
12th IFIP/IEEE International Symposium on Integrated Network Management 2011

Policy Refinement of Network Services for

MANETs

Hang Zhao

Dept. of Computer Science
Columbia University

zhao@cs. columbia.edu

Jorge Lobo

IBM T. 1. Watson
Hawthorne, New York USA

jlobo@us. ibm.com

Abstract-In this paper, we describe a framework for a refine­
ment scheme located in a centralized policy server that consists
of three components: a knowledge database, a refinement rule
set, and a policy repository. The refinement process includes two
successive steps: policy transformation and policy composition.
Our refinement scheme takes policies written in our logic-based
abstract policy language as input and generates low level rules
directly implementable by individual enforcement points. We
provide concrete policy examples in a coalition scenario that
forms a mobile ad hoc network (MANET). We demonstrate
policy composition using a distributed firewall scheme named
ROFL (ROuting as the Firewall Layer) and access control list as
enforcement mechanisms.

Keywords: Policy, Refinement, Authorization, MANETs

I. INTRODUCTION

It is increasingly important to develop policy refinement that
automates high level requirements into low level implementa­
tion in policy-based system management. T he goal of policy
refinement is to generate low level rules so that syntax and
semantics can be understood by individual enforcement points.
Policy refinement fills the gap between policy authoring and
enforcement. While these two techniques have been studied
intensively, only limited work has addressed policy refinement.

In this paper, we propose a framework to automatically
transform security policies into implementable and enforceable
rules. We introduce a centralized policy server consisting of
three components: a knowledge database recording informa­
tion on the policy domain, a refinement rule set defining rules
for policy transformation and composition, and a policy repos­
itory storing policies written at different levels of specification.
T his systematic approach is able to cope with generic access
control policies written in the format proposed in [16]:
{Subject} can (or cannot) {Action} {Target} if {Condition}.

Given the expressiveness of such template, we focus on
a subset of stateless access control policies, where action is
either permitting or prohibiting a service provided by a target.
Such policies on network services are widely used, like the

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K.
Government. The U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

Amab Roy

IBM T. 1. Watson
Hawthorne, New York USA

arnabroy@us. ibm.com

Steven M. Bellovin

Dept. of Computer Science
Columbia University

smb@cs.columbia.edu

access control list implementation for mandatory access con­
trol (MAC), firewall policies, etc. Specifically, the refinement
rules presented here work for policies of the following form:

{Subject} can (or cannot) {access Service provided by}
{Target} if {Condition}.

We propose a generic framework of policy refinement
for access control policies (Section II); In Section III, we
introduce a logic-based abstract policy language to assist
refinement, and define rules for network service policies in
Section IV; In Section V, we discuss mechanisms to handle
policy updates due to database maintenance. We provide
concrete examples on policy refinement in a coalition sce­
nario with access control list and ROFL [20], a distributed
firewall mechanism implemented using routing techniques, as
enforcement mechanisms.

II. SYSTEM OVERVIEW

A. Distributed Policy Scenario

We will work with the policy scenario introduced in [11]

for the study of distributed policy analysis and refinement.
Each organization in this scenario owns devices, networks,
command centers, sensors and other equipment; each party
keeps its organization-specific domain knowledge private; and
each organization has its own policy server, which stores
policies and performs policy analysis and refinement tasks.
A coalition is formed of US forces, UK forces, and the Red
Cross (RX). It is a reasonable assumption that the US and
the UK domain have a similar structure. We address the US
domain, focusing specifically on two sample policies written
in natural language:

{Each US device is permitted to access location information from

one us location server with high quality, if communication is

encrypted and both sides are from the same quad.]

(1)
{Devices belonging to non-US organizations for coalition ITA are

prohibited to query sensor data from any us sensor fabric with

high quality between 9am and 5pm.]

B. Policy Server

(2)

Before introducing our policy refinement scheme, we de­
scribe the components and functionalities of a centralized
policy server (Figure 1) where policy analysis and refinement
take place. Each organization participating in a coalition has

978-1-4244-9221-31111$26.00 ©2011 IEEE 113

, , , , , ,
,
, , , , ,
\ ':�!.og!�p!.e_"!.e..n!C!.t?!! .. �

Policy Repository

Fig. 1: A centralized policy server for each domain

a centralized policy server consisting of three main compo­

nents: 1) A Knowledge Database: records information on a

policy domain; 2) A Refinement Rule Set: defines refinement

procedure in terms of rules; 3) A Policy Repository: stores

policies written at different levels of representation.

The Knowledge Database captures two categories of knowl­

edge: intra-domain knowledge of confidential information dis­

closed within an organization, and inter-domain knowledge of

coalition participants outside the organization. Inter-domain

knowledge is limited by how much information an organiza­

tion is willing to share with other coalition participants. For

example, the UK force knows the existence of a sensor fabric

in the US domain as part of inter-domain knowledge, but may

not have further details of the structure and components of the

US sensor fabric. There are different representations to model

a knowledge database. In this work, we describe our database

using UML description and logic representation.

