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Abstract. Measuring security controls across multiple layers of defense
requires realistic data sets and repeatable experiments. However, data
sets that are collected from real users often cannot be freely exchanged
due to privacy and regulatory concerns. Synthetic datasets, which can
be shared, have in the past had critical flaws or at best been one time
collections of data focusing on a single layer or type of data. We present a
framework for generating synthetic datasets with normal and attack data
for web applications across multiple layers simultaneously. The frame-
work is modular and designed for data to be easily recreated in order
to vary parameters and allow for inline testing. We build a prototype
data generator using the framework to generate nine datasets with data
logged on four layers: network, file accesses, system calls, and database
simultaneously. We then test nineteen security controls spanning all four
layers to determine their sensitivity to dataset changes, compare per-
formance even across layers, compare synthetic data to real production
data, and calculate combined defense in depth performance of sets of
controls.

Keywords: Metrics, Defense in Depth, Web Application Attacks, Measuring
Security

1 Introduction

To develop a science of security, at a minimum researchers need a convenient
means to run repeatedable scientific experiments. To design a defense in depth
security architecture, system security enginners benefit from a useful workbench
to compare and place different security controls. In this work, we use security
control as a broad label to include anything that hinders an attacker, including
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any security product, network, host, or database sensor, as well as more emphe-
merial controls such as user security training or corporate policies. Both goals
require tools to mearure security properties. Measuring and comparing effective-
ness of security controls is a difficult task the security research community faces.
Researchers usually want to repeat other experiments, so they can compute on
the same dataset and verify the accuracy of the analysis to ensure that security
controls are compared fairly. For experiments to be repeatable, datasets and
algorithms used must be made available to others. However, legal, privacy and
logistic issues often prevent data sharing. The present solution is to acquire as
many security controls as possible locally, so one could test them against datasets
she has access to in order to measure and compare their effectiveness. Since no
single dataset could contain all the security problems to be assessed, as we learn
from now famous TLS Bug1, this approach at best provides only a partial view
into the effectiveness of these security controls.

In order to gain a fuller picture of these security controls, we need quality
shareable datasets. Unfortunately, anonymizing real user data is not a trivial
matter[1][2].So we have to look for the alternative–Synthetic Data, data gen-
erated through using existing user models. It offers advantages besides being
shareable. The forms of these data will be close, if not identical to those from
real users. Less realism is traded for more precise control of different param-
eters, e.g. content length. By adjusting these parameters, we can find exactly
what changes each security control is sensitive to. In addition, by controlling
when and what attacks are introduced, we have a clear view of ground truth,
whereas in real user data, attacks are hard to identify, resulting in additional
unknown false negatives. In fact, even in real user data, synthetic attack data is
often injected for testing, as labeling the datasets with often sparse attacks is a
cumbersome and potentially inaccurate process.

In this paper, we propose a modular synthetic dataset generation framework
for web applications, and a monitoring infrastructure that is capable of record-
ing data from multiple layers, including TCP packets on the network, database
queries, and even host system calls, so that security controls at different layers
can be compared to each other. We call this system Wind Tunnel. By limiting
the scope of Wind Tunnel to one important attack vector, remote attacks on
web applications, we can better model the content and measure security con-
trols designed to defend against it. In order to incorporate more realism in the
synthetic dataset, we use publicly available content, such as known usernames,
passwords, English text, and images as the fundamental data sources in Wind
Tunnel. For a particular web application, we first create use cases and then drive
multiple instances of Firefox via Selenium [3] based on these use cases to sim-
ulate users. Each dataset has configurable distributions for each parameter and
has all the network traffic, system calls, and database queries recorded. For at-
tack data, we write scripts using Metasploit [4], launch the attacks, and execute
post-compromise data exfiltration.

1 http://heartbleed.com/



With a modular design and focus on the ease of data generation, one can
easily change a parameter or substitute different user content to determine how
that change affects all the security controls tested. Collecting data from mul-
tiple layers at the same time allows us to compare security controls operating
at different layers directly to one another. For instance, we can determine if
a web content anomaly detector and a file access sensor each detect the same
attack. In later sections, we describe Wind Tunnel and how we use it to gener-
ate nine datasets representing three separate web applications, varieties of user
content, changes in length parameters, and two different servers. We then test
nineteen security controls at four different layers, using the results to discover
what changes affect different types of security controls. We illustrate how we can
compare security controls from different layers including web content anomaly
detectors, database sensors, file access sensors, and more with this multilayer
dataset, as well as perform analysis on how such security controls could be opti-
mized in a defense in depth architecture by showing their overlap. Furthermore,
we compare our generated data to that of a production web server dataset and
another synthetic dataset published previously [5].

The remainder of the paper is layed out as follows. In Section 2, we describe
our board approach. Section 3 details our implementation. All results are pre-
sented in Section 4. In Section 5, we discuss related work. Finally, we remark on
future goals and conclusions in Sections 6 and 7.

