net,works require 
e times more bandwidth than reservation networks t,o 
match their performance. Hence, while a reservation- 
capable network always has some performance advan- 
tage over a best-effort one, the ratio of additional band- 
width needed to make up this difference is bounded. 

In the adaptive case, vu(C) = ~(1-C’2-zi1~a~;~~1,). 
c2-: a(l--a”-J) 

b(C) = z 1-a and A(c) = C(( i&d)?% - 
-alno 

1). Note that in the limit as .: - 3+, A(C) = Cc-. 
In this limit, the constant of proportionality can vary 
from 1 (for u - Ot ) t,o c (for u - l- ), depending on 
the nature of the adaptive utilit,y funct8ion. 

Notice that while the asymptotic behaviors of the 
discrete and continuum models agree for the algebraic 
distribution, they disagree for smaller C. In particu- 
lar, while the continuum model has v constant for 

8 



all C, I he discrete model has some some st,ructure in 
the A(C) curve a.t lower values. This is due t,o the 
difference in the algebraic distribution. To be able to 
varv the average t? without changing the power law 2, 
we inserted a c;,nst,ant in t,hc discrete version that per- 
turbed t,hr distribution for lower values of c’: i.f.. I;-’ 
versus h. \L’e think thv lat,ter is likely t,o be a more 
realistic distribution than the continuum one, but that 
is pure speculation and our point hrre is merely to ex- 
plain the impact, on the results for C’ 5 &. In any event, 
the asymptotic behavior is unaffected. 

The adaptive utility function used in our numerical 
computations behaves a.s ~(11) z I- edb for large h (see 
Equation 2). While we think t,his exponential approach 
to the asymptotic. value is the most, realistic choice, 
one can also consider utility functions that approach 
their asymptotic values more slowly. For inst,ance, the 
family of functions x(b) = & approach algebraically: 

T(b) z 1 -b-’ for large b. This difference turns out, t,o 
be important for the algebraic load distributions. To 
focus on the important, aspect (the large b behavior) 
and to make the calculation tracta.ble,8 we use instead 
t,he form: 

x(b) = 0 b 5 1 

T(b) = 1 - b-’ b > I 

This captures the behavior at high b but ignores 
the behavior at low b. For this form of r(b). we find 

k ,,,(C) = C(T + l)G. For algebraic loads, the total 
utilities take the form: 

V,(C) = WI + wgrT + w:~c-z 

and 
VR(C) = w, + w2CT + wqc’--z 

with the u.lt being constants and u)q > wn. Note that 
t,he asympt,otic behavior of A(C) for large C depends 
on whether r > z-2 or not. If r > z-2 t,hen A(<‘) N C 
for large C, but if T < z-2 then A(C) N CT+‘-‘; thus, 
if,--%>r> z - 3 then A(C) asymptotically increases 
with C, but not, linearly, and if T < z - 3 then A(C) 
asymptjotically decreases with S. We have observed 
similar behavior in our calculations. 

While thr variable load model int,roduced in this 
section illustrates the performance and bandwidth gaps 
between the two architectures as a function of C, it 
yields no insight, as to what value of C is likely to be 
relevant. This is crucial, since the behavior for C E k 
can be radically different than the behavior for C’ >> i. 
In the next section, WC t,ry to gain some insight into 
t,he choice of C. 

4 Variable Capacity Model 

What capacity level C’ is likely t,o he present in t,hr 
network’? This is clearly an impossible question to an- 
swer in general, since so much will depend on market 

“WC also mvestlgakd the form 

X(6) = h’ b 5 1 

T(b) = 1 6 > 1 

factors like t,he fut,ure cost of bandwidth and the level 
of net.work usage. However, in an attempt to clarify 
t,he sit,uation, we present, a very simplified analysis of 
t,he economic tradeoff bet,ween t,he cost of additional 
bandwidth and t.he utility it provides. 