The Refinement Rule Set defines two types of rules: trans­

formation rules that transform policies written in a logic­

based abstract language into access control (AC) tuples

(Sub, Tar, Srv, Cond)±; composition rules that gener­

ate low-level rules from those tuples. Our policy refinement

scheme is domain-independent, such that modifications on a

policy domain do not affect refinement rules. Transformation

rules are language-independent, taking policies in our abstract

language as input; composition rules are highly language­

specific, following exactly the syntax and semantics of low­

level rules implementable by individual enforcement points.

The Policy Repository stores policies written at different

levels of representation. For instance, it stores policies written

in a structured natural language, ROFL rules ready to be

shipped to individual enforcement points, and any intermediate

results generated during refinement process.

In the rest of this section, we present a 2-step procedure for

constructing a knowledge database: 1) drawing an UML class

diagram to describe the structure and components of a policy

domain; 2) building a database using logic representation.

C. UML Description

We present a UML description that describes a subset of the

US policy domain in Figure 2. Each class in the UML diagram

represents a group of objects stored in the knowledge database.

A class also has properties, such as attributes and methods. For

example, the Device class has four attributes named devlD,

devName, devType and devLoc automatically inherited by all

Coalition
coName

0.,*
members

nodeOf

1
controls 0 .. *

Target/Subject Zone ---------------------------------- � ----------------- -
Action Zone Service 0 .. * Condition Zone

.. provides

resolution
getPic(resolution)

srvName srvType
qos sec port

getDataO

Fig. 2: UML class diagram for the policy domain

its child classes. Child classes are also allowed to have their

own attributes and methods.

A line connecting two classes defines an association be­

tween them. Three types of associations are supported: gen­

eralization (i.e., IS-A relationship) describing relationship

between parent and child classes; aggregation (or composition)

representing relationship between aggregate (or whole) class

and part class; and regular associations not falling into the first

two categories. Each association, except for generalization, is

named uniquely, and can have their own attributes to form

an class. For example, association class Condition describes

additional information on service provision (i.e., association

named provides) between class Device and class Service with

two attributes condName and condType.

To facilitate policy representation, we group classes into

different zones. Instances from the target zone define tar­

gets in such policies; those from the subject zone represent

subjects. Those two zones coincide in Figure 2. The action

zone describes actions that a target can take. Finally, the

association class Condition captures additional constraints on

service provision.

D. Domain Knowledge

We construct domain knowledge using logic representation

from the UML class diagram defined previously. Six types of

definitions are maintained. Each class in the UML diagram is

defined using predicate class(C), where C is a class name.
class(device). class(service). class(condition).

Instances of individual classes are described by predicate

obj(O, C), where 0 is an object name and C is the name

of class that 0 belongs to.
obj (sel, device). obj (piel, service). obj (tirne1, condition).

We use predicate att(O, X, Y) to represent an attribute named

X with value Y for instance O.
att(sel, devN arne, sel). att(sel, devType, stillCarn).

Predicate assType(X, Cll A, C2) defines an association of type

X (agg for aggregation, comp for composition and reg for

114

regular association), identifiable by an unique name A between

two classes C1 and C2. Service provision (i.e., provides) is a

regular association between device class and service class.

assType(agg, organization, members, coalition).
assType(reg, device, provides, service).

The actual relationship between two instances 01 and O2
is described using predicate ass (X, 01, A, O2) that takes

instances rather than classes as arguments.

ass(agg, us, members, ita). ass(agg, uk, members, ita).
ass(agg, sel, owns, us). ass(reg, sel, provides, piel).

Unlike other associations, a generalization is defined as isa(C1,

C2) between a pair of child class C1 and parent class C2:

isa(sensor, device). isa(stillCam, sensor).
isa(senSrv, service). isa(picSrv, senSrv).

Attribute port (i.e. port number) from class service is often

determined by other attributes of the same class as follows:

F(att1, ... , attn) = port
As an example, port number for web service is determined by

its security feature such that regular http traffic goes through

port 80 and encrypted https traffic goes through port 443.

E. Implementation

We choose Prolog [10], a popular general purpose logic pro­

gramming language, for a reference implement of the policy

server in Figure 1. We use an open source implementation

called SWI-Prolog [3] together with its plugin ProDT [2]

developed for Eclipse [1].

III. POLICY LANGUAGE

To assist policy refinement, we present a logic-based ab­

stract language, intended to serve as a generic formal language

which multiple policy languages can be translated into and out

of during the refinement process. The language grammar writ­

ten in Backus-Naur Form (BNF) is summarized in Figure 3.

Comparison operators (=, 1-, >, 2':, <, :S;), logical connectives

(--', /\, V, ---+) and quantifiers (\I, 3) are integrated into our

language to provide expressiveness. Terms in italic are ground

Instance, Class, Attribute, Association names and association

types from the UML description and the knowledge database.