2 Data Generator Framework

The goals of Wind Tunnel is to generate realistic synthetic data across multiple
layers in a modular, repeatable, and automated manner. We want the synthetic
data to be realistic enough that measurements of security control performance
are predictive of at least relative performance of security controls on real produc-
tion data. We focus on modeling web application content rather than network
connection information, source reputation, volumetrics, or fine grain timing. In
the future, with the modular nature of Wind Tunnel, we can integrate more so-
phisticated models of user behavior. By generating multiple layers of data, we can
test security controls that protect against a particular attack vector regardless of
the layer at which they operate. A modular framework allows individual compo-
nents such as new sources of user content, new web applications, or new attacks
to be quickly integrated. Rather than just generating data once, Wind Tunnel is
designed to repeatedly create a dataset either for use with inline defenses that
cannot be tested against a static dataset or to adjust various parameters in order
to explore what effect certain changes have on various security controls.

Wind Tunnel consists of seven steps any of which can be reconfigured or ex-
panded without having to build a whole dataset from scratch. A visual overview
can be seen in Figure 1.

– Set up a web application server
– Program use cases with Selenium [3]



– Choose existing or create additional raw content data sets for user submitted
content

– Create attacks and define permutations
– Start recording on server and start clients
– Launch attacks
– Test security controls against data
– Process, analyze and visualize results
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Fig. 1. Wind Tunnel System Overview.

2.1 Normal Traffic Generation

Use cases in Wind Tunnel are Java code that use the Selenium library to drive
a Firefox web browser to perform actions on and submit to the chosen web
application that simulate a user completing some typical use of the website.
These can range from simply visiting the home page to performing a complex
series of actions such as logging in, page navigation, filling out and submitting
a form, and uploading a file. Similar to using such tools as a testing framework,
we want a variety of use cases that cover all the major functionality of the web
application, especially vulnerable ones. Anytime a choice has to be made in
the course of executing use cases, such as what content and how much or which
image to upload, a configurable parameter is provided to the security researcher.
Each use case has access to a set of usernames, image files, English text, etc.
The use case can be configured to use a particular distribution of content such
as using a Zipf distribution when choosing from available usernames or a normal
distribution with a specific mean for choosing the number of English sentences
to post in a form field. These types of distributions and their parameters can all
be reconfigured. For instance, it would be important to know during evaluation



if even minor changes in the average length of blog posts affects the false positive
rate of a content-based anomaly detector.

We focus on modeling user submitted content as this is where web appli-
cations are typically vulnerable. Content anomaly detectors in particular are
sensitive to normal data as that is what their models are built on and if that
data is unrealistically regular they can have unrealistically high performance. To
bring the messiness of real user data to Wind Tunnel, we reuse existing real user
data from public sources. To add realism, the data should be as closely related
to what the web application is expecting. For instance, any English text could
also be used for usernames and password fields, but gathering samples from real
world usernames and passwords and using those should add realism as character
distributions are likely drastically different from standard English text.

2.2 Launching Attacks

For attack data, we leverage the Metasploit Framework [4] to use existing at-
tacks, evasions, and payloads as well as the ability to add new attacks, evasions,
and payloads as needed without having to recreate each piece of an attack chain
from scratch. We take a set of attacks, evasions, and post compromise exfiltra-
tion actions and generate a Metasploit script for each permutation. Attacks can
vary from already known vulnerabilities, induced zero-days where we modify a
web application to be vulnerable, to actual zero-day attacks against the web
application. Attacks can be chosen from common web application attacks such
as SQL injection, file upload attacks, code inclusion, etc. Evasions can include
simple encoding schemes, advanced polymorphic code rewrites, padding attacks
and others. Post compromise data exfiltration actions can be modeled as well.

2.3 Labeling the Data

After sufficient normal data is sent to the web application server, attacks are
all launched in sequence while collecting their start and end times in order to
label the data. At the network layer simply launching attacks from distinct IP
addresses gives an easy labeling mechanism as in this attack vector we are not
modeling source IP address patterns. We take a sliding window approach and
treat the system call security controls as a warning system so any alert during
an attack time windows counts as a true positive while alerts during only normal
traffic count as false positives. File accesses are much rarer events, and since we
know what the attacks are scripted to do, compromises are much easier to label.
Malicious database queries launched as part of the attacks can be labeled based
on timing when launched.



3 Prototype Implementation

3.1 Dataset Generation

Web Applications We generate data for three PHP based web applications:
Wordpress, Tikiwiki, and Testlink. All of the web applications run PHP 5.3.3,
and both the web application version and PHP version were selected intentionally
since known vulnerabilities exist in these versions. Wordpress is a widely used
platform for running personal websites or blogs. We run Wordpress 3.3 with
plugins Buddypress 1.5.4 and Foxypress 0.4.2.1. Buddypress is a plugin for social
networking, and Foxypress is an ecommerce plugin. Tikiwiki is an open sourced
‘all in one’ content management system. We use Tikiwiki version 8.3 for these
experiments. Testlink version 1.9.3 is a management system for tracking software
quality.

Data Sources In general, there were five different types of data that the use
cases require: text, username, password, images, and files. We use three English
text corpora the nonredundant Usenet corpus [6], the Wikipedia corpus from
WetburyLab [7] and post data from Stackoverflow [8]. The text data is used to
fill in titles, descriptions, posts, among other text data that users send to servers.
The benefits of these publicly available data sets is that the text is actual data
generated by real users. This has the following implications: 1) Text that is close
by tends to be contextual and related 2) the text is representative of user text
in online contexts 3) data from a particular site could have different properties.