We assume that a network service provider making 
the provisioning decision can provide additional band- 
width at. a cost p per unit bandwidth. Moreover, we 
assume t,hat t,he service provider sets the provisioning 
level so a.s to maximize t.he total welfare 1;‘(C) - PC. 
This is based on the assumption that, t,he provider can 
recover the utility 1;‘(C) from charging customers, and 
so the quantit,y v(C) -PC’ represents the profits of the 
network provider. Maximizing this welfare gives rise to 
a function C(p) describing the capacity as ‘a fun&on 
of price. Then the welfare provided by the network can 
be computed via: 

W(p) = V(C(p)) - pC(p) 

This is the total utility derived from the network mi- 
nus its cost. We will denote the quantities for the 
two architectures as CR(P) and Cg(p), and similarly 
ivy and M;B(~). With this model we now compare 
the quantit,ies WR(~) and W,(p), rather than compar- 
ing the quantities l&(C) and V,(C) as we did in the 
previous section. Before we compared utilities at a 
given capacity level, we now compare welfare values at 
a given price for bandwidth. The comparison of wel- 
fares wR(p) and we recognizes the fact that one 
might make capacit,y decisions based in part on the 
choice of archit,ecture. 

We must always have kvR(p) 2 cv~(p) (with a 
strict inequality holding as long as n’~(p) > 0 in all of 
the cases we consider). The welfare difference bV~(p) - 
U/B(~) must be compared to the additional complex- 
ity needed. However, as before, comparing absolute (or 
relative) welfare values may not be very informative. 
A better measure is to ask, given a bandwidth price p, 
at what bandwidth price fi are the two welfares equal: 
J%‘~(fi) = Wg(p). Thus, the ratio y(p) = t indica.tes 
how much more expensive bandwidth in the integrated 
services architecture would have to be (assuming that 
its cost, is linear in bandwidth) in order for the best’- 
effort-only network to be the more cost-effective one. 
Thus, if we quantify the cost, of addit,ional complexity 
as how much extra per-unit-bandwidth it, takes to build 
such a network (which is probably not a good approx- 
imation of reality, but it may be sufficient to illustrate 
our point), we can t,hen compare the additional util- 
ity provided by reservations to t,heir additional cost of 
complexity. Figures 2c . 2f, 3c, ;3f. 4c and 4f displag the 
rqualizing price ratio -,(p) for our six cases. 

For the Poisson load dist,ribution with rigid applica- 
tions, the provisioning levels (not, shown) remain quite 
moderate (below 1.41;) for all but. the very smallest, 
pricing levels. The price ratio that makes two archi- 
t,ectures equivalent varies, for most values of p, bet,ween 
1.1 and 1.2 (see Figure 2~). Thus, if adding reserva- 
tions added less than 10% to the cost of bandwidth, 
then over most of the domain of prices the reservation- 
capable net,work is the preferable choice. If bandwidth 
is exceedingly cheap, then this no longer holds. 

When we switch to adaptive applications with the 
Poisson load dist,ribut,ion. t,he ca.pacitp levels are sig- 



nificantly higher, reflecting the fact that adaptive ap- 
plications can take better advantage of underloaded 
situations. The capacit,y levels Cfc(p) and C,(p), and 
the welfare levels We and lV~(p), are nearly the 
same at, all price levels. As shown in Figure 2f, the 
equalizing price ratio y(p) is effectively 1 for all but 
the higher values of p, so that, if adding reservation 
capability to t,he net,work incurred any significant per- 
unit,-bandwidth cost, then the best-effort-only architec- 
t,ure is the preferable choice. 

The results for the exponential load distribution 
are fairly similar to those for the Poisson distribution. 
However, we can treat t,he exponential case analyti- 
cally. With rigid applications, the overall welfare is 
maximized for best,-effort-only when p = /~CE-‘~ and 
so W,(p) = $(I -p- & -ph(p)) where the function 
h is defined implicitly as the largest. solution t,o p = 
h(p)e+“). For t,he reservation case, the maximizing 
capacity is C = 9 and so PI/R(~) = $(l -p+plnp). 

The ratio of prices y(p) that gives equal welfares -- 
WB(~) = W~(y(p)p) - is given by the solution to the 
equation y(p)(l - lny(p) - lnp) = 1 + & + h(p). 

Note t,hat when p -3 Ot this ratio is converges to one 

as y(p) M 1 + w. 

With adaptive applications, the overall welfare is 
maximized for best-effort-only when p = &(eePc: - 

e-$). F or small p and a < 1 the first term domi- 

nates, so we have, approximately, p z &emPc and so 

W’B (P) M i(l-p+a(l-a) b-lpf+pln(p(l--))). Re- 

call that for the reservation case, lV~(p) = $( 1 --p(l- 

In p)). The ratio of prices y(p) that gives equal welfares 

for a < 1 is given approximately by y(p) = 1 + w 

which approaches 1 logarithmically. In going from rigid 
to adaptive in this case. the rate at which y(p) con- 
verges to 1 differed by a factor of ln( - In p). 

