Computational Number Theory 2

Zeph Grunschlag

Homomorphisms
DEF: A function \(f : R_1 \to R_2 \) between rings is called a \textbf{ring homomorphism} if for all \(x, y \)

\[
\begin{align*}
&f(x + y) = f(x) + f(y) \\
&f(xy) = f(x)f(y)
\end{align*}
\]

and \(f(1) = 1 \)

Note: it follows that \(f(0) = 0, f(-x) = x \), and for invertible elements \(f(x^{-1}) = f(x)^{-1} \)

Example: For \(M \) divisible by \(m \) \(f : \mathbb{Z}_M \to \mathbb{Z}_m \)

defined by \(f(n) = n \mod m \) is homomorphism.

\[
f : R_1 \to R_2
\]

\[
f(x-1) = f(x) - 1
\]

\[
f : \mathbb{Z}_M \to \mathbb{Z}_m
\]

Isomorphisms
DEF: A homomorphism that is bijective is a \textbf{isomorphism}.

Example: Index theorem says that the exponential function defined by \(f(i) = x^i \mod p \) is an isomorphism if \(x \) is primitive.

NOTE: \(\mathbb{Z}_p^* \) is viewed as a ring if re-interpret multiplication as addition, exponentiation by index as multiplication, 1 as 0, and \(x \) as 1.

Chinese Remainder Theorem
Suppose \(M = m_1 \cdot m_2 \cdots m_r \). There is a homomorphism \(f : \mathbb{Z}_M \to \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r} \)

defined by \(f(n) = (n \mod m_1, \ldots, n \mod m_r) \)

NOTE: domain and codomain have same size

THM: If all the \(m_i \) are pairwise relatively prime, then \(f \) is an isomorphism. Furthermore, the inverse is given by a linear function

\[
g(n_1, n_2, \ldots, n_r) = (c_1n_1 + c_2n_2 + \ldots + c_rn_r) \mod M
\]

with \(c_i = \left(\frac{M}{m_i} \right) \cdot \left(\frac{M}{m_i} \right)^{-1} \mod m_i \)
Algebraic Implications

Assuming \(N = n_1 \cdot n_2 \cdots n_r \) with all \(n_i \) pairwise relatively prime.

LEMMA1: There is an isomorphism on multiplicative groups \(\mathbb{Z}_N^* \approx \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^* \times \cdots \times \mathbb{Z}_{n_r}^* \).

COR: \(\phi(N) = \phi(n_1) \cdot \phi(n_2) \cdots \phi(n_r) \)

LEMMA2: A linear transformation on the space \(\mathbb{Z}_N^k \) (i.e. a \(k \) by \(k \) square matrix) is invertible iff it is invertible modulo each \(n_i \).

COR: \(M_k(N)^* \approx M_k(n_1)^* \times \cdots \times M_k(n_r)^* \)

Taking e’th Roots and Factoring

Recall: for \(a \in \mathbb{Z}_n^* \), \(b = a^e \mod n \) such that the exponent \(e \) is relatively prime to \(\phi(n) \), “e’th root” of \(b \) calculated by:

\[
a = b^{e^{-1} \mod \phi(n)} \mod n
\]

RESULT: If factorization of \(n \) is known, taking e’th roots \(\mod n \) is tractable.

FACT: For \(n = pq \), knowing \(\phi(n) \) gives \(p, q \).

PARTIAL CONVERSE: If know e’th root exponent \(d \) then can factor \(n \).

FULL CONVERSE? - Open problem

Square Roots mod-pq

For Prime Factors p, q

LEMMA: Let \(n = pq \) with \(p, q \) different odd primes. For each quadratic residue \(s \mod n \) there are exactly four square roots of \(s \).

Furthermore, if \(\pm r_p, \pm r_q \) are the square roots of \(s \) respectively \(\mod p \) and \(\mod q \), then the square roots of \(s \mod n \) are all the sums:

\[
[\pm q(q^{-1} \mod p) r_p + \pm p(p^{-1} \mod q) r_q] \mod n
\]

THM: Factoring \(n \) and taking square roots \(\mod n \) are equivalent in the class BPP.

Miller-Rabin Primality

Let \(n \) be an odd number. Let \(q \) be the odd part of \(n-1 \), so \(n-1 = 2^k q \), and \(b \) be any integer in \(\mathbb{Z}_n^* \).

DEF: \(n \) is a **strong pseudoprime relative to \(b \)** if \(b^q \equiv 1 \mod n \), or \(b^{2^i q} \equiv -1 \mod n \) for some \(i < k \).

THM: For any odd composite \(n \) and random \(b \), \(\Pr(b \text{ is strong pseudoprime rel. } b) \leq \frac{1}{4} \).

NOTE: Non-prime pseudoprimes much rarer in practice. Worst case probability for \(n = 9 \).

Miller-Rabin-Primality-Test (positive integer \(n \))

1. if (\(n=2 \) OR \(n \) is even) return “NO”
2. choose \(b \in [2, n-2] \) at random
3. if (\(\gcd(b,n) > 1 \)) return “NO”
4. return TestIfStrongPseudoPrime(n,b)