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Abstract-In this paper, we describe a framework for a refine­
ment scheme located in a centralized policy server that consists 
of three components: a knowledge database, a refinement rule 
set, and a policy repository. The refinement process includes two 
successive steps: policy transformation and policy composition. 
Our refinement scheme takes policies written in our logic-based 
abstract policy language as input and generates low level rules 
directly implementable by individual enforcement points. We 
provide concrete policy examples in a coalition scenario that 
forms a mobile ad hoc network (MANET). We demonstrate 
policy composition using a distributed firewall scheme named 
ROFL (ROuting as the Firewall Layer) and access control list as 
enforcement mechanisms. 
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I. INTRODUCTION 

It is increasingly important to develop policy refinement that 
automates high level requirements into low level implementa­
tion in policy-based system management. T he goal of policy 
refinement is to generate low level rules so that syntax and 
semantics can be understood by individual enforcement points. 
Policy refinement fills the gap between policy authoring and 
enforcement. While these two techniques have been studied 
intensively, only limited work has addressed policy refinement. 

In this paper, we propose a framework to automatically 
transform security policies into implementable and enforceable 
rules. We introduce a centralized policy server consisting of 
three components: a knowledge database recording informa­
tion on the policy domain, a refinement rule set defining rules 
for policy transformation and composition, and a policy repos­
itory storing policies written at different levels of specification. 
T his systematic approach is able to cope with generic access 
control policies written in the format proposed in [16]: 
{Subject} can (or cannot) {Action} {Target} if {Condition}. 

Given the expressiveness of such template, we focus on 
a subset of stateless access control policies, where action is 
either permitting or prohibiting a service provided by a target. 
Such policies on network services are widely used, like the 
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access control list implementation for mandatory access con­
trol (MAC), firewall policies, etc. Specifically, the refinement 
rules presented here work for policies of the following form: 

{Subject} can (or cannot) {access Service provided by} 
{Target} if {Condition}. 

We propose a generic framework of policy refinement 
for access control policies (Section II); In Section III, we 
introduce a logic-based abstract policy language to assist 
refinement, and define rules for network service policies in 
Section IV; In Section V, we discuss mechanisms to handle 
policy updates due to database maintenance. We provide 
concrete examples on policy refinement in a coalition sce­
nario with access control list and ROFL [20], a distributed 
firewall mechanism implemented using routing techniques, as 
enforcement mechanisms. 

II. SYSTEM OVERVIEW 

A. Distributed Policy Scenario 

We will work with the policy scenario introduced in [11] 

for the study of distributed policy analysis and refinement. 
Each organization in this scenario owns devices, networks, 
command centers, sensors and other equipment; each party 
keeps its organization-specific domain knowledge private; and 
each organization has its own policy server, which stores 
policies and performs policy analysis and refinement tasks. 
A coalition is formed of US forces, UK forces, and the Red 
Cross (RX). It is a reasonable assumption that the US and 
the UK domain have a similar structure. We address the US 
domain, focusing specifically on two sample policies written 
in natural language: 

{Each US device is permitted to access location information from 

one us location server with high quality, if communication is 

encrypted and both sides are from the same quad.] 

(1) 
{Devices belonging to non-US organizations for coalition ITA are 

prohibited to query sensor data from any us sensor fabric with 

high quality between 9am and 5pm.] 

B. Policy Server 

(2) 

Before introducing our policy refinement scheme, we de­
scribe the components and functionalities of a centralized 
policy server (Figure 1) where policy analysis and refinement 
take place. Each organization participating in a coalition has 
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Fig. 1: A centralized policy server for each domain 

a centralized policy server consisting of three main compo­

nents: 1) A Knowledge Database: records information on a 

policy domain; 2) A Refinement Rule Set: defines refinement 

procedure in terms of rules; 3) A Policy Repository: stores 

policies written at different levels of representation. 

The Knowledge Database captures two categories of knowl­

edge: intra-domain knowledge of confidential information dis­

closed within an organization, and inter-domain knowledge of 

coalition participants outside the organization. Inter-domain 

knowledge is limited by how much information an organiza­

tion is willing to share with other coalition participants. For 

example, the UK force knows the existence of a sensor fabric 

in the US domain as part of inter-domain knowledge, but may 

not have further details of the structure and components of the 

US sensor fabric. There are different representations to model 

a knowledge database. In this work, we describe our database 

using UML description and logic representation. 

The Refinement Rule Set defines two types of rules: trans­

formation rules that transform policies written in a logic­

based abstract language into access control (AC) tuples 

(Sub, Tar, Srv, Cond)±; composition rules that gener­

ate low-level rules from those tuples. Our policy refinement 

scheme is domain-independent, such that modifications on a 

policy domain do not affect refinement rules. Transformation 

rules are language-independent, taking policies in our abstract 

language as input; composition rules are highly language­

specific, following exactly the syntax and semantics of low­

level rules implementable by individual enforcement points. 