A policy consists of an authorization rule auth, a sign to

indicate positive authorization + (permitting a service) and

negative authorization - (prohibiting a service). Each auth
rule is a tuple (Sub, Perm, Cond) of three fields: Sub is

the subject of an authorization policy; Perm is further defined

as a tuple (Tar, Srv) that represents a service Srv provided

by target Tar; Cond denotes an optional condition field. More

specifically, Sub defines that a refined subject Sub' is an

object 0 satisfying predicate Exp, where 0 belongs to class

C (i.e. obj(O, C) from subject zone satisfying both attribute

constraints (C_att) and association constraints (C_ass). Tar
and Srv are also defined in a similar way. Quantifier Q

appears preceding with Sub, Perm, Tar and Srv for greater

expressiveness. Cond is represented as a logic expression on

condition element d and cross-field attribute constraints C _cf.
Our language supports compound constraints by defining

C _att as an arbitrary propositional composition of constraint

policy
auth
Perm

Sub
Tar
Srv

Cond

o
C
X

Att
Ass

Q
sign

op
s

1 0

L

auth sign ;
n (n Q Sub n, n Q Perm [n, n Cond n I) n
n(n Q Tar n,n Q Sub)n ;
"Sub'" E "{" 0 "I" Exp "}"
"Tar'" E "{" 0 "I" Exp "}"
nSrv'n E n{n 0 nln Exp n}n
C_d I C_cf I Cond A Cond

Instance ;
Class ;
AssType ;
Attribute ;
Association

'if I :3 .
+1 - ;
= I # I > I � I < I � ;
o " . " Att I a ;
S op S ;
c I � C_att I C_att A C_att C_att V C_att
IIIar'lI I IISrv' II I IISub' II ;
F 11 . 11 Att ;
e op e ;
f I � C_cf I C_cf A C_cf I C_cf V C_cf
obj n(n 0 n,n C n)n A C_att ;
d I C_d A C_d I C_d V C_d

Q 0 "(" ass "(" X "," 0 "," Ass ", " 0 ")"
[A C_a ttl --> C_a t t n) n ;

Q 0 n (n ass n (n X n, n o n, n Ass n, n o n) n
[A C_att I --> [C_att A I ;

l_c I � L I L A L I L V L
L I 1_0 C_ass n) n I � C_ass I
C_ass A C_ass I C_ass V C_ass

Exp obj n (n 0 n, n C n) n [A C_att I [A C_ass I ;

Fig. 3: Grammar for a logic-based abstract policy language. Meta-symbol I
specifies multiple choices. Optional items are enclosed in [and 1 . Repetitive
items (zero or more times) are enclosed in { and }. Terminals of one character
are surrounded by quotes (") and ; is the termination symbol.

element c, including negation (--,) given that op is closed

under negation. Each constraint element c compares two sub­

expressions of form s, where s is either an instance attribute

O.Att or a constant a. We also support cross-field attribute

constraints C _cf that compares attributes of different fields

(i.e., Sub', Tar' and Srv'). The condition C _att is limited to

the object and class in the field where they appear.

C _ass defines the association constraints held for an object

O. Expression Lc, the basic building block for any compound

association constraints, describes a closed relationship be­

tween two objects that traverse exactly one link (association).

Quantifiers are required for one-to-many or many-to-many

associations with scope of the entire expression Lc. Since

association name Ass uniquely defines the two end classes, the

class definition for 0' is omitted. Notice that Lc contains two

optional attribute constraints: C _att appearing before "---+"

further restricts the selection of 0'; whereas C _att' after "---+"

specifies properties held for selected 0'. Thus Lc states that

for all objects (or exists one object) 0' associated with object

o through Ass with property C _att held, C _att' must also

hold for those 0'. Figure 4 depicts the four cases. Shaded

nodes represent instances that satisfy ass(X, 0, Ass, 0') with

optional attribute constraints C _att on 0'. Underlined nodes

are instances further selected by the quantifier. The four cases

are able to describe any subset of objects 0' associated with

O. L defines an arbitrary propositional composition of Lc,
as 0 can be associated with objects through multiple asso­

ciations. Consider the following C _ass associate constraint

[an organization that is a member organization of a coalition

115

(a) '10' a55(0, A, 0') (b) '10' (a55(0, A, 0') (c) 30' a55(0, A, 0') (b) 30' (a55(0, A, 0')
-+.. AC_aU)-+.. -+.. AC_aU)-+ ..

Fig. 4: Quantification for association,

named ita with all its sensor fabric located at west quad, or

it is a supporting orRanization of the same coalition].
C_ass == (3D' (ass(agg, 0, members, 0')

---+ (OlcoName = ita)) 1\

VO" (ass(agg, 0, belongs, 0")
---+ (O".strLoc = westquad))) V

(30' (ass(agg, 0, supports, 0')
---+ (OlcoName = ita)))

Unlike Lc, Lo is an open link between 0 and 0' that allows

0' to be further associated with other objects in a recursive

manner, The last element on a path of consecutive association

constraints must be L for C _ass to terminate properly.

Cond is an arbitrary propositional composition of condition

element d, excluding negation. Each condition element d is of

the form obj (0, C) /I. C _att, where 0 is an instance of class

C from the condition zone, like time and location, satisfying

attribute constraints C _att.
Authorization policies written in natural language with a

constrained lexicon and syntax designed for policy expression

can be translated into our language, We assume an auto­

mated process that accomplishes the translation. Therefore, our

policy refinement scheme starts from an authorization policy

already written in our language, We translate initial policies

(1) and (2) into our abstract language as follows:

[Each US device is permitted to access location iriformation from

one us location server with high quality, if communication is

encrypted and both sides are from the same quad.]

