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Abstract

Depth from Focus (DFF) and Depth from Defocus (DFD) methods are theoretically

uni�ed with the geometric triangulation principle. Fundamentally, the depth sensitivities

of DFF and DFD are not di�erent than those of stereo (or motion) based systems having

the same physical dimensions. Contrary to common belief, DFD does not inherently

avoid the matching (correspondence) problem. Basically, DFD and DFF do not avoid

the occlusion problem any more than triangulation techniques, but they are more stable in

the presence of such disruptions. The fundamental advantage of DFF and DFD methods

is the two-dimensionality of the aperture, allowing more robust estimation. We analyze

the e�ect of noise in di�erent spatial frequencies, and derive the optimal changes of the

focus settings in DFD. These results elucidate the limitations of methods based on depth

of �eld and provide a foundation for fair performance comparison between DFF/DFD

and shape from stereo (or motion) algorithms.

Keywords: Defocus, depth from focus, depth of �eld, depth sensing, range imaging,

shape from X, stereo, triangulation.
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1 Introduction

In recent years range imaging based on the limited depth of �eld (DOF) of lenses has been

gaining popularity. Methods based on this principle are normally considered to be a separate

class, distinguished from triangulation techniques such as depth from stereo, vergence or motion

[7, 15, 26, 30, 32, 49, 52, 57]. Cooperation between depth from focus, stereo and vergence

procedures has been studied in [1, 2, 14, 29, 30, 52, 57]. Cooperation of depth from defocus

with stereo was considered in [13, 28, 57].

Successful application of computer vision algorithms requires sound performance evaluation

and comparison of the various approaches available. The comparison of range sensing systems

that rely on di�erent principles of operation and have a wide range of physical parameters is

not easy [7, 26]. In particular, in such cases it is diÆcult to distinguish between limitations of

algorithms to those arising from fundamental physical bounds.

The following observations and statements are common in the literature:

1. The resolution and sensitivity of Depth from Defocus (DFD) methods are limited in

comparison to triangulation based techniques [7, 24, 38, 39, 40, 43, 52, 53, 55, 56, 57, 58].

2. Unlike triangulation methods, DFD avoids the missing-parts (occlusion) problem [8, 9,

16, 36, 40, 45, 49, 54, 55, 56, 57, 58, 60].

3. Unlike triangulation methods, DFD avoids matching (correspondence) ambiguity prob-

lems [8, 9, 13, 16, 24, 36, 38, 39, 40, 41, 45, 49, 51, 54, 55, 56, 57, 58, 59, 60, 61].

4. DFD is reliable [36, 38, 39, 56].

Similar statements were made with regard to Depth from Focus (DFF) [2, 12, 14, 15, 30,

32, 54]. There have been several attempts to explain these observations. For example, the lim-

ited sensitivity of DFD was associated with suboptimal selection of parameters [43], leading to

interest in optimizing the changes in imaging system parameters. A major step towards under-

standing the relations between triangulation and DOF has been recently taken in [3, 17, 18].

A large aperture lens was utilized to build a \monocular stereo" system, with sensitivity that

has the same functional dependence on parameters as in a stereo system (without vergence).

We show that the di�erence between methods that rely on the limited depth of �eld of

the optical system (DFD and DFF) and \classic" triangulation techniques (stereo, vergence,

motion) is mainly due to technical reasons, and is hardly a fundamental one. In fact, DFD

and DFF can be regarded as ways to achieve triangulation. We study the fundamental char-

acteristics of the above mentioned methods and the di�erences between them in a formal and

quantitative manner. The �rst statement above claims superiority of stereo over DFD with

regard to sensitivity. However, the origins of this observation are primarily in the physical size

di�erence between common implementations of focus and triangulation based systems, not in

the fundamentals. Generally, this statement does not hold.

As to the second and third statements (that unlike stereo, the occlusion and matching

problems are avoided in DFD), they again follow mainly from physical size di�erences in

the common implementations. As they are expressed, these two statements do not hold.
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Actually, we note a fundamental matching problem in DFD, analogous to the problem in

stereo. There are, however, some di�erences between DFD, stereo, and DFF with respect to

matching ambiguity and occlusion that can be expressed quantitatively.

In contrast, the fourth observation (reliability of DFD) has a solid foundation. DFF and

DFD rely on more data than common discrete triangulation methods, and are thus potentially

more reliable. Note that an approach and algorithm similar to DFD can also be applied in

Depth from Motion Blur (smear) [20], leading to improved robustness. Still, unlike motion

smear which is one dimensional (1D), DFF and DFD rely on two dimensional (2D) blur and

thus have an important advantage.

In order to study the in
uence of noise on the various ranging methods considered in

this paper, we analyze its e�ect in each spatial frequency of which the image is composed.

We show that some frequencies are more useful for range estimation, while others do not

make a signi�cant or reliable contribution. Our analysis leads to a new property of depth of

�eld: it is the optimal interval between focus-settings in depth-from-defocus for robustness to
perturbations. We also show that in DFD, if the step used is larger by a factor of 2 or higher,

the estimation process may be very unstable. We thus obtain the limits on the interval between

focus settings that ensures stable operation of DFD. Some preliminary results were presented

in [46, 47].

2 Sensitivity

2.1 DFD

Consider the imaging system sketched in Fig. 1. The sensor at distance ~v behind the lens can

image in-focus a point at distance ~u in front of the lens. An object point at distance u is

defocused, and its image is a blur-circle of radius r in the sensor plane.

In this system the blur radius is [49]

r =
D

2

juF � ~vu+ F ~vj
Fu

(1)

where F is the focal length and D is the aperture of the lens. For simplicity we adopt the

common assumption that the system is invariant to transversal shift. This is approximately

true for paraxial systems, where the angles between light rays and the optical axis are small.