The Policy Repository stores policies written at different 

levels of representation. For instance, it stores policies written 

in a structured natural language, ROFL rules ready to be 

shipped to individual enforcement points, and any intermediate 

results generated during refinement process. 

In the rest of this section, we present a 2-step procedure for 

constructing a knowledge database: 1) drawing an UML class 

diagram to describe the structure and components of a policy 

domain; 2) building a database using logic representation. 

C. UML Description 

We present a UML description that describes a subset of the 

US policy domain in Figure 2. Each class in the UML diagram 

represents a group of objects stored in the knowledge database. 

A class also has properties, such as attributes and methods. For 

example, the Device class has four attributes named devlD, 

devName, devType and devLoc automatically inherited by all 

Coalition 
coName 

0.,* 
members 

nodeOf 

1 
controls 0 .. * 

Target/Subject Zone ---------------------------------- � ----------------- -
Action Zone Service 0 .. * Condition Zone 

.. provides 

resolution 
getPic(resolution) 

srvName srvType 
qos sec port 

getDataO 

Fig. 2: UML class diagram for the policy domain 

its child classes. Child classes are also allowed to have their 

own attributes and methods. 

A line connecting two classes defines an association be­

tween them. Three types of associations are supported: gen­

eralization (i.e., IS-A relationship) describing relationship 

between parent and child classes; aggregation (or composition) 

representing relationship between aggregate (or whole) class 

and part class; and regular associations not falling into the first 

two categories. Each association, except for generalization, is 

named uniquely, and can have their own attributes to form 

an class. For example, association class Condition describes 

additional information on service provision (i.e., association 

named provides) between class Device and class Service with 

two attributes condName and condType. 

To facilitate policy representation, we group classes into 

different zones. Instances from the target zone define tar­

gets in such policies; those from the subject zone represent 

subjects. Those two zones coincide in Figure 2. The action 

zone describes actions that a target can take. Finally, the 

association class Condition captures additional constraints on 

service provision. 

D. Domain Knowledge 

We construct domain knowledge using logic representation 

from the UML class diagram defined previously. Six types of 

definitions are maintained. Each class in the UML diagram is 

defined using predicate class(C), where C is a class name. 
class( device). class( service). class( condition). 

Instances of individual classes are described by predicate 

obj(O, C), where 0 is an object name and C is the name 

of class that 0 belongs to. 
obj (sel, device). obj (piel, service). obj (tirne1, condition). 

We use predicate att(O, X, Y) to represent an attribute named 

X with value Y for instance O. 
att(sel, devN arne, sel). att(sel, devType, stillCarn). 

Predicate assType(X, Cll A, C2) defines an association of type 

X (agg for aggregation, comp for composition and reg for 
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regular association), identifiable by an unique name A between 

two classes C1 and C2. Service provision (i.e., provides) is a 

regular association between device class and service class. 

assType(agg, organization, members, coalition). 
assType( reg, device, provides, service). 

The actual relationship between two instances 01 and O2 
is described using predicate ass (X, 01, A, O2) that takes 

instances rather than classes as arguments. 

ass(agg, us, members, ita). ass(agg, uk, members, ita). 
ass( agg, sel, owns, us). ass(reg, sel, provides, piel). 

Unlike other associations, a generalization is defined as isa(C1, 

C2) between a pair of child class C1 and parent class C2: 

isa( sensor, device). isa( stillCam, sensor). 
isa( senSrv, service). isa(picSrv, senSrv). 

Attribute port (i.e. port number) from class service is often 

determined by other attributes of the same class as follows: 

F(att1, ... , attn) = port 
As an example, port number for web service is determined by 

its security feature such that regular http traffic goes through 

port 80 and encrypted https traffic goes through port 443. 

E. Implementation 

We choose Prolog [10], a popular general purpose logic pro­

gramming language, for a reference implement of the policy 

server in Figure 1. We use an open source implementation 

called SWI-Prolog [3] together with its plugin ProDT [2] 

developed for Eclipse [1]. 

III. POLICY LANGUAGE 

To assist policy refinement, we present a logic-based ab­

stract language, intended to serve as a generic formal language 

which multiple policy languages can be translated into and out 

of during the refinement process. The language grammar writ­

ten in Backus-Naur Form (BNF) is summarized in Figure 3. 

Comparison operators ( =, 1-, >, 2':, <, :S;), logical connectives 

(--', /\, V, ---+) and quantifiers (\I, 3) are integrated into our 

language to provide expressiveness. Terms in italic are ground 

Instance, Class, Attribute, Association names and association 

types from the UML description and the knowledge database. 