.u.
policy == (VSub, V(3Tar, VSrv), Cond) + such that,

Sub == Sub' E {O I obj(O,device) 1\ (VO' (ass(agg, 0, owns, 0')

---+ OlorgName = us))}

Tar == Tar' E {O I obj(O,locServer) 1\ (VO' (ass(agg,O, belongs, 0')

---+ OlorgName = us))}

Srv == Srv' E {O I obj(O, 10cSrv) 1\ (O.qos = high 1\ O.sec = crypto)}

Cond == TarldevLoc = SubldevLoc

[Devices belonging to non-US organizations for coalition ITA are

prohibited to query sensor data from any us sensor fabric with

high quality between 9am and 5pm.]

.u.
policy == (VSub, V (VTar, VSrv), Cond) - such that,

Sub == Sub' E {O I obj(O,device) 1\ (VO' (ass(agg, 0, owns, 0')

(3)

---+ ((OlorgName 01 us) 1\

(30" (ass(agg,O',members,O") --+ O".coName = ita) V

30"' (ass(agg,O',supports,OIll) ---+ O"lcoName = ita))))}

Tar == Tar' E {O I obj(O,senFab) 1\ (VO' (ass(agg, O,belongs, 0')

---+ OlorgName = us))}

Srv == Srv' E {O I obj(O,senSrv) 1\ (O.qos = high)

Cond == obj(O, time) 1\ (O.start = gam 1\ O.end = 5pm)

(4)

IV. POLICY REFINEMENT

The refinement scheme presented in this section starts with

authorization policies written in our logic-based abstract policy

language (Section III), The goal of policy refinement is to

translate those policies to low level rules so that their syntax

and semantics can be understood by individual devices, i.e.

enforcement points.

Definition 1. We define the following transitive closure on

generalization (IS-A relationship):

isa_trans(C, C') +-- isa(C, C')

isa_trans(C, C") +-- isa(C, C'), isa_trans(C', C")
(5)

Similarly, we define transitive closure on predicate obj(0, C):

obj _trans(0, C) +-- obj (0, C)
(6)

obLtrans(O,C') +-- obj(O,C), isa_trans(C,C')

Definition 2. In UML, the difference between aggregation

and composition is subtle, Aggregation is more like a has-a

relationship (also known as weak-aggregation); composition

is more like a part-of relationship (also known as strong­

aggregation). Thus we define the following transitive closure

on aggregation and composition associations:

ass_trans(ac, 0, Ass, 0') +-- ass(agg, 0, Ass, 0'),

ass_trans(ac, 0, Ass, 0') +-- ass(comp, 0, Ass, 0').

ass_trans(ac, 0, Ass + Ass', Oil) (7)

+-- ass(ac, 0, Ass, 0') ,

ass_trans(ac, 0', Ass', 0").

where Ass + Ass' indicates that object 0 is associated with

object 0" that traverses an aggregation (weak or strong) link

Ass and a path Ass' in sequence,

Definition 3. Association provides describing service provi­

sion is treated as a regular association between services and

their providers. We define transitive closure on predicate ass
for provides as follows:

ass_trans(reg, T,provides, V) +-- ass(reg, T,provides, V).

ass_trans(reg, T', provides, V) +-- ass (reg, T, provides, V),

ass_trans(ac, T, Ass, T'),

ass_trans(reg, T,provides, V') +-- ass(reg, T,provides, V),

ass_trans (ac, V', Ass, V).
(8)

The above definition states that target object T' transitively

provides service V if T' is an aggregate of object T and T

provides V. Similarly, target object T transitively provides

service V' if V' is a part of service object V provided by T.

Definition 4. Let policy be an authorization policy written in

the logic-based abstract policy language defined in Section III.

A refinement rule is an expression:

policy == (QsSub, Qp(QTTar, QvSrv), Cond) ±

JJ. ref (9)

policy' == (Sub', Tar', Srv', Cond') ±

that translates higher-level policy policy into a rule policy'
at the lowest level through a gradual refinement. Positive and

116

negative authorization signs are preserved automatically. There

are many argument values of policy' to satisfy the refinement

rule (9). The selection of policy' is determined by quantifiers

Qs ... Qv in the policy expression, and will be discussed in

details during the refinement process.
We propose a policy refinement process of two successive

phases (see Figure 1):

1) A policy transformation phase, that transforms policies

written in that logic-based abstract language to tuples by

querying the pre-constructed knowledge database using

refinement rule (9);

2) A policy composition phase, that composes policy rules

at lowest level from query results.

A. Policy Transformation

The implementation of refinement rule (9) consists of six

successive steps. It starts with policies written in our abstract

language so one can easily adapt it to another policy domain.