Suppose now that the entire lens is blocked, except for two pinholes on its perimeter, on

opposite ends of some diameter [3, 22], as shown in Fig. 2. Only two rays pass the lens. The

geometrical point spread function (PSF) thus consists of only two points, xL and xR. The

distance between the points is

jxR � xLj = 2r : (2)

The fact that the image of each object point consists of two points, separated by a distance

that depends on the depth of the object, gives rise to the analogy to stereo. Note that for an

object point at a distance ~u, the image points coincide, i.e. have no disparity. To accommodate

this in the analogy, we incorporate vergence into the stereo system. Now, consider the stereo &
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Figure 1: The imaging system with an aperture D is tuned to view in focus object points at distance

~u. The image of an object point at distance u is a blur circle of radius r in the sensor plane.
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Figure 2: An imaging system similar to that of Fig. 1, with its lens blocked except for two pinholes

on its perimeter, on opposite ends of some diameter. The image of an out-of-focus object point is

two points, with disparity equal to the diameter of the blur circle that would have appeared had the

blocking been removed.
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Figure 3: A stereo system with a baseline D equal to the lens diameter in Fig. 1. The distance ~v

from the entrance pupil to the sensor is also the same. The vergence eliminates the disparity for the

object point at distance ~u. The resulting disparity caused by the object point at u is equal to the

diameter of the blur kernel formed by the system of Fig. 1.
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vergence system shown in Fig. 3 that consists of two pinhole cameras. It has the same physical

dimensions as the system shown in Fig. 1, i.e., the baseline between the pinholes is equal to

the width of the large aperture lens, and the sensors are at the same distance ~v behind the

pinholes. The image of an object point at u is again two points, now one on each sensor. Since

the angles are small (e.g., D � u) the disparity can be well approximated by

d = x̂R � x̂L = D
uF � ~vu+ F ~v

Fu
= Df(u) : (3)

Comparing this result to Eqs. (1,2) we see that

jx̂R � x̂Lj = jxR � xLj = 2r : (4)

The same result is also obtained for u > ~u. Thus, for a triangulation system with the same
physical dimensions as a DFD system, the disparity is equal to the size of the blur kernel. An
alternative interpretation is to consider the stereo baseline as a synthetic aperture of an imaging

system. A proportion between the disparity and blur-diameter in a system as Fig. 2 (with the

holes on the diameter having a �nite support) was noticed in [3].

The sensitivity (and resolution) of the triangulation systems are equivalent to those of DFD

systems and are related to the disparity/PSF-support size (Eq. 4): Depth deviation from focus

is sensed if this value is larger than the pixel period1 �x (See Refs. [2, 15] and subsection 5.5).

The conclusion is that methods that rely on the depth of �eld are not inherently less sensitive

than stereo or motion. In particular the rate of decrease of the resolution with object distance

is fundamentally the same. In practice, however, the typical lens apertures used [3] are merely

in the order of � 1cm while stereo baselines are usually one or two orders of magnitude larger,

leading to a proportional increase of the sensitivity.

It is interesting to note that the common limits on lens apertures can be broken by the

use of holographic optical elements (HOE). Holographic \lenses" are very thin, yet allow the

deviation of rays by large angles. The design of such elements for imaging purposes is non-

trivial, but HOE are actually in use in wide-angle head-up and helmet displays for aircraft [4].

Consider depth from motion, that can be regarded as a \classic" triangulation approach.

We shall see that it provides an e�ect analogous to 1D defocus blur. If discrete images are

taken, the baseline between the initial and �nal frames dictates the depth resolution. Most

DFD and motion approaches di�er in the algorithms used: In DFD the support of the blur

kernel is calculated by comparison to a small-aperture (reference) image, while motion based

analysis relies on matching. However, the principle of operation of Depth from Motion Blur

(DFMB) [20] is similar to DFD: A fast-shutter photograph is compared to an image blurred

by the camera motion (slow shutter), to estimate the motion extent [11], from which depth is

extracted (Fig. 4).

The analogy between DFD and DFMB can be enhanced by demonstrating the equivalent to

a focused point in motion blur. Consider the system shown in Fig. 4. The camera moves along

an arc of radius ~u, with its optical axis pointing towards the center of the circle. While the

1Some improvement can be achieved by super-resolution techniques.
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Figure 4: While the shutter is open, the camera moves along an arc, pointing to the arc axis at ~u.

This point is sharply imaged while closer or farther points are motion blurred, in a manner analogous

to defocus.

scene is generally motion blurred, a point at a distance ~u remains unblurred! The analogous

DFD system is constructed by removing part of the blocking shown in Fig. 2, exposing a thin

line on the lens, between the former pinholes (thus the system can still be analyzed as having

a single transversal dimension). Thus, the analysis of the spread is not based only on the two

marginal points, but on a 1D continuum of points.

2.2 DFF

In DFF, depth is estimated by searching for the state of the imaging system for which the

object is in-focus. Referring to Fig. 1, this may be achieved by changing either ~v (the lens to

sensor distance), F (the focal length) or u (the object distance), or any combination of them.

Images are taken for each incremental change of these parameters. The state of the set-up for

which the best-focused image was taken indicates the depth by the relation

1

~u
=

1

F
� 1

~v
: (5)

The process of changing the camera parameters to achieve a focused state is analogous to

changing the convergence angle between two cameras in a typical triangulation system. This

qualitative analogy has been stated before [1, 38, 39]. This can be seen clearly in Figs. 1,2,

and 3. For example, focusing the system of Fig. 1 by axial movement towards/away from the

object point changes u, to have u! ~u, until the blur-radius is zero (or undetectable) has the

same e�ect as moving the stereo system of Fig. 3 in that direction. Alternatively, focusing

by changing the focal length F does not induce magni�cation, but shifts v so that v ! ~v by
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changing the refraction angles of the light-rays in Figs. 1 and 2. This has the same e�ect as

changing the convergence angle in Fig. 3. Focusing by axially moving the sensor changes ~v so

that ~v ! v. This changes the magni�cation as well as the angles of the light-rays which hit

the sensor at focus. This has the same e�ect as changing both ~v and the convergence angle

in Fig. 3. We note that magni�cation corrections [12, 34, 53], which are usually insigni�cant

[52, 56], enable focusing when the settings change is accompanied with magni�cation change.

The sensitivity to changes in parameters in DFF is related to the smallest detectable blur-

diameter, while the sensitivity in stereo & vergence is related to the smallest detectable dis-

parity. Both the disparity and the blur-diameter are sensed if they are larger than the pixel

period. Since for the same system dimensions the blur-diameter and the disparity are the

same, the sensitivity of DFF is similar to that of depth from convergence.