A policy consists of an authorization rule auth, a sign to 

indicate positive authorization + (permitting a service) and 

negative authorization - (prohibiting a service). Each auth 
rule is a tuple (Sub, Perm, Cond) of three fields: Sub is 

the subject of an authorization policy; Perm is further defined 

as a tuple (Tar, Srv) that represents a service Srv provided 

by target Tar; Cond denotes an optional condition field. More 

specifically, Sub defines that a refined subject Sub' is an 

object 0 satisfying predicate Exp, where 0 belongs to class 

C (i.e. obj(O, C) from subject zone satisfying both attribute 

constraints (C_att) and association constraints (C_ass). Tar 
and Srv are also defined in a similar way. Quantifier Q 

appears preceding with Sub, Perm, Tar and Srv for greater 

expressiveness. Cond is represented as a logic expression on 

condition element d and cross-field attribute constraints C _cf. 
Our language supports compound constraints by defining 

C _att as an arbitrary propositional composition of constraint 

policy 
auth 
Perm 

Sub 
Tar 
Srv 

Cond 

o 
C 
X 

Att 
Ass 

Q 
sign 

op 
s 

1 0 

L 

auth sign ; 
n (n Q Sub n, n Q Perm [ n, n Cond n I ) n 
n(n Q Tar n,n Q Sub)n ; 
"Sub'" E "{" 0 "I" Exp "}" 
"Tar'" E "{" 0 "I" Exp "}" 
nSrv'n E n{n 0 nln Exp n}n 
C_d I C_cf I Cond A Cond 

Instance ; 
Class ; 
AssType ; 
Attribute ; 
Association 

'if I :3 . 
+1 - ;  
= I # I > I � I < I � ; 
o " . " Att I a ; 
S op S ; 
c I � C_att I C_att A C_att C_att V C_att 
IIIar'lI I IISrv' II I IISub' II ; 
F 11 . 11 Att ; 
e op e ; 
f I � C_cf I C_cf A C_cf I C_cf V C_cf 
obj n(n 0 n,n C n)n A C_att ; 
d I C_d A C_d I C_d V C_d 

Q 0 "(" ass "(" X "," 0 "," Ass ", " 0 ")" 
[ A C_a ttl --> C_a t t n) n ; 

Q 0 n (n ass n (n X n, n o n, n Ass n, n o n) n 
[ A C_att I --> [ C_att A I ; 

l_c I � L I L A L I L V L 
L I 1_0 C_ass n) n I � C_ass I 
C_ass A C_ass I C_ass V C_ass 

Exp obj n (n 0 n, n C n) n [ A C_att I [ A C_ass I ; 

Fig. 3: Grammar for a logic-based abstract policy language. Meta-symbol I 
specifies multiple choices. Optional items are enclosed in [ and 1 . Repetitive 
items (zero or more times) are enclosed in { and }. Terminals of one character 
are surrounded by quotes (") and ; is the termination symbol. 

element c, including negation (--,) given that op is closed 

under negation. Each constraint element c compares two sub­

expressions of form s, where s is either an instance attribute 

O.Att or a constant a. We also support cross-field attribute 

constraints C _cf that compares attributes of different fields 

(i.e., Sub', Tar' and Srv'). The condition C _att is limited to 

the object and class in the field where they appear. 

C _ass defines the association constraints held for an object 

O. Expression Lc, the basic building block for any compound 

association constraints, describes a closed relationship be­

tween two objects that traverse exactly one link (association). 

Quantifiers are required for one-to-many or many-to-many 

associations with scope of the entire expression Lc. Since 

association name Ass uniquely defines the two end classes, the 

class definition for 0' is omitted. Notice that Lc contains two 

optional attribute constraints: C _att appearing before "---+" 

further restricts the selection of 0'; whereas C _att' after "---+" 

specifies properties held for selected 0'. Thus Lc states that 

for all objects (or exists one object) 0' associated with object 

o through Ass with property C _att held, C _att' must also 

hold for those 0'. Figure 4 depicts the four cases. Shaded 

nodes represent instances that satisfy ass(X, 0, Ass, 0') with 

optional attribute constraints C _att on 0'. Underlined nodes 

are instances further selected by the quantifier. The four cases 

are able to describe any subset of objects 0' associated with 

O. L defines an arbitrary propositional composition of Lc, 
as 0 can be associated with objects through multiple asso­

ciations. Consider the following C _ass associate constraint 

[an organization that is a member organization of a coalition 
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(a) '10' a55(0, A, 0') (b) '10' (a55(0, A, 0') (c) 30' a55(0, A, 0') (b) 30' (a55(0, A, 0') 
-+.. AC_aU)-+.. -+.. AC_aU)-+ .. 

Fig. 4: Quantification for association, 

named ita with all its sensor fabric located at west quad, or 

it is a supporting orRanization of the same coalition]. 
C_ass == (3D' (ass(agg, 0, members, 0') 

---+ (OlcoName = ita)) 1\ 

VO" (ass(agg, 0, belongs, 0") 
---+ (O".strLoc = westquad))) V 

(30' (ass(agg, 0, supports, 0') 
---+ (OlcoName = ita))) 

Unlike Lc, Lo is an open link between 0 and 0' that allows 

0' to be further associated with other objects in a recursive 

manner, The last element on a path of consecutive association 

constraints must be L for C _ass to terminate properly. 