The usernames and passwords that we use during experiments are from a
Stack Exchange Data Explorer [9] query for 20 thousand usernames and the
Rockyou password leak file containing millions of unencrypted passwords [10].
These two data sets provided actual examples of usernames and passwords that
were used historically on public websites, and provide us with representative
data of both.

Images were used in file uploads and incorporated into the user generated
data for many applications. Images were taken from Wiki Commons public do-
main images [11]. This image source provides us with a freely usable and dis-
tributable repository of images.

Some applications expect to have text files uploaded as part of a description.
In general, we seed these text files with data from Stackoverflow [8]. Steps were
taken to ensure that the data used in the files did not overlap with the data
that was used in the user submitted text since that could result in duplication
of POST data to the server.

A variety of use cases composing typical normal user behavior are created.
Care is taken to ensure that any function of the application targeted by an
exploit in the attack dataset has a corresponding normal use case so that an
anomaly detector does not simply detect the attack because user behavior was
incorrectly modeled. In the configuration file, each use case had an associated
weight. When running a use case, Wind Tunnel chooses one at random with

probability
weight of use case

sum of all use case weights
.



Data Volume For each dataset generated we capture enough HTTP requests
with user submitted parameters to be able to train the network content anomaly
detection sensors, which as described in Section 3.2, require 100,000 such requests
to build their models. In order to have sufficient variety of data for testing false
positives, we generate data until we have at least 25% more requests with argu-
ments. Many more HTTP requests without user arguments are sent, often three
to six times as many, in the synthetic datasets depending on the web application.
Each dataset generates full packet content on the order of tens of gigabytes of
uncompressed PCAP files, tens of gigabytes of compressed system call logs, and
gigabytes of uncompressed SQL query logs. Such data generation takes between
ten and twenty-four hours to complete in our laboratory environment.

Attack Data For attack exploits, we use four known vulnerabilities and edit
the applications to add two additional vulnerabilities. We utilize a correspond-
ing Metasploit module for three of them and build new Metasploit modules for
the three that did not already have one. For TikiWiki, we use CVE-2012-0911
which is a vulnerable PHP unserialize() allowing arbitrary code execution. For
Testlink, we use OSVDB 85446 [12] an arbitrary file upload vulnerability which
is then called to execute arbitrary code. For Wordpress we use two vulnerabili-
ties in the add-ons FoxyPress and BuddyPress. For FoxyPress, we use OSVDB
82652 [13] that is another arbitrary file upload vulnerability leading to arbitrary
code execution. In BuddyPress we use CVE-2012-2109 a SQL injection vulner-
ability that we use to gain arbitrary code execution. For TikiWiki and Testlink,
we add an additional SQL injection vulnerability to the login page and exploit
it. We provide Metasploit modules for these last three SQL injection exploits.

We add two basic evasion techniques to these base exploits, PHP base64
encoding and normal data padding. PHP base64 encoding transform the bulk of
the payload code into alphanumeric text to obscure any alerts based on strange
characters or naive code patterns. Normal data padding is where we take a
sample of normal traffic to the website and extract typical user submitted data
to concatenate to the malicious HTTP POST data in order to fool content
anomaly detection models using a straightforward mimicry attack.

Once the attack establishes a shell connection to the server, we create two
scenarios of data exfiltration. Both read the web application database configu-
ration file to obtain the database login credentials. The first simply exfiltrates
the user tables with usernames and passwords while the second scenario queries
the entire database table by table to represent a more noisy attacker. Metasploit
establishes a reverse shell on a separate port for these later attack stages so not
all of the attack is exposed to the network security controls operating on HTTP
requests. Each attack script is run in its own time window.

Real Web Server Data In order to compare the synthetic data to production
user data, under institutional review board approval, we acquire network traffic
to a department web server for just over six days time. In the period, we collected
156GB of HTTP traffic representing of over 1.5 million HTTP requests. A main



advantage of this data is that we can calculate realistic “in the wild” false positive
rates. Unfortunately this web server is not the best analogy to the individual
web applications as it runs many web applications on the same server forcing the
content anomaly detectors to model them all at once. While significant attack
traffic is seen, most (hopefully all) of those attacks fail to compromise the server
so only the initial attack request is seen whereas in the synthetic datasets all the
attacks consist of multiple requests lasting over the initial compromise and data
exfiltration.

Labeling Ground Truth For the production data server, which is exposed to
the internet, all manner of attack data can be mixed in so establishing ground
truth becomes a difficult task. We use the same method as used in prior work [14]
to label the attack data as best we can via clustering and manual inspection.
Some unknown number of false negatives may certainly be present. For the
synthetic data as we have control of the attacks, we are able to better label
ground truth. As discussed in Section 2, as different layers will see different
aspects of the attacks, we label attack data at the network layer by determining
whether it came from the attack machine IP address or not. For determining
whether a security control detects an attack we check for any alerts during the
attack time period. This is useful as no security control can see all the aspects of
the attack at different layers and even without detecting all parts of the attack
at a certain layer, by alerting, a security control brings attention to the attack.