In [52] the disparity in a stereo image pair was found empirically to be approximately

linearly related to the focused state setting of a DFF system. We can now explain this result

analytically. Suppose the system is initially focused at in�nity. In order to focus on the object

at u, the sensor has to be moved by

�~v = v � F ; (6)

which according to Eq. (5) is

�~v = Fv=u : (7)

The sensor position ~v, or its distance �~v from the focal point, indicate the focus setting. The

stereo baseline is Dstereo. In the system of [52] the stereo system was �xated at in�nity thus

the disparity was

d = Dstereo � ~v=u = Dstereo � v=u ; (8)

where in the right hand side of Eq. (8) we assumed that the disparity was measured at the

state for which the object was focused, in that cooperative system. Combining Eqs. (7) and

(8) we get

d =
Dstereo

F
�~v (9)

which is a linear relation between the focus setting and the disparity. If focusing is achieved

di�erently (e.g. moving the lens but keeping the sensor position �xed), there are higher order

terms in the relation between focus-setting and disparity, but in practice they are negligible

compared to the linear dependence.

3 Occlusion

3.1 DFD

The observation that monocular methods are not prone to the missing parts (occlusion) prob-

lem is mostly a consequence of the small \baseline" associated with the lens. The small angles

involved reduce the number of points that will be visible to a part of the lens while being

occluded at another part (vignetting caused by the scene). However, such incidents may occur
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[3, 5, 17, 33].

Note that the same applies to stereo [51] (or motion) with the same baseline! Although

mechanical constraints usually complicate the construction of stereo systems with a small

baseline, such systems can be made. An example is the \monocular stereo" system presented

in [18], whose principle of operation is similar to that shown in Fig. 2. Another possibility is

to position a beam-splitter in front of the triangulation system. There is, of course, no \free

lunch": the avoidance of the occlusion problem (and also the correspondence problem as will

be discussed in section 4) by decreasing the baseline leads to a reduction in sensitivity [40].

The main di�erences between DFD and common triangulation methods arise when we

consider the 2D nature of the image. It turns out that for the same system dimensions, the

chance of occurrence of the occlusion phenomenon is higher for DFD than for stereo (Fig. 5a).

This is due to the fact that the defocus point-spread is much larger than for stereo. That is,

there may be many situations in which occlusion occurs for the DFD system, and not for the

stereo system.

Nevertheless, there is a di�erence in the consequences of occlusion. In stereo, the fact

that one of the rays is blocked makes matching and depth estimation impossible (Fig. 5b). In

contrast, DFD relies on a continuum of rays, thus allowing estimation, although with an error.

If the occluded part is small compared to the support of the blur-kernel, and its depth is close

to that of the occluding object, the error will be small. Depth from motion blur, acquired as

described in Fig. 4 (or even a discrete sequence of images acquired as the camera is in motion)

will have a similar stable behavior (Fig. 5b).

Consider small occlusions, covering less than half the blur PSF. In these cases the chief ray

(the light ray that would have passed through a pinhole camera and marks the center of the

PSF) is not occluded2. As seen in Fig. 6 the relative error in the support of the defocus blur is

smaller than that of motion blur. This is an advantage of DFD over DFMB. Moreover, from

Fig. 5 one can notice that with DFD it is also possible (although not by the current algorithms

known to us) to fully recover the true blur diameter using a line in the PSF that is parallel to

the occluding edge.

Evidence of problems near occlusion boundaries in a \monocular stereo" system is reported

in [3]. These problems occur since some points in the scene were occluded to certain parts of

the lens aperture. Had that system been used for DFF/DFD, similar occlusions would have

taken place. Ref. [3] reported that the occlusion e�ect is small. This is due to the small baseline

associated with that system. Experimental evidence of the phenomenon is also reported in [5].

To conclude, DFD does not avoid the occlusion problem anymore than stereo/motion meth-

ods (on the contrary). It is, however more stable to such disruptions. In principle, with DFD

it is possible to fully recover the depth as long as the occlusion is small.

3.2 DFF

From the discussion in Subsec. 3.1, it follows that occlusion is present also in DFF. In a stereo

system with a baseline that is as small as the aperture of typical DFF systems, the occlusion

2Cases of severe occlusions, where the chief ray is occluded, are ignored, since in this case the object point
is not seen in the pinhole image, thus the depth of the occluder will be measured.
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Figure 5: The stereo PSF consists of two distinct impulse functions. The line segment that de�nes the

disparity between them is the support of the motion blur kernel, and the diameter of the defocus blur

kernel for the same system dimensions. An occluding object is in-focus (and in perfect convergence

in the stereo case) in this diagram, hence has sharp boundaries. In (a) the object is occluding only

a DFD setup but not the stereo/motion setups. In (b) occlusion makes stereo matching impossible,

and an error occurs in DFMB and DFD. In DFD, the diameter parallel to the occluding edge makes

error-free recovery possible.
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small occlusions the chief ray is visible and the relative part of the PSF that is occluded is smaller

for DFD [dashed line] than for motion [solid line].
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phenomenon would be much less noticeable than in a stereo system with a large baseline.

Moreover, as described in Fig. 5a, for systems of the same physical dimensions the chance of

occlusion is higher in DFF than in stereo due to the 2D nature of the PSF.

The imaging of occluded objects by �nite aperture lenses was analyzed in [33]. Since the

occluding object is out of focus, it is blurred. However, this object causes vignetting to the

objects behind it. Thus, the occluded object fades into the occluder. If the occluded object is

left of the occluding edge (in the image space), the image obtained using an aperture D is

gD = Occluded � (1� hD ? Step(x0)) + Occluder ? hD ; (10)

where Step(x0) is the step-function at the occluding edge position x0. In Eq. (10) the blur

kernel hD of the occluding object has a radius r while the occluded object (for which we seek

focus) is assumed to be focused.
Inspecting Figs. 7 and 8, there are four classes of image points:

1. x < x0 � r.

The point is not occluded. Depth at the point is unambiguous.

2. x0 � r � x < x0.

The point is slightly occluded (See Fig. 7a). The chief ray from this object point reaches

the lens. The point may appear focused but the disturbance of the blurred occluder may

shift the estimation of the plane of best focus in DFF.