Cond is an arbitrary propositional composition of condition 

element d, excluding negation. Each condition element d is of 

the form obj (0, C) /I. C _att, where 0 is an instance of class 

C from the condition zone, like time and location, satisfying 

attribute constraints C _att. 
Authorization policies written in natural language with a 

constrained lexicon and syntax designed for policy expression 

can be translated into our language, We assume an auto­

mated process that accomplishes the translation. Therefore, our 

policy refinement scheme starts from an authorization policy 

already written in our language, We translate initial policies 

(1) and (2) into our abstract language as follows: 

[Each US device is permitted to access location iriformation from 

one us location server with high quality, if communication is 

encrypted and both sides are from the same quad.] 

.u. 
policy == (VSub, V(3Tar, VSrv), Cond) + such that, 

Sub == Sub' E {O I obj(O,device) 1\ (VO' (ass(agg, 0, owns, 0') 

---+ OlorgName = us))} 

Tar == Tar' E {O I obj(O,locServer) 1\ (VO' (ass(agg,O, belongs, 0') 

---+ OlorgName = us))} 

Srv == Srv' E {O I obj(O, 10cSrv) 1\ (O.qos = high 1\ O.sec = crypto)} 

Cond == TarldevLoc = SubldevLoc 

[Devices belonging to non-US organizations for coalition ITA are 

prohibited to query sensor data from any us sensor fabric with 

high quality between 9am and 5pm.] 

.u. 
policy == (VSub, V (VTar, VSrv), Cond) - such that, 

Sub == Sub' E {O I obj(O,device) 1\ (VO' (ass(agg, 0, owns, 0') 

(3) 

---+ ((OlorgName 01 us) 1\ 

(30" (ass(agg,O',members,O") --+ O".coName = ita) V 

30"' (ass(agg,O',supports,OIll) ---+ O"lcoName = ita))))} 

Tar == Tar' E {O I obj(O,senFab) 1\ (VO' (ass(agg, O,belongs, 0') 

---+ OlorgName = us))} 

Srv == Srv' E {O I obj(O,senSrv) 1\ (O.qos = high) 

Cond == obj(O, time) 1\ (O.start = gam 1\ O.end = 5pm) 

(4) 

IV. POLICY REFINEMENT 

The refinement scheme presented in this section starts with 

authorization policies written in our logic-based abstract policy 

language (Section III), The goal of policy refinement is to 

translate those policies to low level rules so that their syntax 

and semantics can be understood by individual devices, i.e. 

enforcement points. 

Definition 1. We define the following transitive closure on 

generalization (IS-A relationship): 

isa_trans( C, C') +-- isa( C, C') 

isa_trans(C, C") +-- isa(C, C'), isa_trans(C', C") 
(5) 

Similarly, we define transitive closure on predicate obj( 0, C): 

obj _trans( 0, C) +-- obj (0, C) 
(6) 

obLtrans(O,C') +-- obj(O,C), isa_trans(C,C') 

Definition 2. In UML, the difference between aggregation 

and composition is subtle, Aggregation is more like a has-a 

relationship (also known as weak-aggregation); composition 

is more like a part-of relationship (also known as strong­

aggregation). Thus we define the following transitive closure 

on aggregation and composition associations: 

ass_trans(ac, 0, Ass, 0') +-- ass(agg, 0, Ass, 0'), 

ass_trans(ac, 0, Ass, 0') +-- ass(comp, 0, Ass, 0'). 

ass_trans( ac, 0, Ass + Ass', Oil) (7) 

+-- ass(ac, 0, Ass, 0') ,  

ass_trans( ac, 0', Ass', 0"). 

where Ass + Ass' indicates that object 0 is associated with 

object 0" that traverses an aggregation (weak or strong) link 

Ass and a path Ass' in sequence, 

Definition 3. Association provides describing service provi­

sion is treated as a regular association between services and 

their providers. We define transitive closure on predicate ass 
for provides as follows: 

ass_trans(reg, T,provides, V) +-- ass(reg, T,provides, V). 

ass_trans(reg, T', provides, V) +-- ass (reg, T, provides, V), 

ass_trans(ac, T, Ass, T'), 

ass_trans(reg, T,provides, V') +-- ass(reg, T,provides, V), 

ass_trans ( ac, V', Ass, V). 
(8) 

The above definition states that target object T' transitively 

provides service V if T' is an aggregate of object T and T 

provides V. Similarly, target object T transitively provides 

service V' if V' is a part of service object V provided by T. 

Definition 4. Let policy be an authorization policy written in 

the logic-based abstract policy language defined in Section III. 