The key feature of t,he exponential and Poisson dis- 
tributions is that the equalizing ratio y(p) converges to 
one as the price of bandwidth approaches zero. This 
implies that as bandwidth becomes cheaper, a best- 
effort-only net,work is preferable if the complexity of 
reservations imposes any significant cost on building 
or managing a net,work. In contrast, in the algebraic 
case y(p) does not converge to one. This is shown 
in Figures 4c and 4f and confirmed by the analysis. 
That is, if a reservation capable network only imposes a 
small but nonvanishing additional per-unit bandwidth, 
then no matter how inexpensive bandwidth becomes 
the reservation-capable architecture is the preferable 
choice. 

For rigid applications, the overall welfare is maxi- 

mized for best-effort-only when C = (*)A and so 

bz/B(p) = *(l - (Z - 1)&p*). For the reserva- 
1 

tion case, the maximizing capacit,y is C = p 1--i and 

so wR(p) = 3(1 - ~5). The ratio of prices y(p) 

that gives equal welfares is y(p) = (z - I)&. This 
is consistent with our numerical computations, where 
the 1(p) takes on values approaching 2 when p ap- 
proaches zero (recall that, z = 3). Note that, when 
2 - L’+ this ratio is p(p) = e. As before, we con- 

jecture that the limit z - 2+ represents that great- 
est asymptotic advantage reservations can have over 
best-effort-only. Thus, we conjecture that t,he asymp- 

‘SIC) _ totic ratios lim,,,+ y(p) = e and limc-.oc. 7 - 
(e - 1) are the maximal cases. In the worst asymptotic 
case, we conjecture, best-effort,-only networks require 
t’ times more bandwidt,h than reservation networks, 
and if the price of constructing reservation-capable net,- 
works is more than e times more expensive (than con- 
structing best-effort-only net,works) then best,-effort- 
only networks are always more advantageous (no mat- 
ter what the load distribution). 

For adaptive applications, the overall welfare is max- 

imized for best-effort-only when C = (p*)* 

and so L+‘B(~) = s(l - ps(s)*). The ra- 

tio of prices -y(p) that gives equal welfares is y(p) = 

(s)*. Note that when z - 2+ this ratio be- 

comes e I--a *. This ratio varies from 1 (for a = 0) to 
e (for a = 1). In this case, direct comparisons with 
our numerical calculations are not possible because we 
use different. adaptive utility functions in the discrete 
and continuum models. In the discret,e case, y(p) is 
approximately 1.02 as p approaches zero. 

5 Extensions to the Model 

We have considered several extensions to our model 
that capture potentially relevant elements not included 
in the basic model. Many of these extensions - such as 
having heterogeneous flows (both in size and in utility), 
risk-averse utility functions (where the utility is not the 
average performance experienced, but something less), 
and nonstationary loads (where the probability distri- 
bution is not fixed) - did not change the basic nature 
of our asymptotic (large C) results (although some of 
them substantially perturbed the results in the C z k 
region). Below we report briefly on two extensions that 
did alter the asymptotic results somewhat more signif- 
icantly. See [3] for a more detailed description of these 
two extensions and their results. 

5.1 Sampling 

In our basic model, we evaluate the utility of a flow 
at a single load level; that is, we assume that a flow 
shares the link with Ic - 1 other flows with probability 

Q(k) = F, and that the load level is constant for 
the entire duration of the flow. In reality, during the 
lifetime of a given flow other flows might, arrive and/or 
depart, so a flow could, and usually will, experience a 
fluctuating load level rather t,han a constant one. This 
fluctuating load level, in t,urn, creates fluctuations in 
the instantaneous application performa.nce; e.g. the 
picture qualit,y of a video stream will vary over time 
in a teleconferencing applicat.ion. Given this varying 
quality, a user’s utility ma.y not, merely be the average 
performance experienced, but may instead be closer to 
the minimal performance experienced. 