In a stereo & vergence system of the same physical dimensions, each of the two pinholes

will see a di�erent object, either the occluder or the occluded one. Thus �xation is ill

posed (no solution).

3. x0 � x � x0 + r

The point is severely occluded. The chief ray from this object point does not reach the

lens. The point may appear focused but during the focus search the same point x will

indicate a focused state also when the occluder is focused (see Fig. 8). The solution is

not unique (double valued). Simple DFF is thus ambiguous. Nevertheless, the depth at

the point may be resolved if the possibility of a layered scene is taken into account (See

[48] for a proposed method for DFF with double valued depth).

The occluder at that point is seen to both pinholes in the stereo & vergence system.

Thus convergence is possible and the correct depth of the occluder will be the solution

at point x. This is a unique solution since matching the occluded point is impossible, for

the same reason detailed in the case of slight occlusion.

4. x > x0 + r

The focusing (DFF) and �xation (convergence) are done on the close (possibly occluding)

object. Depth at the point is unambiguous.

Occlusion is present in cases 2 and 3 above, and a correct and unique matching is not guaran-

teed. However, if the occlusion is small (i.e. the chief ray is visible) the situation is similar to

that described in subsection 3.1: the stereo/vergence system cannot yield the solution while

DFF yields a depth value that approaches the correct one for smaller and smaller occlusions.
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Figure 7: (a) If the chief ray is not occluded but resides within the blurred image of the occluding

edge (slight occlusion) focusing is possible but may be erroneous. (b) For the same system dimensions

matching the occluded object point in the stereo/vergence images is not possible.

On the other hand, if the occlusion is severe (the chief ray is occluded) DFF yields an ambigu-

ous estimation (which can be resolved if a layered scene is admitted, as in [48]) while depth

from convergence yields a correct and unique depth estimation.

4 Matching (correspondence) ambiguity

Defocus measurement is not a point operation in the sense that in order to estimate depth

at given image coordinates it is not suÆcient to compare the points having those coordinates

in the acquired images. In DFD, depth is extracted by matching a spot (sharp or blurred)

in one image with a corresponding blurred spot in another image. Even if the center of the

blurred spot is known, its support is unknown - unless the scene consists of sparse points. It

is possible to estimate the support of the blur kernel for piecewise planar scenes [49] or scenes

with slowly varying depth, as long as the support of the blur-kernel is suÆciently small to

ensure that the disturbance from points of di�erent depths is negligible. The estimation of

the blur kernel support is generally diÆcult, though not impossible, if large depth deviations

can take place within small neighborhoods. Note that in stereo too the disparity should be
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Figure 8: (a) If light emanating from the object point reaches the sensor but the chief ray is occluded

(severe occlusion) focusing on this occluded point is possible. (b) The same transversal image point is

also in focus if the system is tuned on the occluder. Thus, the depth at the point x is double valued.

Matching stereo/vergence points is possible only in case (b) (see Fig. 7).

approximately constant over the patches (which are segments along the epipolar lines) to ease

their registration between the images [1, 2].

The neighborhoods used for the estimation of the kernel need to be larger than the support

of the PSF. A good demonstration for this aspect is given in [44]. In that work, the object

was illuminated with sparse points and the PSF was a ring. The depth was estimated by

the ring-diameter3. This seems like an easy task since the points are sparse. However, this

task would have been much more complicated if adjacent rings had overlapped. Thus to avoid

ambiguity, the 'image patches' had to be larger than the largest possible blur kernel.
In natural scenes, if a signi�cant feature is outside the neighborhood used in the estimation,

and its distance from the patch is about the extent of the point-spread, edge bleeding [26, 34, 52]

3A system based on circular motion blur [27] was recently presented. When the object points are sparse,
this method is analogous to the ring defocus PSF of [44].
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occurs, spoiling the solution. This demonstrates that DFD is not a pointwise measurement (but

rather a point-to-patch or a patch-to-patch comparison). Thus the assumption that in DFD

each image point corresponds simply to the point with the same coordinates in the other image

is erroneous. This wrong assumption cannot be used to overrule the possibility of matching

(correspondence) problems.

Image patches that contain the support of the blur kernel (or the disparity) are needed in

DFD as well as in stereo, when trying to resolve the disparity/blur-diameter. However the

implications are much less signi�cant in stereo/motion, since there the search for the matching

is done only along the epipolar lines so the \patches" are 1D (very narrow). Usually, the

correspondence problem in stereo is solvable, but its existence complicates the derivation of

the solution. We claim that a similar problem exists also in DFD, and it also may complicate

the estimation. We now concentrate on the simple situation where the patches are suÆciently

large and depth-homogeneous. Then, analysis in the spatial-frequency domain is possible.

4.1 Stereo

One of the disadvantages attributed to stereo/motion is the correspondence problem. Adelson

and Wang [3] interpreted this problem as a manifestation of aliasing. Let the left image be

gL(x; y) while the right image is gR(x; y) = gL(x � d; y). We postpone the e�ect of noise to

section 5. Having the two images, we wish to estimate the disparity, for example by minimizing

the square error

E
2(d̂) = jgR(x; y)� gL(x� d̂; y)j2 ; (11)

where the baseline is along the x-axis. We denote a spatial frequency by �!� = (� cos�; � sin �).

In case the image is periodic [2, 32, 40, 52], for example, if the image contains a single frequency

component gL(x; y) = Ae
j2��(x cos�+y sin�), the solution is not unique:

d̂ = d + k=(� cos �) k = ::� 2;�1; 0; 1; 2; 3::: (12)

This diÆculty arises from the fact that the transfer function between the images,

H(�!� ) = e
�j2��d cos�

; (13)

is not one-to-one. The problem is dealt with by restricting the estimation to be in frequency

bands for which the transfer function is one-to-one, for example by demanding

j�d cos �j < 1=2 or 0 < �d cos � < 1: (14)

Subject to these restrictions, the registration of the two images is easy and unique. Thus,

the correspondence problem is greatly reduced if the disparity is small. If the frequency or

disparity are too high (larger than the limitation posed by Eq. (14)), the ambiguity is analogous

to aliasing [3]. If the stereo system is built with a small baseline [3, 18] as in commonmonocular

systems, the correspondence problem will be avoided [3].