3.2 Security Controls

We acquired and installed 19 sensors across the network, file access, system
call, and database layers to test against the datasets. All of the sensors in this
prototype are run in offline mode testing on the data after it has been collected;
however, the sensors are designed for and capable of running in real time.

Network Layer We run six content anomaly detection (CAD) sensors operat-
ing on user submitted argument strings in HTTP GET and POST requests that
they extract from reassembled TCP streams from raw network traffic. For POST
requests this is all the content after the HTTP header and for GET requests this
is the string following the ? in the URI and is typically made up of attribute
value pairs. For instance, in a GET request like GET /index.php?username=alice
HTTP/1.1, username=alice is the content modeled by the CAD systems. The six
CADs used for network layer detection are Spectrogram [15], Anagram [16], and
four models previously developed by Kruegel and Vigna [17] attribute length,
attribute existence, attribute character distribution, and attribute tokens. All of
these are implemented on top of STAND [18] a data sanitization framework to
build sanitized AD models from a sliding windows of 25 submodels built on time
slices of content. STAND is configured to use the content normalization devel-
oped for Spectrogram [15]. For our synthetic data sets each detection model is
computed on 100,000 HTTP requests with user arguments before testing starts.



For the production web server data, we use the calibrator feature of STAND
described in [19] that is time aware and ended up building its models on about
3 days worth of data.

Database Layer We run six sensors on MySQL queries captured during the
data generation process. We implement five content anomaly detection sensors
operating on user specified inputs in those queries using a similar approach dis-
cussed in related work [20]. For each MySQL query, we extract all user specified
inputs and insert them into a list in the order they appeared in the query. Then
we replace each occurrence of user input in the original query with an empty
placeholder token to generate a query skeleton. Similar to the web layer detec-
tion, we use five CADs including Spectrogram, Anagram, and three models from
related work [20] attribute length, attribute character distribution, and attribute
tokens. For all the attribute-based sensors, models are built separately for each
type of query skeleton. Attribute existence sensor is ineffective for MySQL in-
puts because any given query skeleton pre-defines a list of user specified inputs
as well as the relative order of them.

Besides the five CAD security controls, we also implement an offline sensor on
top of an open source version of GreenSQL [21], a well-known unified solution for
detecting database layer intrusions. We use the source code from an open source
version (1.3.0) for these experiments. While the methodology to use greensql is
to integrate it along with the running database, we have extracted the part that
does the rule based pattern matching on the sql commands issued in order to
generate alerts. This provides us with a mechanism to compare the efficiency of
an open source sensor using the same datasets, on an offline basis. We use the
default rule set and compute the anomaly scores based on the number of rules
being fired for each MySQL query.

File Accesses Layer We implement a anomaly detector that monitors file
system calls to detect anomalous accesses based on prior work [22]. We use
Auditd [23], the default Linux auditing system, to audit file system accesses,
and an unsupervised machine learning system to compute normal models for
those accesses. The anomaly detection engine utilizes the Probability Anomaly
Detection (PAD) algorithm [24] and trains the normal models on a selected set
of features associated with each file access, namely, UID, WD (current working
directory), CMD (command being executed), Syscall Number, File Name, and
Frequency. PAD calculates first order and second order probability for each of
the 6 features giving a total of 36 probability values for each file access entry.
An alert score is then computed using a multinomial model with a hierarchical
prior based on dirichlet distribution, and log probabilities are used at each step
to avoid underflows [22].

System Calls Layer We run six sensors on system calls collected during the
data generation process. Due to the negative impact on system performance



when training an extreme large volume of system calls, we carefully select a
subset of system calls that are audited by Snare’s audit facility [25, 26] to train
the CAD sensors. Those system calls cover the most suspicious activities at
the system call level when a large set of intrusions are observed. We therefore
implement five content anomaly detectors operating on system call parameter
and value pairs, including Spectrogram, Anagram, attribute length, attribute
character distribution, and attribute token. Similarly, the attribute existence
sensor is omitted as the presence of system call arguments are predefined. For
those attribute-based sensors, normal models are built separately for each unique
system call.

We also experiment with an anomaly detector called Stide on system call
sequences that studies the short-range correlations in system calls for each pro-
cess [27, 28]. The algorithm builds the normal model using short sequences of
system calls of length N for each process, and store the model information in
a tree structure for efficient access. Thus an intrusion is detected when unseen
sequences are observed for that process within certain locality window. In these
experiments, we run the detector against the entire set of collected system calls
with system call length of 6 and locality window of length 20 [27, 28].

4 Experiments and Results

The goals of our experiments are fourfold. We want to determine the sensitivity of
each security control to various dataset changes, compare security control stand
alone performance across layers, determine whether performance on synthetic
datasets predicts performance on a production dataset, and analyze how total
performance of security controls scales when combined together. To this end, we
use Wind Tunnel to generate nine synthetic datasets with normal and attack data
using various parameters described below in addition to the real user production
web server dataset described in Section 3.1.