To understand what, impact, this might have on 
our results, we examined an extension to our model 
where a. flow samples it,s performance S times, with 
S > 1. For each sample. the number of flows sharing 
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the link is picked independently from the distribution 
Q(k) zz F, and the performance is a function of 
the maximal value k from those S samples. For the 
reservation case we have to also stipulate that the ac- 
ceptance/rejection decision is based on the first sample 
(i.r~., if k > I;,,, (<:) t,he flow is admit,ted with proba- 

bilit,) 9) and theu the effective 1oa.d for the sub- 
sequent samples is taken to be min[k7n,l(C). X] (l.c., 
once the flow is admitt,ed. it never faces a total load 
greater than k,,,(C)). 

Thv resulting formular for t,he normalized average 
utilities R(C) and B(C) are: 

K 
H(C) = c Qs(k)x( ;) 

k=l 
and 

k rn D I ( i’ i k”L,,(C) 

NC’) = c Q(k) 
k=l 

c $s-W--&j 
3x1 

with Qs( I;) the probability t,hat, Ic is the maximal value 
obtained in S independent samples. 

Multiple samplings has little effect. on the the Pois- 
son case since this distribution results in very little 
variance in load. The exponential and algebraic cases. 
on the other hand, reveal significant, changes. With 
both adaptive and rigid applications, the performance 
and bandwidt,h gaps between best-effort and reserva- 
tions increase relative to the original model. For ex- 
ample, the performance gap 6(C) in the exponential 
distribution with adaptive applications has a value of 
.21 at capacity i)k in the sampling model; the corre- 
sponding value in the original model was less than .Ol. 
This difference is also reflected in thr bandwidth gap. 
A(C). In the basic model, A(C) had a- peak of less 
than .lk of the load occurring for C z .ijk. With mul- 
tiple samplings, the-peak in the bandwidth gap A(c) 
occurs for C zz 1.5/; and has a value of roughly 2k. 
However. asymptotically A(C) in this case still con- 
verges to zero. Similar changes are evident with the 
algebraic distribut,ion. 

Ctorresponding versions of the above equat,ions in 
the continuum model allow us to understand the asymp- 
totic behavior with multiple samples. Looking at the 
exponential dist,ribut,ion with rigid applications, we find 
that 6((.‘) z c -““(S(l + PC) - 1) and A(C) M y, 

so t,he sampling extension does not. significantly alter 
the asymptotic nature of our results. Similarly, the 
asymptotic results for y(p) in the limit of small p are 
not, alt,crrd by thr sampling extension, 

LVcs next consider t,hr algebraic distribution with 
rigid applications. 1: 01 drgr C’ and fixed S, we have 1, 

O(C) zz C”-‘(S - 5) and lirri(,-,, y = 

lim p-O+ y(p) = (S(z - l))*. Note that here in the 

limit as 2 - ~ 2’ the asvmptotic ratio L 9 for large C 
and the asympt,otic price ratio y(p) for small 1’ diverges 
for any S > 1. Thus, we no longer ha.ve the apparent 

hounds of e - 1 on the asymptotic ratio v and of e 
on the asympt)otic ratio y(p) that, we had in the basic 
model. 

Moreover, when one computes the analogous quan- 
Gties for adaptive utilities. the asymptotic ratios are 
given by: 

lim C + A(C) 
= ,liy+ y(p) = 

(( 
S+ 

a(1 - Ut-2) 

L’-lx, C 1-a 

Thus, even with adaptive applications, these limits still 
diverge in the limit z - 2+. If the load distribution 
is algebraic with z close to 2, then the amount of ex- 
tra bandwidth needed t,o close the performance gap is 
exceedingly large. and that unless the cost penalty for 
reservation-capable networks is extremely high, reser- 
vation-capable networks provide higher levels of welfare.g 

5.2 Retrying 

In our basic model of a reservation-capable network, a 
rejected flow is modeled as having zero utility. In real- 
ity, however. rejected flows may try again at some later 
time. If a previously rejected flow is admitted at some 
lat,er point,, then it, receives its full performance util- 
ity, but there is likely to be some user dissatisfaction 
due to t,he delay incurred. Thus, reservation networks 
trade off assured levels of performance at the cost of 
delay in getting access to the network. 

We can model this by assuming that there is a util- 
ity penalty for having to retry, call it cy. To avoid 
having to model the act,ual retry process, we assume 
that the retries of these rejected flows obey the same 
basic distribution as the original probability distribu- 
tion. This is best expressed by introducing the no- 
t#ation &(k) denoting the distribution with average 
k = L.‘O Then, if the original model is described by 
some parameter L, the total offered load including re- 
tries is then given by Pi( k-1 for some i > Ii. 