1) Permission Refinement:

A permission, i.e., perm(T, V), defines a service V pro­

vided by a target T. Given the target (Tar) and service (Srv)
expressions specified in our logic-based abstract language, we

get a set of permissions using rule (lO):
Tar

Srv

�bj(V, Cv), C_attv, C_assv
'
, C_cj,perm(T, V)) +­

obLtrans(T, CT),

checkAttConst(T, C_attT),

checkAssConst(T, C_assT),

obLtrans(V, Cv),

checkAttConst(V, C_attv),

checkAssC onst(V, C _assv),

ass_trans(reg, T, provides, V),

checkCFConst(C_cj,perm(T, V)).
(lO)

such that, T is an object transitively belonging to target class

CT, satisfying attribute constraints C_attT and association

constraints C _aSST; V is an object transitively belonging to

service class C _attv, satisfying attribute constraints C _attv
and association constraints C _assv. Besides, target T transi­

tively provides service V. Each resulting permission also sat­

isfies any cross-field constraint specified in C Jf comparing

attributes from Tar' and Srv'. The resulting set of permissions

are further selected using Eq.(13) based on the quantifiers

QT, Qv and their order. As V and ::3 are not cOlmnutative,

we have all together six different cases.

2) Subject Refinement:

Subject refinement finds all the subjects S that transitively

belong to class C s and satisfy attribute constraints C _atts
and association constraints C _asss based on rule (11).

Sub

rejSub(obj(S, Cs), C_atts, C_asss
'
, sub(S)) +-

obLtrans(S, Cs), (11)

checkAttConst(S, C_atts),

checkAssConst(S, C_asss).

3) Access Refinement:

Access refinement generates a set of access predicates

acc(S, perm(T, V)) by computing the Cartesian product of

permission set { perm(T, V)} and subject set {sub(S)} using

rule (12). The resulting access predicates must also satisfy cor­

responding cross-field constraints specified in C Jf. Similarly,

the set of accesses are further selected based on the value of

Qs, Qp and their order using Eq.(13).

rejAcc(C_cj,Qs, Qp,acc(S,perm(T, V))) +-

perm(T, V),

sub(S),
(12)

checkCFConst(C_cj, acc(S,perm(T, V))).

4) Quantification Refinement:

Let P = {(x,y) : value pairs that make predicate p(X, Y)
true by assigning variables X = x and Y = y}. Quantification

refinement selects elements from P based on the value of

quantifiers Ql and Q2 for X and Y respectively. The order of

quantifiers also matters. In Eq.(13), n is a non-deterministic

function that returns a maximal set of refined value pairs P'

for the initial set of value pairs P given the combination of

quantifiers Ql and Q2.1 Notation p.X (p.Y) returns the X
(Y) value of an element p.

R(Ql,Q2,P), where P = {(x,y)}
P'=P
P' C;;; P 1\ IP'I = 1
P' C;;; P 1\ ViVj(i =J. j 1\ Pi,pj E P'

=}- Pi.X =J. Pj .X)
P' C;;; P 1\ ViVj(i =J. j I\Pi,pj E P'

=}- Pi.Y =J. Pj·Y)
p' C;;; P 1\ ViVj(i =J. j I\Pi,pj E P'

=}- Pi.X = pj.X 1\ Pi.Y =J. pj.Y)
P' C;;; P 1\ ViV j (i =J. j 1\ Pi, Pj E P'

=}- Pi.Y = Pj·Y 1\ Pi.X =J. pj.X)

5) Granularity Refinement:

ifVXVY;
if :JX:JY;
if VX:JY;

if VY:JX;

if :JXVY;

if :JYVX;

(13)

Given a set of access predicates after quantification refine­

ment, the goal of granularity refinement is to traverse all

the aggregation and composition associations for each field

and produce the actual low-level objects that participate in

the enforcement of access control. Note that comparing with

ass_trans predicate for provides, here we want the low level

target Tar' and low level service Srv' directly associated

through ass predicate.

rejGran(acc(Sub', perm(Tar', Srv'))) +­

acc(S,perm(T, V)),

ass(reg, Tar', provides, Srv'),

ass_trans(ac, Tar' ,_, T),

ass_trans(ac, Srv', _, V),

ass_trans(ac, Sub', _, S).

6) Condition Refinement:

(14)

Since Cond is an arbitrary propositional composltion of

condition element d, in rule (15), each d == obj (0, C) /\ C _att

I The non-determinism can be restricted by other semantic considerations
that select, for example, the most appropriate target to perform a service in
the current situation.

117

is refined to a list of condition instances connected using

disjunctions, that belong to condition class C and satisfy at­

tribute constraints C _att. Logic connectives among condition

elements are automatically preserved. Notice that cross-field

constraints C _cf have already been refined in previous steps.

Cond=.d I C_dI\C_d I C_dvC_d

J,I- refCond (15)

Cond' =. V:;::lOi I C_d' 1\ C_d' I C_d' V C_d'

7) Examples:

Following our previous policy examples, we apply refine­

ment rule (9) on policies (1) and (2) by querying the pre­

constructed knowledge database to produce the following

results:
policy =. (VSub, V(�Tar, VSrv), Cond)+

J,I- ref

policy' =. (sel, lsI, loc3, 0)+

policy =. (VSub, V(VTar, VSrv), Cond)­

J,I- ref

policy' =. (ls3, sel, pic3, time1)-

(16)

(17)

Rule (16) refines policy (1) into a low-level rule policy' saying

that US still camera sel is allowed to access location service

loc3 (high quality with encryption) provided by US location

server lsI. There are many other policy' satisfying rule (16)

but rule (l3) ensures that each subject is allowed to access

one location server, i.e., (sel, Is2, loc3, 0)+ is not a valid

refinement if (sel, Is l, loc3, 0) + already exists. Similarly,

policy' in rule (17) is one possible refinement of policy (2),

saying that UK location server Is3 is prohibited to access

picture service pic3 (high quality) provided by US still camera

sel at given time timel (gam - 5pm).