4.1 Datasets

Dataset Name Application Content Length Run

wp usenet base Wordpress USENET Normal host machine A

wp usenet base2 Wordpress USENET Normal repeated on host A

wp usenet base3 Wordpress USENET Normal repeated on host B

wp wiki Wordpress Wikipedia Normal host machine A

wp stack Wordpress Stackoverflow Normal host machine A

wp usenet short Wordpress USENET Halved host machine A

wp usenet long Wordpress USENET Doubled host machine A

tiki usenet TikiWiki USENET Normal host machine A

tk usenet Testlink USENET Normal host machine A
Table 1. Comparison of the nine generated datasets.

We experiment with four changes that security controls could be sensitive
to in the underlying data. First, we test the natural variance between data



generation with the same configuration both on the same server and then when
changing to another host machine. Second, we look at the effect of content source
by running the same configuration but changing from the USENET corpus [6] to
a Wikipedia corpus [7] of English text or forum post data from Stackoverflow [8].
Third, we vary the length of user content inputs by changing the distribution of
the length of English text submitted by doubling it for one dataset and halving
it for another dataset. Fourth, we generate datasets with three different web
applications thus changing all the use cases as well. See Table 1 for a summarized
comparison of the datasets. To compare these changes in datasets, we start with a
baseline dataset using the Wordpress web application with the USENET corpus
of English text. Data sources and use case distribution parameters are described
in Section 3.1.

In addition to the datasets generated with this prototype, we add two addi-
tional web layer only datasets in order to compare results, a private dataset from
the Columbia University Computer Science (CUCS) department web server and
the publicly available ISCX 2012 Intrusion Detection Dataset [5]. The CUCS
web server dataset consists of over 1.5 million HTTP requests, 60 thousand of
which contain user argument strings which are processed by the web layer sen-
sors. In manually labeling the resulting alerts, 1257 attack requests are seen.
From the ISCX 2012 dataset, we use only the HTTP traffic destined to the web
server that is attacked with web application attacks. This leaves us with over 3
million HTTP requests, 18 thousand of which contain user argument strings pro-
cessed by the web layer sensors. Of these 18 thousand, 77 are labeled malicious
constituting various web application attacks.

4.2 Comparison Experiments

With 19 sensors being tested across eleven different datasets, concise summation
of data is key. In Table 2, we present the area under the curve (AUC) of each
receiver operating characteristic (ROC) curve for each sensor and dataset pair.
Note that for the department web server dataset CUCS and the ISCX dataset
that only network traffic is available so file access, host, and database sensors are
not tested. Note that the low scores for database sensors are in large part due to
the fact that for the Wordpress and TikiWiki attacks only one of the two exploits
leaves traces in the database layer after the preprocessing normalization. This
makes the maximum AUC that a database sensor can achieve for a Wordpress
dataset 0.5 and 0.33 for TikiWiki. The TikiWiki SQL exploit does not function
without the PHP base64 encoding leaving twice as many instances of the other
exploit.

The metric AUC gives a good general first impression of the performance of
a sensor in terms of its detection rate and false positive rate trade off; however,
deeper analysis is often needed to fully understand a sensor’s performance. At
first glance, many of the host sensors appear to dramatically outperform ev-
erything else. While this is the case in terms of false positive rate, one must
remember that the raw count of system calls is high compared to the number of
web requests with user parameters or database queries. In practice, this means
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webAnagram 1.00 0.84 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00

webSpectrogram 0.96 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00

webAttCharDist 1.00 0.76 0.97 0.97 0.97 0.97 0.97 0.94 0.97 0.96 0.96 0.97 0.98 1.00

webAttExistence 1.00 0.76 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.00 0.60

webAttLength 0.98 0.81 0.32 0.51 0.39 0.32 0.40 0.45 0.32 0.38 0.41 0.32 0.99 0.97

webAttToken 1.00 0.77 0.30 0.39 0.34 0.30 0.53 0.51 0.30 0.50 0.49 0.30 0.82 0.99

mysqlAnagram 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 1.00

mysqlSpectrogram 0.49 0.49 0.50 0.49 0.49 0.50 0.49 0.49 0.49 0.49 0.33 1.00

mysqlAttCharDist 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 1.00

mysqlAttLength 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.33 0.99

mysqlAttToken 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.31 0.97

mysqlGreensql 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.70

hostAnagram 0.95 0.96 0.94 0.95 0.97 0.96 0.95 0.95 0.97 0.95 0.99 0.97

hostSpectrogram 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

hostAttCharDist 0.99 0.91 1.00 0.99 0.97 1.00 0.99 0.95 0.91 0.99 1.00 1.00

hostAttLength 0.97 1.00 1.00 0.97 0.96 1.00 0.97 1.00 1.00 0.97 1.00 1.00

hostAttToken 0.84 0.83 0.77 0.84 0.82 0.79 0.84 0.84 0.83 0.84 0.93 0.89

hostFileAccess 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

hostSyscallSeq 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. Area under the curve (AUC) of the receiver operating characteristic (ROC)
curve for each security control and dataset pair.

that even for a false positive rate that rounds off to zero when computing the
AUC, the host sensors can still have tens of thousands of individual alerts per
dataset. This turns out to be the case here for all host sensors. These high raw
counts of alerts may or may not translate to high costs for running the sensors
depending on what sort of alert triage approaches are deployed. See Section 4.5
for further discussion of approaches for reducing the costs of false positives.