The raw images are usually not restricted to the cuto� frequencies dictated by Eq. (14),

when d is larger than a pixel. Thus the images should be blurred before the estimation is
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done, either digitally as in [6] or by having the sensor placed out of focus as in [3, 51]. In this

process information is lost, leading to a rough estimate of the disparity (as will be indicated

by the results in section 5). This coarse estimate can be used to resolve ambiguity in the band

0 < �d cos � < 2, and thus the estimation can be re�ned. This in turn allows further re�nement

by using even higher frequency bands. This is the basis of the coarse-to-�ne estimation of the

disparity [6]. The larger the product �d, the more calculations are needed to establish the

correct matching. This is compatible with the observations that the complexity of stereo

matching increases as disparities grow [28, 32] and that edgel-based stereo (which relies on

high frequency components) is more complex than region based matching [32]. The source of

the coarse estimate is not necessarily achieved by the same stereo system, but is nevertheless

needed [14, 28, 32, 57].

4.2 DFD by aperture change and DFMB

Does DFD avoid the matching ambiguity problem at all? We shall now show that the answer

is, generally, no. We consider in the following the pillbox model [36, 60] which is a simple

geometrical optics model for the PSF. In this model the intensity is spread uniformly within

the blur kernel. In 1D blurring, the pillbox kernel is simply the window function hD = D=d

for jxj < d=2. The total light energy collected by the aperture (and spread on the sensor)

is proportional to its width D in this 1D system. This system is analogous to DFMB. The

transfer function is

HD(
�!
� ) = D

sin(��d cos �)

��d cos �
= Dsinc(�d cos �) ; (15)

where the blur diameter d is given by Eq. (3). Inserting Eq. (1) into Eq. (15) and taking the

limit of small D, the transfer function of the pinhole (reference) aperture is

H0(
�!
� ) = D0 (16)

for all �, where D0 is the width of the pinhole. Having the pinhole image g0 and the large-

aperture image gD, we wish to estimate the blur diameter, for example by minimizing an error

criterion [22] like

E
2(d̂) = jgD ? h0 � g0 ? ĥDj2 : (17)

In the case where the image is periodic and consists of a single frequency component,

g0(x; y) = D0Ge
j2��(x cos�+y sin�)

; (18)

the solution is again not unique since the transfer function between the images

H(�!� ) = HD(
�!
� )

H0(
�!
� )

=
D

D0

sinc(�d cos �) ; (19)

is not one-to-one (The DFMB transfer function is proportional to the one in Eq. (19), where

the aperture dimensions ratio is replaced by the ratio of exposure times.). Since the transfer
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function is not one-to-one, a measured attenuation is the possible outcome of several blur

kernel diameters.

As done in stereo [3], we may restrict the estimation to frequency bands for which the

transfer function is one-to-one. For DFMB this dictates that

0 < �d cos � < 1:43 : (20)

Where 1.43 is the location of the �rst minimum of expression (19). So, we can use a wider

frequency band than that used in stereo systems (14) having the same physical dimensions,

before needing a coarse to �ne approach.

In the 2D pillbox model [36, 60], the PSF is hD = D
2
=d

2 for
p
x2 + y2 < (d=2)2. The

defocus transfer function is

HD(
�!
� ) =

�D
2

2

J1(��d)

��d
(21)

while

H0(
�!
� ) = �D

2
0=4 : (22)

Thus

H(�!� ) = 2
D

2

D
2
0

J1(��d)

��d
(23)

is also not one-to-one. Thus, the ambiguity (correspondence) problem also occurs in the DFD

approach, and �nite-aperture monocular systems do not guarantee uniqueness of the solution

for periodic patterns. There are scenes for which the solution of DFD (i.e. matching blur

kernels in image pairs) is not unique.
The defocus transfer function in Eq. (21) is monotonically decreasing in the range

0 < �d < 1:63 : (24)

Eq. (24) appears as if it enables unique matching in a wider band than can be used in stereo

(Eq. 14). However, note that very high spatial frequencies may be used in the stereo process

without matching ambiguity, as long as the component along the baseline has a suÆciently

small frequency. On the other hand, Eq. (24) does not allow that. Hence, in contrast to

common belief, common triangulation techniques (as stereo) may be less prone to matching

ambiguity than 2D-DFD.

The above discussion is relevant not only for periodic functions. Integrating Eq. (11) or

Eq. (17) over a patch is equivalent to integrating the square errors in all frequencies. Fur-

thermore, disparity/blur estimation by �tting a curve or a model to data obtained in several

frequencies has been used [8, 22, 38, 40, 60].

The conclusion that the ambiguity problem is present in DFD is not restricted to the pillbox

model, but to all transfer functions which are not one-to-one, particularly those having side

lobes (see [10, 19, 23, 31, 50] for theoretical functions). Hopkins [23] explicitly referred to the

phenomenon of increase of contrast at large defocus due to un-monotonicity of the transfer

function at the high frequencies. In other words, although the two acquired images and the

laws of geometric optics impose constraints on the spread parameter (blur-diameter) [53, 54],
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there may be several `intersections' between these constraints, leading to ambiguous solutions.

Empirical evidence for the possibility of this phenomenon can be found by studying the

results reported in [28]. In that work, 
at objects textured with a single spatial frequency were

imaged at various focus settings. The graphs given in [28] show that, especially at high spatial

frequency inputs, the attenuation as a function of focus setting (i.e., the blur diameter) is not

monotonous, potentially leading to ambiguous depth estimation.

The common assumption in DFD that the PSF is a Gaussian simpli�es calculations [53, 58]

but generally is incorrect [9]. This assumption should not be taken as a basis for believing

that the actual transfer function is one-to one (using the wrong transfer function will lead to a

wrong estimation of d). If, however, the actual transfer function is one-to-one for all frequencies

[31], the ambiguity phenomenon does not exist, and there is a unique match. However, as will

be discussed in section 5, in that situation the problem is still ill conditioned in the high

frequencies.