A refinement rule is an expression: 

policy == (QsSub, Qp(QTTar, QvSrv), Cond) ± 

JJ. ref (9) 

policy' == (Sub', Tar', Srv', Cond') ± 

that translates higher-level policy policy into a rule policy' 
at the lowest level through a gradual refinement. Positive and 
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negative authorization signs are preserved automatically. There 

are many argument values of policy' to satisfy the refinement 

rule (9). The selection of policy' is determined by quantifiers 

Qs ... Qv in the policy expression, and will be discussed in 

details during the refinement process. 
We propose a policy refinement process of two successive 

phases (see Figure 1): 

1) A policy transformation phase, that transforms policies 

written in that logic-based abstract language to tuples by 

querying the pre-constructed knowledge database using 

refinement rule (9); 

2) A policy composition phase, that composes policy rules 

at lowest level from query results. 

A. Policy Transformation 

The implementation of refinement rule (9) consists of six 

successive steps. It starts with policies written in our abstract 

language so one can easily adapt it to another policy domain. 

1) Permission Refinement: 

A permission, i.e., perm(T, V), defines a service V pro­

vided by a target T. Given the target (Tar) and service (Srv) 
expressions specified in our logic-based abstract language, we 

get a set of permissions using rule (lO): 
Tar 

Srv 

�bj(V, Cv), C_attv, C_assv
'
, C_cj,perm(T, V)) +­

obLtrans(T, CT), 

checkAttConst(T, C_attT), 

checkAssConst(T, C_assT), 

obLtrans(V, Cv), 

checkAttConst(V, C_attv), 

checkAssC onst(V, C _assv), 

ass_trans(reg, T, provides, V), 

checkCFConst(C_cj,perm(T, V)). 
(lO) 

such that, T is an object transitively belonging to target class 

CT, satisfying attribute constraints C_attT and association 

constraints C _aSST; V is an object transitively belonging to 

service class C _attv, satisfying attribute constraints C _attv 
and association constraints C _assv. Besides, target T transi­

tively provides service V. Each resulting permission also sat­

isfies any cross-field constraint specified in C Jf comparing 

attributes from Tar' and Srv'. The resulting set of permissions 

are further selected using Eq.(13) based on the quantifiers 

QT, Qv and their order. As V and ::3 are not cOlmnutative, 

we have all together six different cases. 

2) Subject Refinement: 

Subject refinement finds all the subjects S that transitively 

belong to class C s and satisfy attribute constraints C _atts 
and association constraints C _asss based on rule (11). 

Sub 

rejSub(obj(S, Cs), C_atts, C_asss
'
, sub(S)) +-

obLtrans(S, Cs), (11) 

checkAttConst(S, C_atts), 

checkAssConst(S, C_asss). 

3) Access Refinement: 

Access refinement generates a set of access predicates 

acc( S, perm(T, V)) by computing the Cartesian product of 

permission set { perm(T, V)} and subject set {sub(S)} using 

rule (12). The resulting access predicates must also satisfy cor­

responding cross-field constraints specified in C Jf. Similarly, 

the set of accesses are further selected based on the value of 

Qs, Qp and their order using Eq.(13). 

rejAcc(C_cj,Qs, Qp,acc(S,perm(T, V))) +-

perm(T, V), 

sub(S), 
(12) 

checkCFConst(C_cj, acc(S,perm(T, V))). 

4) Quantification Refinement: 

Let P = {(x,y) : value pairs that make predicate p(X, Y) 
true by assigning variables X = x and Y = y}. Quantification 

refinement selects elements from P based on the value of 

quantifiers Ql and Q2 for X and Y respectively. The order of 

quantifiers also matters. In Eq.(13), n is a non-deterministic 

function that returns a maximal set of refined value pairs P' 

for the initial set of value pairs P given the combination of 

quantifiers Ql and Q2.1 Notation p.X (p.Y) returns the X 
(Y) value of an element p. 

R(Ql,Q2,P), where P = {(x,y)} 
P'=P 
P' C;;; P 1\ IP'I = 1 
P' C;;; P 1\ ViVj(i =J. j 1\ Pi,pj E P' 

=}- Pi.X =J. Pj .X) 
P' C;;; P 1\ ViVj(i =J. j I\Pi,pj E P' 

=}- Pi.Y =J. Pj·Y) 
p' C;;; P 1\ ViVj(i =J. j I\Pi,pj E P' 

=}- Pi.X = pj.X 1\ Pi.Y =J. pj.Y) 
P' C;;; P 1\ ViV j (i =J. j 1\ Pi, Pj E P' 

=}- Pi.Y = Pj·Y 1\ Pi.X =J. pj.X) 

5) Granularity Refinement: 

ifVXVY; 
if :JX:JY; 
if VX:JY; 

if VY:JX; 

if :JXVY; 

if :JYVX; 

(13) 

Given a set of access predicates after quantification refine­

ment, the goal of granularity refinement is to traverse all 

the aggregation and composition associations for each field 

and produce the actual low-level objects that participate in 

the enforcement of access control. Note that comparing with 

ass_trans predicate for provides, here we want the low level 

target Tar' and low level service Srv' directly associated 

through ass predicate. 

rejGran(acc(Sub', perm(Tar', Srv'))) +­

acc(S,perm(T, V)), 

ass(reg, Tar', provides, Srv'), 

ass_trans(ac, Tar' ,_, T), 

ass_trans( ac, Srv', _, V), 

ass_trans( ac, Sub', _, S). 