Sensor performance on the real world production dataset differs substantially
from the synthetic datasets. Some significant portion of this difference could be
due to the nature of the CUCS dataset. The CUCS server hosts many different
web applications at once, whereas the synthetic datasets all model one web
application. The CUCS dataset has requests for many more different individual
pages instead of the handful of specific use cases we see in the synthetic datasets.
Further research into different categories of real world web application servers
is needed. If this noise turns out to typical, the use cases should be adapted to
produce such additional variance. With Wind Tunnel, such modifications can
be integrated seamlessly into the data generation process as more data becomes
available describing typical usage of web applications.



Experiment with Natural Variation For the first experiment, we generate
two separate datasets against the same server with the same configuration. For
these baselines we use the USENET corpus as the source of English text and
generate traffic against the Wordpress web application. Additionally, we run
the same configuration against a separate server running the same Wordpress
application. For the most part, AUC scores of the sensors stay fairly stable across
these three datasets. The host layer character distribution sensor does fluctuate
due to a large amount of normal data scoring just below the scores the sensor
gives to the SQL exploit attack variations. For this reason a slight change in
attack scores significantly affects the number of false positives thus changing the
AUC.

Experiment with Varying Content Source To test the sensitivity of sensors
to changes in the distribution of English text, we conduct a second experiment
reusing the same baseline of the Wordpress application with USENET data com-
pared to the same configuration but with Wikipedia text and StackOverflow text
respectively. This change in data source seems to have little overall impact on the
sensors. The most apparent effect comes in the web layer character distribution
sensor which has a reduction in its AUC for the StackOverflow dataset. Rather
than just a small change in attack scores raising false positives, Figure 2 suggests
that the general distribution of normal data score differs for the StackOverflow
dataset for this sensor. As the sensor models the portion of characters often used
and rarely used perhaps the StackOverflow text has higher variance in such text
patterns with its often technical forum posts referencing code.
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Fig. 2. CDF for the scores of normal data
for web layer attribute character distribu-
tion sensor for three web applications.

Experiment with Varying Con-
tent Length In the third exper-
iment, we vary the content length
when sending English text data as ti-
tles, paragraphs, posts, etc.. We halve
the mean of the length distribution for
short texts and double it to make the
long text configuration. Any impact
this change had if any is within the
natural variance between data gener-
ation. Only the host layer Anagram
sensor increases its AUC from short
to normal to long lengths. It is corre-
lated only to one other sensor and the only negative correlation increasing AUC
from long to short is the host layer attribute token sensor, which only shows
change between long and normal.

Experiment with Varying Applications Next we generate data against
different web applications. We generate datasets for TikiWiki and Testlink in



addition to the Wordpress baseline. As one might expect, changing the web
application makes the largest impact on sensor performance out of the variations
we show. As noted above, the Testlink attacks all have database level components
so the database layer sensors are able to detect all attacks. The largest outlier
we see occurs in this experiment in the web layer where the attribute existence
sensor scores all the TikiWiki attacks as perfectly normal achieving 0 AUC. This
is due to the simplistic nature of the sensor which checks whether it has seen
all the variable name attributes in a request before. The TikiWiki exploits both
only use attributes that are also used in normal operation so the sensor correctly
performs just with a flawed detection mechanism. We also see a large increase in
the performance of the web layer length and token sensors compared with their
Wordpress performance.
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Fig. 3. CDF for the scores of normal
data for web layer anagram sensor for
three web application, production web
server and ISCX dataset.
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Fig. 4. ROC curves for web layer ana-
gram sensor for three web applica-
tions, production web server and ISCX
dataset.

Synthetic and Production Dataset Comparison In order to visualize the
differences in datasets, we graph the performance in detail of the web layer Ana-
gram sensor for each separate web application that is the Wordpress, TikiWiki
and Testlink datasets, the ISCX 2012 dataset, and the CUCS department web
server dataset. In Figure 3, we plot the cumulative distribution of the Anagram
anomaly scores for the legitimate data. For any given score (x-axis), the percent-
age of the normal data that scores at or below that score is given (y-axis). Note
that a higher score means that Anagram describes that data as more abnormal
with 100 meaning that no ngrams from the data are present in the Anagram
model. This graph gives a visual representation of the distribution of the scores
of the nonattack data. The CUCS department web server dataset, while sharing
the pattern of a large portion of data being completely normal at score zero,
has a large spike at score 100 meaning that many legitimate requests are never
before seen by the Anagram model. Many of these are short searches with unique
enough terms that they score high. Another large component of these score 100
legitimate requests are rarely used application features. With the model sanitiza-
tion phase of STAND, requests seen only rarely in the training set are discarded
to reduce model poisoning from widespread but low volume attacks.