B. Policy Composition

It is often the case that access control tuples generated

from the policy transformation phase cannot be directly im­

plemented because their syntax may not be understood by

low-level devices. Thus the goal of policy composition is to

generate low-level policies from those tuples. This step is

highly language-dependent, because the final output is a set

of low-level rules written in a policy language specification

determined by the choice of underlying enforcement mecha­

nism.

So far we have been focusing on network services in

MANETs, therefore we choose the following two mechanisms

for enforcement: 1) Access control lists (ACLs) that are

maintained locally at each service provider; 2) ROFL scheme

that implements packet filtering using routing mechanisms.

1) ACLs:

Local access control lists maintained at servers are com-

posed from results of policy transformation using rule (18):

policy' =. (Tar' , Srv' , Sub' , Cond')±

J,I- ACL (18)

acl(Tar') = (Sub' , ±Act' , Cond')
where policy' is a refined policy produced by transformation

rule (9), acl(Tar') denotes an access control list on object

Tar'. The operation field Act' is defined as a method provided

by the object class C of Tar'. This method may take zero

or more attributes of Tar' as parameters, such that Act' =
C.method(Tar'.Attl, ... , Tar'.Attn), where n 2': 0 and

obj(Tar', C). The positive or negative authorization sign is

placed in front of Act' to indicate whether certain operation

is allowed to performed or not. Alternatively, only positive

authorization rules are maintained in ACLs. Hence any oper­

ation that is not explicitly granted is prohibited. Finally, the

condition field Cond' is required only if the implementation

support complex ACLs with additional constraints.

As concrete examples, we generate ACLs for refined rules

(16) and (17) respectively.

policy' =. (sel, lsI, loc3, 0)+

J,l-ACL

acl(lsl) =. (sel, +getLoc(loc3.accuracy), 0)

policy' =. (ls3, sel, pic3, timel)­

J,l-ACL

acl(sel) =. (ls3, -getPic(pic3.resolution), timel)

2) ROFL Scheme:

(19)

(20)

Now we demonstrate the composition process for rules

written as ROFL advertisements. ROFL is based on a simple

notion: services - that is, port numbers - should be treated

as part of the IP address in the routing system. (Full details

are given in [20], [19].) If a certain service is not advertised to

a particular network, no host on that network can reach it; the

routing system will not deliver the packets. We thus use every

router along the path as a firewall. There are many benefits

to this scheme, especially in MANETs where battery power

is limited. If unwanted packets are dropped very early, a lot

of power can be saved by not transmitting those packets. A

ROFL route advertisement looks like the following:

R= {d: slm, S, L, M}

where d denotes the target host IP address, s specifies the

service provided by that target, m is the destination prefix

length (and m :s; 48), S represents a set of authorized subjects,

L is a list of traffic labels, with M i= 00 indicating a positive

authorization and M = 00 indicating a negative authorization.

R is only disseminated to hosts in the subject set S. Upon

receiving R, all the fields in R including traffic label L enter

into a receiver's local routing table.

With ROFL, a host knows which ports are needed for which

sources, and can emit proper route advertisements. Nor are

routers turned into firewalls, except in effect; they simply

listen to routing advertisements and forward packets as usual,

albeit with longer addresses. No extra administration or state

is needed, [20] presents calculations showing that the increase

in table size is acceptable. Other potential issues are routing

table computations ([20]) and increased routing traffic ([19]).

We have shown that the increase in traffic for routing messages

is more than outweighed by the savings by early drops of

unwanted traffic.

Generation of ROFL advertisements from refined policy rule

is defined in rule (21):

118

policy' == (Tar', Srv', Sub', Cond')±
J).ROFL

R == {Tar'.ip: Srv'.port/48, Sub'.ip, £(Cond'), M}
(21)

where M = 00 for negative authorization policy. Now let us

discuss the mapping for each field in more details.

In rule (21), mapping from target or subject to its IP address

is straightforward as IP is an attribute for Tar' or Sub'.
However, it is often the case that a ROFL announcement R
propagates to a set of permitted subjects. Thus it is more

efficient to enclose the whole set of subjects in a single

announcement to minimize overhead. Therefore, it is possible

to implement it as a Bloom filter [8] on the set of source

addresses or networks of a given prefix length. Bloom filters

are a space-efficient data structure that can compress the repre­

sentation of a set of members in a compact manner, albeit with

some chance of false positives. Bloom filters are particularly

useful in MANETs, where there is little topological structure

and each allowed node may be identified by a flat address.

Mapping from service to port number is obtained by calling

Srv' .port. Function F in section II computes port number

from service attributes. The more attributes involved in F, the

more effective a ROFL advertisement is as more unwanted

traffic is filtered out. For instance, if port is determined

by both qos and se c, an announcement R can filter more

unwanted traffic if one of the attribute constraints unsatisfied.