6) Condition Refinement: 

(14) 

Since Cond is an arbitrary propositional composltion of 

condition element d, in rule (15), each d == obj (0, C) /\ C _att 

I The non-determinism can be restricted by other semantic considerations 
that select, for example, the most appropriate target to perform a service in 
the current situation. 
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is refined to a list of condition instances connected using 

disjunctions, that belong to condition class C and satisfy at­

tribute constraints C _att. Logic connectives among condition 

elements are automatically preserved. Notice that cross-field 

constraints C _cf have already been refined in previous steps. 

Cond=.d I C_dI\C_d I C_dvC_d 

J,I- refCond (15) 

Cond' =. V:;::lOi I C_d' 1\ C_d' I C_d' V C_d' 

7) Examples: 

Following our previous policy examples, we apply refine­

ment rule (9) on policies (1) and (2) by querying the pre­

constructed knowledge database to produce the following 

results: 
policy =. (VSub, V(�Tar, VSrv), Cond)+ 

J,I- ref 

policy' =. (sel, lsI, loc3, 0)+ 

policy =. (VSub, V(VTar, VSrv), Cond)­

J,I- ref 

policy' =. (ls3, sel, pic3, time1)-

(16) 

(17) 

Rule (16) refines policy (1) into a low-level rule policy' saying 

that US still camera sel is allowed to access location service 

loc3 (high quality with encryption) provided by US location 

server lsI. There are many other policy' satisfying rule (16) 

but rule (l3) ensures that each subject is allowed to access 

one location server, i.e., (sel, Is2, loc3, 0)+ is not a valid 

refinement if (sel, Is l, loc3, 0) + already exists. Similarly, 

policy' in rule (17) is one possible refinement of policy (2), 

saying that UK location server Is3 is prohibited to access 

picture service pic3 (high quality) provided by US still camera 

sel at given time timel (gam - 5pm). 

B. Policy Composition 

It is often the case that access control tuples generated 

from the policy transformation phase cannot be directly im­

plemented because their syntax may not be understood by 

low-level devices. Thus the goal of policy composition is to 

generate low-level policies from those tuples. This step is 

highly language-dependent, because the final output is a set 

of low-level rules written in a policy language specification 

determined by the choice of underlying enforcement mecha­

nism. 

So far we have been focusing on network services in 

MANETs, therefore we choose the following two mechanisms 

for enforcement: 1) Access control lists (ACLs) that are 

maintained locally at each service provider; 2) ROFL scheme 

that implements packet filtering using routing mechanisms. 

1) ACLs: 

Local access control lists maintained at servers are com-

posed from results of policy transformation using rule (18): 

policy' =. (Tar' , Srv' , Sub' , Cond' )± 

J,I- ACL (18) 

acl(Tar' ) = (Sub' , ±Act' , Cond' ) 
where policy' is a refined policy produced by transformation 

rule (9), acl(Tar') denotes an access control list on object 

Tar'. The operation field Act' is defined as a method provided 

by the object class C of Tar'. This method may take zero 

or more attributes of Tar' as parameters, such that Act' = 
C.method(Tar'.Attl, ... , Tar'.Attn), where n 2': 0 and 

obj(Tar', C). The positive or negative authorization sign is 

placed in front of Act' to indicate whether certain operation 

is allowed to performed or not. Alternatively, only positive 

authorization rules are maintained in ACLs. Hence any oper­

ation that is not explicitly granted is prohibited. Finally, the 

condition field Cond' is required only if the implementation 

support complex ACLs with additional constraints. 

As concrete examples, we generate ACLs for refined rules 

(16) and (17) respectively. 

policy' =. (sel, lsI, loc3, 0)+ 

J,l-ACL 

acl(lsl) =. (sel, +getLoc(loc3.accuracy), 0) 

policy' =. (ls3, sel, pic3, timel)­

J,l-ACL 

acl(sel) =. (ls3, -getPic(pic3.resolution), timel) 

2) ROFL Scheme: 

(19) 

(20) 

Now we demonstrate the composition process for rules 

written as ROFL advertisements. ROFL is based on a simple 

notion: services - that is, port numbers - should be treated 

as part of the IP address in the routing system. (Full details 

are given in [20], [19].) If a certain service is not advertised to 

a particular network, no host on that network can reach it; the 

routing system will not deliver the packets. We thus use every 

router along the path as a firewall. There are many benefits 

to this scheme, especially in MANETs where battery power 

is limited. If unwanted packets are dropped very early, a lot 

of power can be saved by not transmitting those packets. A 

ROFL route advertisement looks like the following: 

R= {d: slm, S, L, M} 

where d denotes the target host IP address, s specifies the 

service provided by that target, m is the destination prefix 

length (and m :s; 48), S represents a set of authorized subjects, 

L is a list of traffic labels, with M i= 00 indicating a positive 

authorization and M = 00 indicating a negative authorization. 