We also plot the receiver operator characteristic (ROC) curve for Anagram
across these five datasets in Figure 4. This plots the detection rate against the
false positive rate for Anagram run on each dataset. Again the CUCS web server
dataset is distinct as with so many legitimate requests receiving a score of 100
the false positive rate is correspondingly high. Additional use cases could be cre-
ated from this insight to model a server where some features are rarely accessed
to the point where sensors have trouble modeling them. More high scoring use
cases such as image uploads or short random searches could also be added. Fur-
ther research into the typical use cases in production datasets from web servers
with only a single web application server is needed to determine whether these
patterns of high scoring alerts are typical or an artifact of the one production
dataset we have.

4.3 Sensor Performance
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sensors for the wordpress baseline
dataset.
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layer sensors for the wordpress baseline
dataset.
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access layer sensors for the wordpress
baseline dataset.
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In addition to Table 2, we present a brief sample of the results visually as
ROC curves for the wp usenet base dataset with all 19 sensors tested as well as



the web layer sensors for the CUCS web server in Figures 5, 6, 7, and 8. Note that
each graph has different x-axis scales. In Figure 5, the web layer attribute length
and attribute token sensors experience a large false positive rate. In Figure 6,
we see plainly the effect of one of the Wordpress exploits leaving no trace in the
database layer bounding all the sensors at 50% detection rate. The CUCS web
server data shown in Figure 8 shows a clear winner in the Spectrogram sensor,
which achieves the same detection rate at less than half of the false positive rates
of the closest contender.

4.4 Correlation and Overlap Between Sensors

Fig. 9. Concentric circles represent each of
the 19 sensors in the same order as Table 2.
Each arc represents one attack permutation
for the Wordpress synthetic data set. Green
indicates that the attack is detected by the
sensor at a false positive rate of at most 1%
on the wp usenet base dataset.

The main advantage of Wind Tun-
nel is to generate, link, and test data
across different layers. Rather than
independent evaluation and detection
rates, we can identify which sensors
detect the same or different attacks
regardless of layer. We can also com-
pute a total detection rate for any
set of sensors, overlapping detections,
and find sensors that add the largest
marginal increase in total detection
rate to a set of existing sensors. Fig-
ure 9 visually illustrates this abil-
ity. Each ring or concentric circle
presents a particular sensor. Each arc
represents an attack, which in this
case is a particular exploit possibly
permuted with various evasion tech-
niques. Think of the circles as many
walls surrounding a castle. Each at-
tack then starts outside the walls and
attacks each wall in turn proceeding
directly to the center of the castle.
All walls ‘destroyed’ are in red. Those
walls that still stand (detecting the attack) are in green. The goal of the defender
would be to have walls (sensors) such that no single attack knocks them all down
(all red along a single arc), which would mean that each attack is detected by
at least one sensor. In this figure, the bottom half shows attacks using the SQL
injection exploit with the top half showing attacks using the file upload exploit.
At this false positive rate some sensors detect all of the attacks. Also observe
how certain sensors detect half and especially that some of those detect a dif-
ferent half than others such that those two sensors each with a 50% detection
rate together would detect all the attacks. Access to this type of data instead of
only a raw detection rate with little insight into how a set of sensors overlap is
important for architecting defense in depth.



4.5 False Positive Analysis

In the experiments, content anomaly detectors perform quite well on user posts
containing large amounts of previously unseen English text implying that these
anomaly detectors are able to learn English well enough to label new English
text as fairly normal. To verify that this is indeed the case, we run a stand alone
version of Anagram on the raw English text sources used. The anomaly detector
builds a Bloom Filter from a training set using sliding n-grams of the HTTP
request (ie, if n = 5, then the first two sliding 5-grams of “abcdef” are “abcde”
and “bcdef”). In Wind Tunnel, Anagram running on STAND uses n = 5. We
then built a training set of posts to train the anomaly detector, and then tested
it on a set of 10000 posts to see how it performed. The results are shown in
Figure 10.

Fig. 10. Anagram training on usenet
raw text data directly to test learning
of English with a small sample of text.

The graph has the number of posts
that the anomaly detector is trained on
for the x-axis and the average percentage
of new n-grams seen in the test set on the
y-axis. Since the anomaly detectors use
a threshold on the percentage of new n-
grams as its measure of whether or not the
request is an anomaly, this tests should ac-
curately predict how the anomaly detec-
tor will react to each data set. The graph
has exponentially decaying curves with re-
spect to the training size and more new
n-grams as the number n increases as ex-
pected. After a short amount of training,
the dataset shows relatively low anomaly
scores during the testing phase showing that content anomaly detectors are flex-
ible enough especially at small sliding window sizes to roughly learn English.

To make sure we model data that is content anomaly detectors have trouble
with, we add image upload use cases. Any compressed, random, or encrypted
data is difficult for these sensors to model unlike English text. A large portion
of the false positives from Anagram and Spectrogram come from such image
uploads. Other common false positives we see include short high entropy strings
such as session identifiers and to a lesser amount usernames and passwords.