4.3 DFD by change of focus-settings

The change in the blur-diameter between the input images may be achieved by changing the

focus settings rather than changing the aperture size. For example, the sensor array may

move axially between image acquisitions. We shall show that this leads to the same limitation

as when DFD is done by changing the aperture size (Eq. 24). We assume that geometric

changes in magni�cation are compensated or do not take place (e.g. by the use of a telecentric

system [36, 60], depicted in Fig. 9). The aperture size D is constant, so in this subsection we

parameterize the transfer function by the blur diameter d.

Let the two images be g1 = g0 ? hd and g2 = g0 ? hd+�d. �d is the change in the blur-

diameter due to the known shift �v in the sensor position (Fig. 9). This change is invariant to

the focus settings and the object depth in telecentric systems [36, 48]. The transfer function

between the images is now

H(�!� ) = Hd+�d(
�!
� )

Hd(
�!
� )

: (25)

At frequencies for which jHd(
�!
� )j � jHd+�d(

�!
� )j we can take the reciprocal of Eq. (25) as the

transfer function between the images (in reversed order).

In subsection 4.2 we showed that if H(�!� ) is not one-to-one in d, the estimation may

be ambiguous. Fig. 10 plots the response to a speci�c frequency � of the 2D pillbox model

(21) as a function of the blur-diameter. The �gure also plots the response at the axially-

displaced image (�d = 1=(2�) in this example), which is the same as the former response,

but shifted along the d axis. Each ratio between these responses can be yielded by many

diameters d. To illustrate, view Fig. 11, which plots the ratio between the frequency responses

in Fig. 10. The ratio is indeed not one-to-one. The lowest band for which the ratio is one-

to-one in this �gure is 0 < �d < 1:46. However, if the axial increments of the sensor position

are smaller, this bandwidth broadens. As �d is decreased, the responses shown in Fig. 10

converge. Convergence is fastest near the local extrema of Hd(�). Hence, as �d ! 0 the

lowest band in which the matching (correspondence) ambiguity is avoided is between the two
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Figure 9: In a telecentric system, the aperture stop is at the front focal plane. Such a system

attenuates the magni�cation change while defocusing. Shifting the sensor position by �v causes a

change of �d in the blur diameter.

�rst local extrema, i.e.,

0 < �d < 1:63 ; (26)

which is the same as Eq. (24).

Simulation and experimental results reported in [60] support this theoretical result. In the

DFD method suggested in [60], the defocus change between acquired images was obtained by

changing the focus settings. The images were then �ltered by several band pass operators,

and the ratios of their outputs were used to �t a model. The authors of [60] noticed that

the solution may be ambiguous due to the unmonotonicity of the ratios, as a function of the

frequency and the blur diameter. However, the relation to correspondence, which was related

there only to stereo, was not noticed. To avoid the ambiguity they limited the band used to

the �rst zero crossing of the pillbox model (21) which occurs at �d = 1:22. However, their tests

revealed that the frequency band can be extended by about 30%, i.e., to �d � 1:6, in agreement

with Eq. (26). The ratio computed in [60] is actually a function of the transfer function de�ned

in Eq. (25) between the images. Thus, the possibility of extending the frequency band beyond

the zero crossing is not unique to the rational �lter method; it is a general property of DFD.

High frequencies were not used in [60] for depth estimation since they are beyond the

monotonicity cuto�. It seems that these `lost' frequencies can be used in a manner similar
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Figure 10: [Solid line] The attenuation of a frequency component � between a focused and a defo-

cused image as a function of the diameter of the blur kernel d. The horizontal axis is scaled by �.

[Dashed line] The attenuation of the same frequency component when the focus settings are changed

so that the blur diameter is d+�d, for the case �d = 1=(2�).

to the coarse-to-�ne approach in stereo (i.e., using the estimation based on low frequencies to

resolve the ambiguity in the high frequencies).

4.4 DFF

We believe that by using a suÆciently large evaluation patch and some depth homogeneity

within the patch, DFF is freed of the matching problem. Contrary to common statements in

the literature, the avoidance of the matching problem in DFF is not trivial.

Focus measurement (like defocus and disparity measurements) is not a point operation. It

must be calculated [26, 34, 52, 54] over a small patch implicitly assuming that the depth of

the scene is constant (or moderately changing) within the patch [14, 32]. The state of focus is

detected by comparison of focus (\sharpness") measurements in the same patch over several

focus settings. To have a correct depth estimation, the focus measure in the patch should be

largest in the focused state. The patch must be at least as large as the support of the widest

blur kernel expected in the setup, otherwise errors due to edge bleeding [34, 52] could occur

(Fig. 12). Assuming the patch to be suÆciently large, we can make some observations in the

frequency domain.

Periodic images make depth from stereo ambiguous (Subsec. 4.1). They do the same to

depth from vergence. As the vergence angles are changed, several vergence states yield perfect
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the images is the ratio between their individual frequency responses, plotted in Fig. 10. In the DOF

threshold (see subsection 5.5) �d = 1=(2�), for which the width of the band without ambiguities

satis�es �d � 1:46. For in�nitesimal �d this width satis�es �d � 1:63. For high frequencies or large

diameters the width of each band is �d � 1 as in stereo.

matching. On the other hand, DFF seems indeed to be immune to ambiguity due to periodic

input [2, 32, 52]. Since the blur transfer function is a LPF, the energy at any spatial frequency

composing the image is largest at the state of focus. As the image is defocused the high-

frequencies response quickly decreases [23], and decrease in the response to other frequencies

(except DC) follows. As the image is further defocused there may be local risings of the

frequency response (side lobes in the response at some frequency, as a function of d). However,

no local maximum is as high as the response at focus in reasonable physical systems. Thus,

the determination of the focused state is unambiguous in each of the frequency components

(except DC).

5 Robustness and response to perturbations

In some previous works, it has been empirically observed that DFD/DFF methods are more

robust than stereo. In this chapter we analyze the responses of DFD, stereo and motion to

perturbations, in a uni�ed framework. Some of the results depend on the characteristics of the
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speci�c model of the optical transfer function (OTF), like monotonicity and the existence of

zero-crossings. For defocus we use the pillbox model [36, 37, 60], since it is valid for aberration-

free geometric optics, and has been shown to be a good approximation for large defocus [23, 31,

50]. The e�ects of physical optics and aberrations in
uence the results but one must remember

that these a�ect also stereo and motion. Since the literature on stereo and motion neglects

these e�ects, we maintain this assumption so as to have a common basis for comparison between

stereo/motion and DFD. Nevertheless, the procedure used in this chapter is general and can

serve as a guideline in the analysis of other models.

