Pseudo Random Bit Generators

Prof. Zeph Grunschlag
Pseudo Random Generator

PRG’s also known as stream ciphers because they correspond to pseudo-random one-time pads. Intuitively, these are deterministic functions whose outputs cannot be differentiated from random bitstreams.
PRG Definition

DEF: U_k denotes the uniform distribution on bitstrings of length k.

NOTE: Security is built-in following definition:

DEF: A PRG with expansion $l(k)$ is a deterministic poly-time algorithm g from bitstrings to bitstrings s.t.:

- $l(k)$ is a polynomial in k s.t. $l(k) > k$
- $|g(x)| = l(|x|)$
- No PPT distinguisher D exists with $\text{Prob}(D(g(U_k)) = 1) - \text{Prob}(D(U_{l(k)}) = 1)$ non-negligible in terms of k.
Blum-Blum-Shub
Official PRG

- \(l(k) \) is any polynomial > \(k \)

INPUT: random seed \(x \) of length \(k \)

OUTPUT: bitstring \(s \) of length \(L \)

Use 1st \(\frac{1}{4} \) of \(x \) to generate \(p \) deterministically

Use 2nd \(\frac{1}{4} \) of \(x \) to generate \(q \) deterministically

Let \(n = p \cdot q \), and \(r = 2\text{nd } \frac{1}{2} \) of \(x \).

Return \(\text{BBS-PRG}(n, r, l(k)) \) // slide #5 from

// “probabilistic encryption”
PRG ⇔ Stateful Private Encryption

THM: A pseudo random bit generator exists iff a stateful symmetric encryption scheme exists with $|M| > |K|$ that is computationally secure.

½ proof: PRG $g \Rightarrow$ Encryption E_K: Use the pseudo random one time pad defined by

- security parameter k chosen so $l(k) \geq |m|
- G: K = U_k$ (key K a rand. k-bit string)
- $E_K(m) = g(K) \oplus m$
Construction of PRG’s

THM: Suppose there is a one way permutation, then there is a PRG with arbitrary polynomial expansion.

Need the following ideas:
• one way function
• one way permutation
• hard core bit