False positive rates and counts in general best serve as a relative metric
between sensors on the same dataset. Much more external data is needed in
order to evaluate whether a sensor is useable at a certain false positive rate or
raw false positive count. The strategy of managing false positives has a large
impact on the actual cost incurred. For instance, automated methods of filtering
false positives such as a shadow server [16] will have drastically lower costs than
relying on a human analyst. Correlation between cooperating organizations can
further filter out alerts to only require a human analyst for a small portion as
previously demonstrated [14]. Even if a human analyst is required, many false
positives or at least types of false positives repeat over time so an initial effort



of labeling and creating filtering rules could drastically change the consequential
costs. The data generated by Wind Tunnel and tested by sensors can be further
filtered by any of these methods in order to provide organizations with a better
idea of what costs would be incurred by any set of security controls tested.

4.6 Attack Evasion

In addition to testing the effect of variations in normal data generation, we have
evasion mechanisms applied to attack data. The most targeted of these is the
padding attack, which aims to bypass content anomaly detectors by appending
normal data to attack content in order to reduce the score of the overall re-
quest. All the Wordpress datasets had padding attacks launched as one of their
attack permutations. The effect is most seen in the two sensors Anagram and
Spectrogram, which look at the full stream of user submitted data for each re-
quest without breaking it down into attribute value pairs as the other web layer
sensors do. The score given to attacks with padding is significantly lower. For
example Anagram goes from scoring the attacks at over 90 to scoring them in
the mid 40s. Despite this, the AUC of each of these sensors suffers only by a few
hundredths at most when looking at only padding attacks compared to attacks
without padding. This is due to the large majority of the normal data being
scored by both sensors at such low scores that lowering the threshold to still
detect padding attacks does not induce too many more false positives.

5 Related Work

There have been a number of efforts to generate quality synthetic data in the
past. Arguably the most famous, the 1999 DARPA dataset contained serious
flaws [29]. A more recent data set from ISCX [5] attempts to address those flaws
by collecting all traffic including attack traffic at once and using more recent
multistage application level attacks in addition brute force and denial of service.
Our focus differs in that we focus on one attack vector, web application attacks,
and try to model user content whereas the ISCX data represents a broad array
of attack data at only the network level and focuses on modeling volumetrics and
other connection level details. The DETER testbed [30] [31] provides a secure
and scalable remote test environment. The goals of the DETER project to push
the state of the art of experiments in computer security are similar to ours.
DETER focuses on network scaling and containment of dangerous experiments
in a remotely accessible testbed. Wind Tunnel is complementary to DETER
as we focus on modeling content with multilayer data collection. Wind Tunnel
could be deployed in a large scale network environment such as DETER to model
larger scale systems such as large cloud environments with realistic content.

Others have addressed aspects of comparing sensors and measuring defense in
depth. In related work [32], the authors compare a variety of anomaly detectors
against a set of real user data while injecting synthetic attack data. Such effort
illustrated the need for better comparison and tests against baseline datasets.



We use similar sensors in Wind Tunnel, but expand to additional layers and
focus on creating shareable datasets. Others [33] suggest an empirical approach
to measuring defense in depth assuming each layer is independent and combining
detection rates to infer total security. A more direct measurement approach is
suggested for defense in depth in prior work [34] without assuming independence
between layers by linking attack data directly. This is the type of approach we
utilize here, by linking attack data across layers since we have the ground truth
of when attacks begin and end.

6 Future Work

The modularity of Wind Tunnel lends itself to many useful future endeavors. We
hope to add more Selenium use cases, attacks, and security controls to grow the
usefulness of Wind Tunnel. We plan to leverage this modularity to generate new
datasets to model different usage scenarios and test various hypothesis without
having to construct such experiments from scratch. In particular we wish to test
inline security controls such as various server side taint tracking techniques. To
support inline sensors, which will require the same dataset to be generated once
for each inline security control as well as once for all the out of band security
controls, we plan to add significant determinism to regenerating data sets. In
order to make Wind Tunnel more usable, we plan to create a web front-end
with a fully automated dataset generation process for any new use cases, web
application servers, and attacks are created. The goal would be for anyone with
an experiment idea to be able to add any components not currently included and
then generate a dataset from that configuration. Over time this could evolve into
a repository of interchangeable experiment components saving significant time
and opening up more rigorous evaluation of new security controls.

7 Conclusion

We present Wind Tunnel, a framework and working prototype for generating
synthetic datasets across multiple layers suitable for testing security controls
defending against web application attacks regardless of the layer of data they
operate on. We provide the ability to evaluate security controls not against ones
of the same type, but also against security controls operating at entirely different
layers. In addition, by tracking which individual attacks or attack permutations
each security control detects at a certain false positive rate, we are able to
compute a total detection rate for any arbitrary set of security controls. Instead of
making assumptions of independence about how security control overlap, we can
directly measure the overlap. The modularity of Wind Tunnel will allow future
research to perform performance evaluation and comparison of new security
controls against a wide array of previous research and either generate or reuse
synthetic datasets, which can be widely shared. This reduces the effort required
to independently setup each security control or undertake the task of generating



or acquiring datasets. Our synthetic datasets, source code, and instructions for
others to be able to use and expand this syetem are available for all researchers
(http://ids.cs.columbia.edu/content/windtunnel).
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