5.1 General error propagation

Let us analyze the e�ect of a perturbation in some spatial frequency component of the image.

The perturbation a�ects the estimated transfer function between the images, which in turn

causes an error in the estimated blur-diameter (DFD) or disparity (stereo). This leads to an

error in the depth estimation. As in Sec. 4 we note that studying the behavior of each spectral

component has an algorithmic ground: there are several methods [8, 22, 38, 40, 60] which rely

directly on the frequency components or on frequency bands [40] for depth estimation. Since

stereo, DFD or DFMB are based on comparison of two acquired images, we shall check the

in
uence of a perturbation in any of the two. The problem is illustrated in Fig. 13.

The transfer function H(�!� ) between the imageGD (in the frequency domain) to a reference

imageG0 is parameterized by the disparity/blur-diameter. We wish to estimate this parameter,

for example by looking for the transfer function Ĥ that will satisfy

GD(
�!
� ) = G0(

�!
� )Ĥ(�!� ) : (27)
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DFD/stereo/DFMB for the same system dimensions. [Bottom] A perturbation added to one of the

images leads to a deviation in the estimation of d, leading to an error in the depth estimate.

Let a perturbation occur at the reference image g0. The images are thus related by

GD(
�!
� ) = [G0(

�!
� )�N0(

�!
� )]H(�!� ) ; (28)

where H(�!� ) is the true transfer function and N0 is the perturbation. Eqs. (27,28) yield

Ĥ(�!� ) = H(�!� )�N0(
�!
� )H(�!� )=G0(

�!
� ) = H(�!� )� jN0(

�!
� )j

jG0(
�!
� )je

j#(
�!
� )
H(�!� ) ; (29)

where #(�!� ) is the phase of the perturbation relative to the signal component G0(
�!
� ). Usually

both constraints (27,28) cannot be satis�ed simultaneously at all frequencies, hence a common
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method is to minimize the MSE

E
2 =

Z
�!
�
jGD(

�!
� )� Ĥ(�!� )G0(

�!
� )j2d�!� =

=

Z
�!
�
jG0(

�!
� )j2

���[H(�!� )� Ĥ(�!� )]�N0H(�!� )=G0

���2 d�!� : (30)

This is achieved by looking for the extremum points

@(E2)

@d̂

= �2Re
Z
�!
�
jG0(

�!
� )j2

�
H(�!� )� Ĥ(�!� )� N0H

G0

�
@Ĥ

�(�!� )
@d̂

d�!� = 0 : (31)

Local minima of E2 may appear at di�erent estimates d̂, for di�erent signals and perturbations,

depending on their spectral content.

Attempting to analyze in a systematic way, let us assume that the signal is made of a single

frequency �!� , thus
G0(

�!
�
0) = D

2
0G(

�!
� )Æ(�!� ��!� 0) : (32)

If at that frequency @Ĥ�(�!� )=@d̂ = 0, the estimation of d̂ is ill posed (or very ill conditioned).

Otherwise, nulling the integrand yields Eq. (29), which shows how the estimated frequency

response changes with the in
uence of the perturbation. From Ĥ(�!� ) the parameter d̂ and the

depth û are derived (3). The response of the depth estimation to perturbations is

@û(�!� )
@jN0(

�!
� )j =

@û

@f(û)

@f(û)

@jN0(
�!
� )j ; (33)

where f(u) = d=D is as de�ned in Eq. (3). As we showed in Sec. 2, f(u) is the same for

stereo and DFD systems having the same physical dimensions, thus the factor @u=@f(u) is

common for both systems. Hence, in the coming comparison between these approaches we

omit this factor and use @f(u)=@jN0j as a measure for the response to perturbations. Since

the estimation will be frequency-dependent, we write

@f(û;�!� )
@jN0(

�!
� )j =

@f(û;�!� )
@Ĥ(�!� )

@Ĥ(�!� )
@jN0j = �e

j#(
�!
� )
H(�!� )

jG0(
�!
� )j

"
@H(�!� )
@f(u)

�����
û

#�1
; (34)

where G0 is given by Eq. (32).

Suppose now that the perturbation occurs in the transformed (shifted, or blurred) image.

Eq. (28) takes the form

GD(
�!
� ) = G0(

�!
� )H(�!� ) +ND(

�!
� ) ; (35)

while Eq. (30) changes to

E
2 =

Z
�!
�
jGD(

�!
� )� Ĥ(�!� )G0(

�!
� )j2d�!� =

Z
�!
�
jG0(

�!
� )j2

���[H(�!� )� Ĥ(�!� )] +ND=G0

���2 d�!� :

(36)
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Reasoning similar to Eqs. (29,31) yields

Ĥ(�!� ) = H(�!� ) + jND(
�!
� )j

jG0(
�!
� )j e

j#(
�!
� )

: (37)

The response of the depth estimation to the perturbation is

@f(û;�!� )
@jND(

�!
� )j =

@f(û;�!� )
@Ĥ(�!� )

@Ĥ(�!� )
@jNDj =

e
j#(
�!
� )

jG0(
�!
� )j

"
@H(�!� )
@f(u)

�����
û

#
�1

: (38)

5.2 Stereo - the aperture problem

For stereo, the transfer function H(�!� ) is given by Eq. (13), so

@fstereo(û;
�!
� )

@jN0(
�!
� )j =

e
j[#(
�!
� )��=2]

jG(�!� )j
1

2�D2
0D

1

� cos �
; (39)

@fstereo(û;
�!
� )

@jND(
�!
� )j =

e
j[#(
�!
� )+�=2+2��d cos�]

jG(�!� )j
1

2�D2
0D

1

� cos�
: (40)

The terms in these equations express in a quantitative manner intuitive characteristics: the

stronger the signal G(�!� ), the smaller is the response to the perturbation; the DC component

(� = 0) contribution to the disparity estimation is ill-posed; estimation by the low frequen-

cies is ill-conditioned. The instability at the low frequencies stems from the fact that much

larger deviations in d̂ are needed to compensate for the perturbation, while trying to maintain

Eq. (29), than in the higher frequencies. Thus, Eq. (39) expresses mathematically the weakness

of stereo in scenes lacking high-frequency content.

