Probability and Randomized Algorithms

Prof. Zeph Grunschlag
Discrete Random Variable

DEF: A **discrete random variable** is a set X together with an assignment of a non-negative probability $Pr[X=x]$ that X takes value x; furthermore, the sum over all possible $x \in X$ of the probability that X takes value x must equal 1.

- If X is clearly fixed from context, may abbreviate $Pr[X=x]$ to $Pr[x]$ or p_x.
Joint and Conditional Probability

• Let X, Y be random variables over the resp. sets X, Y. (Note, X, Y may/may not be same)

DEF: Joint probability $\Pr[x, y]$ is the probability that $(X, Y) = (x, y)$. (Probability of both occurring simultaneously)

DEF: Conditional probability is defined by $\Pr[x|y] = \Pr[x, y] / \Pr[y]$ - assuming that $\Pr[y] > 0.$
Independent Variables

- Random variables are independent if their probabilities don’t depend on each others values:

DEF: \(X \) and \(Y \) are **independent** if \(\Pr[x,y] = \Pr[x]\Pr[y] \) for all \(x, y \).

LEMMA: Equivalently, \(X \) and \(Y \) are independent if (excluding 0-prob. \(y \))
\[
\forall x \in X, \forall y \in Y, \Pr[x|y] = \Pr[x]
\]
Baye’s Theorem

THM: If $\Pr[y] > 0$ then

$$\Pr[x|y] = \Pr[y|x] \cdot \Pr[x] / \Pr[y]$$
Binomial Rand. Var.

DEF: The product of random variables X, Y is the random variable $X \times Y$ defined on $X \times Y$ with distribution $Pr[(x,y)] = Pr[x]Pr[y]$.

• Assume X a random variable on $\{0, 1\}$ and let $p = Pr[X=1], q = Pr[X=0]

• Repeat experiment n times. I.e., take n independent copies: $X_1 \times X_2 \times \cdots \times X_n$

• result called **Binomial** random variable

Bernoulli’s Thm:

$$Pr \left[\sum_{i=1}^{n} X_i = k \right] = \binom{n}{k} p^k q^{n-k}$$
Expectation

• The *average* value taken on by a function f on probability distribution X

DEF: The *expectation* of f is defined by:

$$E(f) = \sum_{x \in X} f(x) \cdot p_x$$

THM: $E(f + g) = E(f) + E(g)$

COR: For n repetitions of a Binomial random variable X consider sum S which counts the number outcomes = 1. Then $E(S) = np$
Chernoff Bound

- Estimates probability that sum of Binomial experiment deviate from expected sum np

THM:

$$\Pr \left[S \geq (1 + \theta) pn \right] \leq e^{-\frac{\theta^2}{3}pn}$$

Note: probability that sum too big falls off exponentially with n
Randomized Algorithms

Equivalent formulations:
• Turing machine with “coin flips” at every step of computation
• Non-deterministic Turing machine with probability distribution over computation branches

Nomenclature (varies from author to author):
• Monte-Carlo:
 • Colloquially any randomized algorithm
• Complexity theory: NO’s always right
• Las-Vegas: always correct, but may fail
• BPP: answers correct most of the time
Monte Carlo Algorithm

- False negative allowed, but no false positives

DEF: A \textbf{poly-time Monte Carlo} algorithm for the decision problem P is a poly-time non-deterministic Turing machine (NDTM) s.t.

\[
\Pr[\text{x is accepted}]: \begin{cases}
\geq \frac{1}{2} & x \in P \\
= 0 & x \notin P
\end{cases}
\]

- Probability measured over “coin-flips” in TM or equivalently, by taking the ratio of accepting branches in NTM to total number

- Defines complexity class \textbf{RP} “Rand-Poly”
Las Vegas Algorithm

• Symmetric version of Monte Carlo - no false negatives nor false positives but can “fail”

DEF: A **poly-time Las Vegas** algorithm is a poly-time NDTM with a constant $\varepsilon > 0$ for which $\Pr[\text{fail}] \leq \varepsilon$ for all inputs.

• Repeat algorithm to make ε arbitrarily small

• Gives class **ZPP** “Zero-Prob-of-error-Poly”

• $\text{ZPP} = \text{RP} \cap \text{co-RP}$
Class BPP

• **BPP** = “Bounded-Prob-of-error-Poly”

• Most general class - allow false negatives and positives. Compensate by insisting answer correct significantly more than half the time

DEF: A poly-time **randomized** algorithm for the decision problem \(P \) is a poly-time NDTM with a constant \(\epsilon > 0 \) for which

\[
\Pr[x \text{ is accepted}] : \begin{cases}
\geq \frac{1}{2} + \epsilon & x \in P \\
\leq \frac{1}{2} - \epsilon & x \notin P
\end{cases}
\]

Chernoff bound implies may assume \(\epsilon = 0.25 \)
Pseudo Random Sequence

“DEF”: A **pseudo random sequence** is a deterministic algorithm from finite bitstrings to infinite bitstrings whose outputs cannot be distinguished from a random strings by any BPP algorithm.
\(\varepsilon\text{-bias Detector} \)

- Given: A black box \(f \) which is known a-priori to have some built-in bias \(\varepsilon \) in an unknown direction.
- Decide: Which direction the bias is in.

\[
\begin{align*}
 n &= \frac{2}{(\frac{1}{2} - \varepsilon)\varepsilon^2} \\
 x &= \text{output of length } n \text{ from } f \\
 c &= \text{number of 1's in } x \\
 \text{return } (c > n/2) & \quad \text{// “YES” if 1-bias, “NO” if 0-bias}
\end{align*}
\]

- \(\Pr[\text{output is correct}] > 3/4 \) therefore this problem is in BPP so \(\varepsilon\text{-bias} \) sequences are not pseudorandom.