The average utility AL once we incorporate re- 
tries is given by: 

kL(cI) = + (h2#) - CYDL) = +fQ(C) -ND 
, 

where R(C) represents the average per-flow utility in 
our basic model without retries and D denotes the av- 
erage number of retries each flow makes. 

“An mterestmg aspect of this extension IS that even with 
elastic apphcatmns ( F.Q., ?r(b) = 1 - r-b) the reservation- 
capable network cm provide higher utlhty. However, m this 
case we need to discard the standard value of k,,,(C) as the 
maxmuzrr of kn( g’,, whxh 1s infinite for elastic apphcatmns, 
and use some finit? value 
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With cy = .l (a flow suffers a performance penalty 
of 0.1 each time it, retries), the Poisson and exponen- 
tial cases show minimal effects of retrying, but t,he al- 
gebraic cases exhibit significant changes. Interestingly, 
t.hese effects are more apparent in t,he region C >> I;. 
For instance, with adaptive utility, the pefformance 
gap 6(C) has a value of ,027 at capacit,y 4L with re- 
tries. in contrast to a value of .00?5 without, retries. 
More significantly, perhaps, the price ratio curve r(l~), 
which in all previous cases was monotonically increas- 
ing, now decreases for very small p. This means that as 
bandwidth gets cheaper, the advantage of reservation- 
capable networks increases! The theory suggests (see 
below) that, this curve does not increase without bound 
as p decreases, but instead converges to some finite 
maximum value. 

The continuum formulation does not yield a closed 
form solution. However, we can analyze the large C 
limit where the blocking rate is small. Let HL denote 
the blocking rate at load L; for large C, 0~ and i - L 
are small, and so 0~ is a good approximation to 0~. 

Here, to first order in BL, we have 1 z & = Jq1+ 

0~) and D E 61~. Note that, Ri(C) = RL(C:~) so: 

RL(C) 25 (1+61L)RL(C(l- 0,)) - (Y8L 

But in the large C limit RL(C) z 1 - HL (the average 
utility per flow is just unity minus the blocking rate) 
so, to first order in 0~, the expression becomes: 

AL(C) “N 1 - (YBL 

This just expresses the obvious result that, for large C, 
the only disutility is the penalty for retrying. 

For exponential loads, 0 = eeRc so RL(C) z 1 - 
(Ye -or for large C. For rigid applications, A(C) re- 
mains logarithmic in C and for adaptive applications 

A(C) z -‘“(a~‘-a)). So retrying changes little in the 

exponential case except the asymptotic constant for 
adaptive applications. 

For algebraic loads, 6’ = s. For rigid applica- 
tions: 

lim c+A(C) 
c-n. c 

==hy+y(p) =&A 

For adaptive applications: 

lim C’+A(C) 
c = Jly+ Y(P) = ( 

a(1 -a=-‘))& 

C1-+~X l-cl 

Note that in both the rigid and adaptive cases, t,he 

asymptotic ratios 9 and y(p) diverge in the limit 

z - 1+. Thus. extending our basic model to incorpo- 
rate retrying blocked flow request,s leaves most, of the 
qualitative results unchanged. except that now in the 
algebraic case the asymptotic ratios y and y(p) are 
unbounded in the z - 2+ limit. 

Note that both of the ext,ensions presented here re- 
tained the propert,y t,hat in thr algebraic case A(C) was 
proport.ional to C in the large C limit, and y(p) was 
finite in t.he small p limit. a.nd for thr other two distri- 
butions t,hese quantities were smaller. This appears t.o 

be quite a generic property of such models; to see this, 
consider rigid applications where the analysis is eas- 
ier. Clea.rly, for large C the disutility for reservation- 
capable networks, 1 - R(C), must be proportional to 
the fraction of blocked flows 19. The disutility for best- 
effort-only networks, 1 - B(C), is proportional to the 
number of flows that are present during overload pe- 
riods; call this <. As long as the ratio 5 is finite, the 
above generic results hold. In our class of models, the 
only time this ratio diverges is when the average num- 
ber of flows is infinite, which occurs for z < 2. One 
other way the ratio might diverge is if flows are very 
long lived, and so each flow will eventually experience 
an overload condition. This would correspond to the 
case of 5’ diverging in our sampling extension. 

