MAC’s and Hash Functions

Prof. Zeph Grunschlag
Message Authentication Codes

AUTHENTICATION

PROBLEM: Alice (A) sends Bob (B) a message through insecure channel modifiable by Mallory (M)

GOAL: A encodes message in a way that enables B to detect any modification
Message Authentication Codes

AUTHENTICATION

SOLUTION: A appends **MAC** tag T which changes randomly whenever message is changed.

Use **hash function** to create the tag T from the message.

contradiction!!!
Desired Properties

Hash function h should satisfy:

• Output $<$ Input

• Collision resistant:

 Finding different inputs with same output is computationally intractable

• One Way:

 Easy to compute, hard to find pre-images

• Over insecure channel: secret keys
Hash Function Family

A HASH FAMILY is a 4-tuple \((X, \mathcal{Y}, \mathcal{K}, \mathcal{H})\) satisfying
1. \(X\) is a (possibly infinite) set of MESSAGES
2. \(\mathcal{Y}\) is a finite set of possible TAGS (or digests)
3. \(\mathcal{K}\) is a finite set of possible KEYS
4. \(\mathcal{H}\) is a finite set of hash functions indexed by \(\mathcal{K}\)
 so for each \(K \in \mathcal{K}\) there is a function \(h_K : X \to \mathcal{Y}\)
Discrete Log Hash

Note: Picking specific values of message-size, tag-size, key-size. Could generalize to arbitrary but related sizes.

- 260 to 132 bit contractor:
 \[X = [0, 2^{260} - 1], Y = [0, 2^{132} - 1] \]

- \(K \)-keys \(K = (p, q, \alpha, \beta) \) should satisfy:
 - \(p \) and \(q \) are prime with \(p = 2q + 1 \)
 - \(\alpha \neq \beta \) are primitive in \(\mathbb{Z}_p^* \)
 - Bit-lengths: \(|p| = 132, |q^2| = 261\)

- \(H \)-hash functions defined by
 \[h_K(n) = \alpha \left\lfloor \frac{n}{q} \right\rfloor \beta^n \mod q \mod p \]
Primitive Elements

DEF: An element g in a group G is said to be **primitive** (or a **generator**) if every g^i element in G can be expressed in the form for some **exponent index** i. If G contains a primitive element, G is said to be by **cyclic**.

NOTE: Equivalently, g is primitive if the first positive index for which $g^i = 1$ is $i = n = |G|$.

THM: If F is a finite field, then F^* is cyclic.

COR: If p is prime, \mathbb{Z}_p^* is cyclic. Also, suppose g is primitive in \mathbb{Z}_p^*. Then g^i is primitive iff i is relatively prime to $p - 1$.
Index Calculus

Can figure out everything about how numbers *multiply* in \(\mathbb{Z}_p^* \) by seeing how their exponents (indices) *add* in \(\mathbb{Z}_\phi(p)^+ \). Generalization:

THM: If \(p \) is a prime number, then there is an isomorphism: \(\mathbb{Z}_p^* \approx \mathbb{Z}_\phi(p)^+ \).

NOTE: Isomorphism only easy to compute in (index) \(\rightarrow \) (number) direction. Other direction (number) \(\rightarrow \) (index) is DLog problem.
Discrete Logarithm Problem

DEF: Suppose that \(y = x^a \mod n \). Then \(a \) is said to be the **discrete logarithm** of \(y \) with base \(x \) modulo \(n \). Notation: \(a = D\log_x(y) \mod n \)

Discrete logarithm assumption: No BPP algorithm \(D(x,y,p) \) exists which successfully computes \(D\log_x(y) \mod p \) with “significant” probability given a random prime \(p \), a random primitive \(x \) in \(\mathbb{Z}_p^* \), and a random integer \(y \) in \(\mathbb{Z}_p^* \).

When all factors of \(p-1 \) are small, algorithms do exist: explains defining \((p-1)/2 \) to be prime.
Computational Security of Logarithmic Hash

Note: Computational complexity definitions require considering infinite family of log hashes where allow arbitrarily large domains.

LEMMA: Collision resistance implies one-wayness when domain >> codomain.

COR: Discrete log hash “is” one way.
Collisions \Rightarrow DLog

INPUT: p - prime, $x,y \in \mathbb{Z}_p^*$ with x primitive

OUTPUT: $D\log_x(y) \mod p$

EXTERNAL: FindCollision - assumed procedure for finding collisions in h_K

1. if $\frac{p - 1}{2}$ not prime, or y not primitive “FAIL”

2. $q = \frac{p - 1}{2}, \alpha = x, \beta = y, K = (p, q, \alpha, \beta)$

3. $(a, b) = \text{FindCollision}(K)$

4. ... continued next page ...
Collisions \Rightarrow DLog

$$i = \left\lfloor \frac{a}{q} \right\rfloor - \left\lfloor \frac{b}{q} \right\rfloor, \quad j = (b \mod q) - (a \mod q)$$

$$i = i \mod (p - 1), \quad j = j \mod (p - 1)$$

while($i \mod 2 == 0$) {

 $$i = i / 2, \quad j = j / 2$$

 if ($(i - j) \mod 2 \neq 0$) $j = j + (p - 1) / 2$

}

return $\left\lfloor i \cdot (j^{-1} \mod (p - 1)) \right\rfloor \mod (p - 1)$
Iterated Hashes

- A procedure for repeatedly applying a particular hash function, shrinking arbitrarily long messages to fixed length tags.

EXAMPLE (Simple Merkle-Damgård):

- Assume h takes 260 bits to 132 bits and that 0^{132} is never an output. Discrete log hash (viewed on bitstring) satisfies these.

- Define buffer function b - a 1-1 function from bitstrings of length < 132 to bitstrings of length exactly 132.
Simple Merkle-Damgård

INPUT: bitstring \(x = x_1 x_2 \ldots x_k \)

OUTPUT: bitstring \(y = y_1 y_2 \ldots y_{132} \)

EXTERNAL: compression function \(h \)

//Break up into 128-bit blocks:

\[
\text{for } i \in [1, \left\lfloor \frac{k}{128} \right\rfloor] \quad z_i = x_{128i+1} \ldots x_{128i+128}
\]

\[
z_{i+1} = b(x_{128i+1} \ldots x_k) \quad \text{// buffer}
\]

\[
n = 0^{132}
\]

// for each block \(z_i \)

\[
z = n || z_i \quad \text{// concatenate strings}
\]

\[
n = h(z) \quad \text{// view } z \text{ as a number}
\]

return \(n \)
Security of Simple Merkle-Damgård

THM: Any BPP algorithm to find collisions in the Simple Merkle-Damgård applied to a contraction function h, would imply a BPP algorithm for finding collisions in h.

COR: If the discrete logarithm assumption holds, Simple Merkle-Damgård with h chosen from discrete log hash family is a secure hash family with arbitrary contraction.

NOTE: theoretically secure but impractical.