Gond' is mapped to labels by calling function £(Gond'):

£(Cond') £(VJ=l I\�l (V�=l Oijk))
£(�jf

f=l �7!�1 Oitj')
lJ\j'=l C7!=lli'j')

where it is firstly rewritten into a conjunctive normal form

by applying distributive property of logical connectives; then

each condition object Oi' j' is mapped into a label li' j'. Log­

ical operator V is automatically implied between consecutive

labels, and operator 1\ is replaced by a special label l/\.
Now we describe the encoding algorithm from a condition

object ° to a label l. Each l is a string of 8 consecutive bits,

where the first 4 bits denote ° . condType and the remaining

represent ° . condN arne. Together they uniquely identify a

condition instance in the knowledge database. Condition type

0000 is reserved, and l/\ = 00000000. Thus our scheme

supports 15 types of conditions (although Figure 2 shows only

two types of conditions in this scenario) and 16 different values

for each type. More bits can be added to represent more labels.

Optimization can be made in different ways. The goal is to

minimize the length of label list L in a ROFL advertisement,

and hence reduce processing time. Wildcard character * rep­

resents a bit value of either 0 or 1. Thus 2n consecutive labels

(logical connective V implied) different by n bits at fixed posi­

tions b l, . . . , b
n

can be replaced by one label with wildcard *

at those positions and the rest remain unchanged. For example,

00010010100010000 (vertical bar 1 is for presentation purpose

only) can be replaced by 000100 * O.
A more efficient encoding mechanism can also reduce the

length of L. We propose an encoding tree (Figure 5(a)) to

generate labels of the same type, i.e. those have the first 4 bits

in common. Root node represents the entire value space for a

00 : 01 00 01 ----00 --- 1----
10 11 10 11

00 ! 01 00 01
n3 ----10--- 1----

10 11 10 11
N = n1 + n2 + n3 + .

(a) Encoding tree for label value of N bits (b) Encoding scheme for Location label

Fig. 5: Encoding scheme for label value

certain type of label; TI denotes 2n1 sub-spaces identified by

first nl bits; similarly, T2 further divides each sub-space into

2n2 partitions using the next n2 bits, and so on until all N bits

for label values are used. Thus, only one label is necessary to

represent a node or a subtree. Figure 5(b) depicts a possible

encoding scheme for Location labels with N = 4. The entire

battle field is divided into 4 quads identified by the first 2

bits, and each quad is further split into four sub-quads using

the remaining 2 bits. Due to the space limitation, we will not

further discuss other optimization schemes for label encoding.

As a concrete example, we compose ROFL advertisements

from the refinement results obtained previously.

policy' == (sel, lsI, loc3, 0)+
J). ROFL (22)

R == {l0.0.0.1 : 443/48, 10.0.0.10, 00000000, M}
policy' == (ls3, sel, pic3, time1)-
J). ROFL (23)

R == {1O.0.0.1O : 80/48, 20.0.0.1, 00010001, oo}

V. POLlCY UPDATES

In this section, we focus on how our policy refinement

process can cope with policy updates when the knowledge

database changes. We will not discuss situations when new

initial policies are introduced, as those new policies will go

through the same refinement process as existing ones.

A. Correctness of Knowledge Database

To generate consistent policies, knowledge database D must

be conflict-free with the following requirements enforced:

1) The definition of class and associations among classes

is self-contained, such that: if isa(G, G') E D, then

c lass(G), c lass(G') E D; if assType(X, G, A, G') E
D, then c lass(G), c lass(G') ED.

2) The definition of instances and associations among

them is self-contained, such that: if obj (0, G) E
D, then c lass(G) E D, att(O, Atti, Vi) E D,
for all Atti of c lass(G); if ass(X, O, A, O') E
D, then c lass(G), c lass(G'), assType(X, G, A, G'),
obj(O, G), obj(O', G') E D.

3) The definition of service instances cannot stay alone

without their service providers: if obj(O, G) E D and

c lass(G) is from the service zone, then obj (0', G') E
D such that c lass(G') is from the target zone, and

ass(reg, 0', Ass, 0) E D, where Ass is an association

describing service provision.

Standard techniques [17], [15] for constraint verification and

integrity checking on knowledge database can be applied there.

We implement those techniques using logic programming.

119

B. Update of Knowledge Database

From the system point of view, adding new objects (or

classes) or removing existing ones only affects knowledge

database not the rest of the policy server (Figure 1). Table I

sUlmnarizes the changes one needs to perform for operations

in the first column, where Y means the modification is

mandatory, - implies optional, and N means not required.

I Operation

Add/Remove Tar/Sub 0
Add/Remove Tar/Sub C
AddlRemove Srv 0
AddlRemove Srv C
AddlRemove Cond 0
Add/Remove Cond C

II class I isa lob} I aft I assType I ass I
N N Y Y N -

Y - N N - N
N N Y Y N Y
Y - N N Y N
N N Y Y N -

Y - N N - N

TABLE I: Update of knowledge database upon operations

Clearly, adding or removing target (or subject) objects only

affects predicate obj and att. It might affect associations, such

as aggregation, composition, etc. On the other hand, adding

or removing target (or subject) classes only affects the class

definition class, and definition on associations among classes

(i.e. isa and assType) may be updated as well. Update on

service objects (or classes) is handled in a similar way except

that predicates assType and ass must be updated to enforce

requirement 3) discussed in previous subsection. Updates on

condition objects (or classes) is handled the same as target

objects (or classes).