R is only disseminated to hosts in the subject set S. Upon 

receiving R, all the fields in R including traffic label L enter 

into a receiver's local routing table. 

With ROFL, a host knows which ports are needed for which 

sources, and can emit proper route advertisements. Nor are 

routers turned into firewalls, except in effect; they simply 

listen to routing advertisements and forward packets as usual, 

albeit with longer addresses. No extra administration or state 

is needed, [20] presents calculations showing that the increase 

in table size is acceptable. Other potential issues are routing 

table computations ([20]) and increased routing traffic ([19]). 

We have shown that the increase in traffic for routing messages 

is more than outweighed by the savings by early drops of 

unwanted traffic. 

Generation of ROFL advertisements from refined policy rule 

is defined in rule (21): 
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policy' == (Tar', Srv', Sub', Cond')± 
J).ROFL 

R == {Tar'.ip: Srv'.port/48, Sub'.ip, £(Cond'), M} 
(21) 

where M = 00 for negative authorization policy. Now let us 

discuss the mapping for each field in more details. 

In rule (21), mapping from target or subject to its IP address 

is straightforward as IP is an attribute for Tar' or Sub'. 
However, it is often the case that a ROFL announcement R 
propagates to a set of permitted subjects. Thus it is more 

efficient to enclose the whole set of subjects in a single 

announcement to minimize overhead. Therefore, it is possible 

to implement it as a Bloom filter [8] on the set of source 

addresses or networks of a given prefix length. Bloom filters 

are a space-efficient data structure that can compress the repre­

sentation of a set of members in a compact manner, albeit with 

some chance of false positives. Bloom filters are particularly 

useful in MANETs, where there is little topological structure 

and each allowed node may be identified by a flat address. 

Mapping from service to port number is obtained by calling 

Srv' .port. Function F in section II computes port number 

from service attributes. The more attributes involved in F, the 

more effective a ROFL advertisement is as more unwanted 

traffic is filtered out. For instance, if port is determined 

by both qos and se c, an announcement R can filter more 

unwanted traffic if one of the attribute constraints unsatisfied. 

Gond' is mapped to labels by calling function £( Gond'): 

£( Cond') £(VJ=l I\�l (V�=l Oijk)) 
£(�jf

f=l �7!�1 Oitj') 
lJ\j'=l C7!=lli'j') 

where it is firstly rewritten into a conjunctive normal form 

by applying distributive property of logical connectives; then 

each condition object Oi' j' is mapped into a label li' j'. Log­

ical operator V is automatically implied between consecutive 

labels, and operator 1\ is replaced by a special label l/\. 
Now we describe the encoding algorithm from a condition 

object ° to a label l. Each l is a string of 8 consecutive bits, 

where the first 4 bits denote ° . condType and the remaining 

represent ° . condN arne. Together they uniquely identify a 

condition instance in the knowledge database. Condition type 

0000 is reserved, and l/\ = 00000000. Thus our scheme 

supports 15 types of conditions (although Figure 2 shows only 

two types of conditions in this scenario) and 16 different values 

for each type. More bits can be added to represent more labels. 

Optimization can be made in different ways. The goal is to 

minimize the length of label list L in a ROFL advertisement, 

and hence reduce processing time. Wildcard character * rep­

resents a bit value of either 0 or 1. Thus 2n consecutive labels 

(logical connective V implied) different by n bits at fixed posi­

tions b l, . . .  , b
n 

can be replaced by one label with wildcard * 

at those positions and the rest remain unchanged. For example, 

00010010100010000 (vertical bar 1 is for presentation purpose 

only) can be replaced by 000100 * O. 
A more efficient encoding mechanism can also reduce the 

length of L. We propose an encoding tree (Figure 5(a)) to 

generate labels of the same type, i.e. those have the first 4 bits 

in common. Root node represents the entire value space for a 

00 : 01 00 01 ----00 --- 1----
10 11 10 11 

00 ! 01 00 01 
n3 ----10--- 1----

10 11 10 11 
N = n1 + n2 + n3 + . 

(a) Encoding tree for label value of N bits (b) Encoding scheme for Location label 

Fig. 5: Encoding scheme for label value 

certain type of label; TI denotes 2n1 sub-spaces identified by 

first nl bits; similarly, T2 further divides each sub-space into 

2n2 partitions using the next n2 bits, and so on until all N bits 

for label values are used. Thus, only one label is necessary to 

represent a node or a subtree. Figure 5(b) depicts a possible 

encoding scheme for Location labels with N = 4. The entire 

battle field is divided into 4 quads identified by the first 2 

bits, and each quad is further split into four sub-quads using 

the remaining 2 bits. Due to the space limitation, we will not 

further discuss other optimization schemes for label encoding. 