6 Discussion 

We now review our results and discuss the implications 
of this analysis on whether or not the Internet should 
adopt a reservation-capable architecture. Our analysis 
addressed both rigid and adaptive applications. Be- 
fore beginning our review we should note that ques- 
tions about the extent of application adaptivit,y re- 
main. Certainly the rigid utilit,y function embodies an 
extreme that should not, be representative of any fu- 
ture Internet application. However, the adaptive util- 
ity function we used embodies fairly large changes in 
utility across a wide range of bandwidths, both above 
and below the bandwidth level at which a reservation- 
capable architecture would admit such an application. 
Thus, it too may represent an extreme case by overstat- 
ing the extent to which applications can adapt. Hence, 
we caution that the rigid and adaptive utilit,y func- 
tions we used may in fact represent two extremes on 
a continuum, and that reality may lie somewhere in 
between. 

Our initial model showed significant performance 
and bandwidth gaps between best-effort-only and reser- 
vation-capable net,works with rigid applications. This 
was true even with the Poisson distribution, which is 
the load model that exhibits the least variance among 
the three distributions we considered. For example, 
across a wide range of bandwidth prices, reservations 
were superior to best-effort even if the complexity of 
the reservation architecture adds 10% to the total cost, 
of the network. 

Considering adaptive applications changed the pic- 
ture dramatically. The basic model does not, make a 
case for a reservation-capable network with exponen- 
tial or Poisson load models and adaptive applications. 
With the Poisson model, at all but the highest, price 
levels the two architectures perform the same. Wit,h 
the exponential model, differences between the two ar- 
chitectures are still very small. Only with the alge- 
braic distribution does there appear to be doubt,. 111 

this case, the bandwidth gap grows linearly as a func- 
tion of capacity and the price ratio at which welfare is 
equalized does not. converge to one as bandwidth be- 
comes cheap. Here the answer depends on how much 
cost the increased complexity of reservations adds to 
the network. 

Two extensions to our basic model - using sam- 
pling to a.ccount for variation in performance over time. 
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and including ret,ries in a reservat,ion-capable architec- 
t,ure - increased gaps between the two architectures for 
both rigid and adaptive applications. ‘rhese changes 
could be seen in two different price regimes. For ex- 
ample, if bandwidth is relat,ively expensive and C z ic, 
sampling opened up a large gap with the exponential 
distribution and adaptive, applications. When band- 
width is relatively cheap and C >> k, t,he extensions 
changed the asympt.otic behavior for the algebraic dis- 
tribution. For example. in our basic model, the asymp- 
totic extra benefit of reservation-capable networks are 
bounded in the x7 - 2+ limit, with lim,,,+ y(p) 2 e 

and lime-x v < (e - 1). However, in the modi- 
fied model with r&es and/or sampling, these limits 
are removed and t,he performance a.dvantages become 
unbounded in the z - 2+ limit. 

Our results make clear that the answer t,o our orig- 
inal question depends in large part on the load pat- 
terns in the future Internet. In general, there is not, 
a strong case for reservations with Poisson and expo- 
nential dist,ributions. The tail of these distributions is 
such that a reasonable amount of provisioning likely 
makes the differences between the two architectures 
insignificant. With the algebraic distribution, particu- 
larly with a low z value, reservations yielded significant 
benefits. In this case, best effort performance degrades 
under the wider variance in load. It is not at all clear 
how likely it is that network loads will be described 
by such distributions. However, recent results on self- 
similar behavior in a variety of contexts [I, 5, 9, 111 
make algebraic distributions less far-fetched than they 
might have been a few years ago. Nonetheless, there is 
still no definitive evidence for them that, we are aware 
of. Thus, while our results are frustratingly ambiguous 
on the fundamental question of which architecture is 
best, they do unambiguously point to the need to more 
fully understand the load distributions future networks 
are likely to face. 
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Figure ?: Poisson Distribution -~ Utility, Bandwidth Gap, and Price Ratio t,o Equalize Welfare for Rigid and 
Adaptive Applications. 
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Figure 3: Exponential Distribution Titility, Bandwidth Gap, and Price Rat,io to Equalize Welfare for Rigid and 
Adaptive Applications. 
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Figure 4: Algebraic Distribution - IJtilitp, Bandwidth Gap, and Price Ratio to Equalize Welfare for Rigid and 

Adaptive Applications. 
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