VI. RELAT ED WORK

Early research [4] performs theoretical work on refinement

mappings to prove that a lower-level specification correctly

implements a higher-level one. Recent studies [5], [6], [7],

[9], [18] address subsets of the problem, such as taking the

goal-oriented approach for goal decomposition using Event

Calculus, mapping policy objectives to specific configuration

details using transformation algorithms, etc. In [12], some

initial work on policy transformation is presented that applies

syntactic and algorithmic ideas adapted from the concepts

of data integration. In [13], the same group proposes action

decomposition techniques towards a framework for automated

distributed refinement of both authorization and obligation

policies. Our approach describes a framework systematically

for access control policies in general, specifically focusing

on network services enforced by authorization policies. We

address the needs of policy composition to produce directly

enforceable low-level rules through concrete examples. Other

related work includes [14], where harnessing knowledge em­

bodied in information models and ontologies is used to rep­

resent relationships between policy components that could

indicate potential conflicts between policies.

VII. CONCLUSION

In this paper, we have described a refinement process

for network service policies in a generic policy refinement

framework. Future work includes further development to sup­

port access control policies with complex actions. Moreover,

refinement and consistency checking could be interleaved to

verify that refined policies are consistent with respect to

existing policies. On the other hand, in a fully distributed

scenario, partial refinement may be more desirable with local

domain knowledge and a relevant subset of refinement rules.

REF ERENCES

[1] "Eclipse," http://www.eclipse.orgl.
[2] "ProDT: Prolog development tools," http://prodevtools.sourceforge.neU.
[3] "SWI-Prolog," http://www.swi-prolog.org/.
[4] M. Abadi and L. Lamport, "The existence of refinement mappings,"

T heoretical Computer Science, vol. 82, pp. 253-284, 1988.
[5] A. K. Bandara, E. C. Lupu, J. Moffett, and A. Russo, "A goal-based

approach to policy refinement," in POLICY '04: Proceedings of the 5th

IEEE International Workshop on Policies for Distributed Systems and
Networks. IEEE Computer Society, 2004, p. 229.

[6] A. K. Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman. P. FJegkas,
M. Charalambides, and G. Pavlou, "Policy refinement for diffserv quality
of service management," in 1M 2005: Proceedings of the 9th IFlPIIEEE

International Symposium on Integrated Network Management, 2005.
[7] M. S. Beigi, S. Calo, and D. Verma, "Policy transformation techniques

in policy-based systems management," in Proc. 5th IEEE International
Workshop on Policies for Distributed Systems and Networks (POLICY,
2004, pp. 13-22.

[8] B. Bloom, "Space/time trade-offs in hash coding with allowable errors,"
Communications of ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[9] G. A. Campbell and K. J. Turner, "Goals and policies for sensor network
management," in SENSORCOMM '08: Proceedings of the 2008 Second
International Conference on Sensor Technologies and Applications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 354-359.

[10] W. F. Clocksin and C. S. Mellish, Programming in Prolog, 1984.
[11] R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, and M. Sloman,

"Distributed policy scenario," ITA Technical Report, 2010.
[12] R. Craven, J. Lobo, E. Lupu, A. Russo, and M. Sloman, "Security policy

refinement using data integration: a position paper," in SafeConfig '09:

Proceedings of the 2nd ACM workshop on Assurable and usable security
corifiguration. New York, NY, USA: ACM, 2009, pp. 25-28.

[13] --, "Decomposition techniques for policy refinement," in To appear

in proc. of the 6th International Conference on Network and Service
Management, 2010.

[l4] S. Davy, "Harnessing information models and ontologies for policy
conflict analysis," Ph.D. dissertation. 2008.

[l5] P. Grefen and J. Widom, "Protocols for integrity constraint checking in
federated databases," in Proceedings lst IFCIS International Conference
on Cooperative Information Systems, 1996. pp. 38-47.

[l6] M. Johnson, J. Karat, C.-M. Karat, and K. Grueneberg, "Usable policy
template authoring for iterative policy refinement," in POLICY '10: Pro­
ceedings of the IEEE International Workshop on Policies for Distributed
Systems and Networks, POLICY, 2010.

[17] R. Kowalski, F. Sadri, and P. Soper, "Integrity checking in deductive
databases," in Proceedings of the VLDB 1nternational Conference.

Morgan Kaufmann Publishers, 1987, pp. 61-69.
[18] J. Rubio-loyola, J. Serrat, M. Charalambides, P. FJegkas, and G. Pavlou,

"A functional solution for goal-oriented policy refinement," in Proc. 7th
IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY), 2006.

[l9] H. Zhao and S. M. Bellovin, "High performance firewalls in MANETs,"
in T he 6th International Conference on Mobile Ad-hoc and Sensor

Networks (MSN'10), Hangzhou, P.R. China, December 2010.
[20] H. Zhao, c.-K. Chau, and S. M. Bellovin, "ROFL: Routing as the

firewall layer," in New Security Paradigms Workshop, September 2008,
a version is available as Technical Report CUCS-026-08.

120