As a concrete example, we compose ROFL advertisements 

from the refinement results obtained previously. 

policy' == (sel, lsI, loc3, 0)+ 
J). ROFL (22) 

R == {l0.0.0.1 : 443/48, 10.0.0.10, 00000000, M} 
policy' == (ls3, sel, pic3, time1)-
J). ROFL (23) 

R == {1O.0.0.1O : 80/48, 20.0.0.1, 00010001, oo} 

V. POLlCY UPDATES 

In this section, we focus on how our policy refinement 

process can cope with policy updates when the knowledge 

database changes. We will not discuss situations when new 

initial policies are introduced, as those new policies will go 

through the same refinement process as existing ones. 

A. Correctness of Knowledge Database 

To generate consistent policies, knowledge database D must 

be conflict-free with the following requirements enforced: 

1) The definition of class and associations among classes 

is self-contained, such that: if isa( G, G') E D, then 

c lass( G), c lass( G') E D; if assType(X, G, A, G') E 
D, then c lass(G), c lass(G') ED. 

2) The definition of instances and associations among 

them is self-contained, such that: if obj (0, G) E 
D, then c lass(G) E D, att(O, Atti, Vi) E D, 
for all Atti of c lass(G); if ass(X, O, A, O') E 
D, then c lass( G), c lass( G'), assType(X, G, A, G'), 
obj(O, G), obj(O', G') E D. 

3) The definition of service instances cannot stay alone 

without their service providers: if obj(O, G) E D and 

c lass( G) is from the service zone, then obj (0', G') E 
D such that c lass( G') is from the target zone, and 

ass(reg, 0', Ass, 0) E D, where Ass is an association 

describing service provision. 

Standard techniques [17], [15] for constraint verification and 

integrity checking on knowledge database can be applied there. 

We implement those techniques using logic programming. 
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B. Update of Knowledge Database 

From the system point of view, adding new objects (or 

classes) or removing existing ones only affects knowledge 

database not the rest of the policy server (Figure 1). Table I 

sUlmnarizes the changes one needs to perform for operations 

in the first column, where Y means the modification is 

mandatory, - implies optional, and N means not required. 

I Operation 

Add/Remove Tar/Sub 0 
Add/Remove Tar/Sub C 
AddlRemove Srv 0 
AddlRemove Srv C 
AddlRemove Cond 0 
Add/Remove Cond C 

II class I isa lob} I aft I assType I ass I 
N N Y Y N -

Y - N N - N 
N N Y Y N Y 
Y - N N Y N 
N N Y Y N -

Y - N N - N 

TABLE I: Update of knowledge database upon operations 

Clearly, adding or removing target (or subject) objects only 

affects predicate obj and att. It might affect associations, such 

as aggregation, composition, etc. On the other hand, adding 

or removing target (or subject) classes only affects the class 

definition class, and definition on associations among classes 

(i.e. isa and assType) may be updated as well. Update on 

service objects (or classes) is handled in a similar way except 

that predicates assType and ass must be updated to enforce 

requirement 3) discussed in previous subsection. Updates on 

condition objects (or classes) is handled the same as target 

objects (or classes). 

VI. RELAT ED WORK 

Early research [4] performs theoretical work on refinement 

mappings to prove that a lower-level specification correctly 

implements a higher-level one. Recent studies [5], [6], [7], 

[9], [18] address subsets of the problem, such as taking the 

goal-oriented approach for goal decomposition using Event 

Calculus, mapping policy objectives to specific configuration 

details using transformation algorithms, etc. In [12], some 

initial work on policy transformation is presented that applies 

syntactic and algorithmic ideas adapted from the concepts 

of data integration. In [13], the same group proposes action 

decomposition techniques towards a framework for automated 

distributed refinement of both authorization and obligation 

policies. Our approach describes a framework systematically 

for access control policies in general, specifically focusing 

on network services enforced by authorization policies. We 

address the needs of policy composition to produce directly 

enforceable low-level rules through concrete examples. Other 

related work includes [14], where harnessing knowledge em­

bodied in information models and ontologies is used to rep­

resent relationships between policy components that could 

indicate potential conflicts between policies. 

VII. CONCLUSION 

In this paper, we have described a refinement process 

for network service policies in a generic policy refinement 

framework. Future work includes further development to sup­

port access control policies with complex actions. Moreover, 

refinement and consistency checking could be interleaved to 

verify that refined policies are consistent with respect to 

existing policies. On the other hand, in a fully distributed 

scenario, partial refinement may be more desirable with local 

domain knowledge and a relevant subset of refinement rules. 
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