These equations also express mathematically the aperture problem in stereo. The smaller

the component of the periodic signal along the baseline [3], the larger the error is. As j�j ! �=2

we need to have D!1 to keep the error �nite.

5.3 Motion and 1D blur

For DFMB (analogous to 1D-DFD) the transfer function is proportional to expression (19),

which has zero crossings. Perturbations in the reference image at frequencies/diameters for

which H(�!� ) = 0 in
uence neither the error (30) nor the depth estimation (34). Thus, if the

transfer function has zero crossings (as in [10, 19, 23, 31, 50]), the estimation based on the

zero-crossing frequencies is completely immune to noise added to the reference image, i.e.,

@f(û;�!� )
@jN0(

�!
� )j

�����
H(
�!
� )=0; @H

@d
6=0

= 0 : (41)
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d (larger than the monotonicity cuto�) has several solutions (e.g. d̂1, d̂2). Close to a peak or trough

a small deviation in the estimated Ĥ causes a signi�cant but bounded error (see d̂2, d̂3). At the high

frequencies or defocus blur the transfer function is indi�erent to changes in d, thus the error may be

in�nite (see ~d vs. ~̂d). Hence such frequencies would better be discarded.

As for perturbation in the blurred image,

@fDFMB(û;
�!
� )

@jND(�)j

�����
H(
�!
� )=0

= � e
j#(
�!
� )

jG(�!� )j
1

D
f(û) : (42)

Thus close to the zero crossings the results are stable even when the frequency is high.

Nevertheless, if the transfer function has zero-crossings it is not monotonous, having peaks

and troughs. In these situations @Ĥ=@d̂ is locally zero, yielding an ill conditioned estimation

(see Fig. 14). Note that these are exactly the limits between the bands well posed for matching

(Sec. 4). Assuming that a change of defocus/motion blur diameter mainly causes a scale

change in H(�!� ), as in the case of the pillbox model (19), this phenomenon means that some

frequencies will yield an unreliable contribution to the estimation. Still, a perturbation about

a peak or trough will usually yield a bounded error since locally, the range of frequencies in

which @Ĥ=@d̂ � 0 is small.

Consider for example the peak about the DC. Substituting Eq. (32) in Eq. (34), and
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expanding H (Eq. 19) in a Taylor series we obtain that

@fDFMB(û;
�!
� )

@jN0(
�!
� )j

�����
�d cos�<1

� 1

D
2
0D

2

1

(� cos�)2
; (43)

@fDFMB(û;
�!
� )

@jND(
�!
� )j

�����
�d cos�<1

� 1

D0D
3

1

(� cos �)2
: (44)

Eqs. (43,44) indicate that the estimation is very unstable in the low frequencies [57]: the

response to perturbations in 1D-DFD and DFMB behaves as ��2 in the low frequencies, and

thus these methods are more sensitive to noise in this regime than stereo (39), for which the

response behaves as ��1. This is due to the fact that DFD/DFMB use summation of rays, and

wide spatial perturbations a�ect them most. However, since enlarging the 1D aperture enables

more light to reach the sensor, the signal is stronger and thus the estimation is more stable.

Thus, DFD/DFMB may outperform stereo when the aperture (baseline) is large (compared

to the pinhole reference). This is due to the fact that DFD relies on numerous rays for

estimation. This additional data makes the estimation potentially more robust than simple

discrete triangulation. Note that according to Eq. (41) there are certain frequencies for which

a perturbation does not in
uence the estimation by DFD/DFMB. As with stereo, the response

to perturbation of DFMB depends on the orientation � of the spatial frequency, since the

aperture problem exists also in motion.

5.4 2D DFD

In comparison to stereo, motion and motion-blur systems of the same physical dimensions, 2D-

DFD relies on much more points in the estimation of depth [38, 39, 56] and is thus potentially

more reliable [18] and robust. First of all, the amount of light gathered through the large

aperture is proportional to D
2 (compared with D0D for DFMB, and D

2
0 through a pinhole)

making the signal to noise ratio [18] much higher for large apertures. Eqs. (42,44) take the

form

@fDFD(û;
�!
� )

@jND(
�!
� )j = � e

j#(�!� )

jG(�!� )j
1

D2

f(û)

J2[��Df(û)]

�!1�! e
j#(
�!� )

jG(�!� )j
�f

1:5(û)p
2

p
�

D1:5 cos[(��d̂)� �=4]

H(�)=0�! � e
j#(�!� )

jG(�!� )j
�f

1:5(û)p
2

1

D1:5

p
� ; (45)

@fDFD(û;
�!
� )

@jND(
�!
� )j

�����
�d<1

� e
j#(�!� )

jG(�!� )j
4

f(û)�2D4

1

�2
: (46)

To derive these relations we used

@[J1(�)=�]

@�
= �J2(�)

�
(47)
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and

Jk(�)
�!1�!

q
2=(��) cos[� � k(�=2)� (�=4)] ; (48)

for the circular pillbox model (21). As can be seen, in this model the error due to perturbations

decreases faster with the aperture size, compared to the 1D triangulation methods. Here too

there is instability at the very low frequencies. Indeed, to avoid the ill-posedness at the DC,

in [60] this component was nulled by band-pass �ltering, and as a by-product the unstable

contribution of the low-frequencies was suppressed.

For a circularly symmetric lens-aperture, the response is indi�erent to the orientation of

the frequency component. Hence the aperture problem does not exist4. This characteristic

is valid also if the lens-aperture is not circularly symmetric, as long as it is suÆciently wide

along both axes (the usual case). Hence, more frequencies (components of the images) may

participate in the estimation by DFD and contribute stable and reliable information to the

estimator. Therefore DFD is potentially more robust than classic triangulation methods if the
system dimensions are the same.

The indi�erence of the transfer function to the orientation of the frequency components

was utilized in [38, 39]. In that work, DFD was implemented by comparing an image acquired

via a circularly symmetric large aperture to a small (\pinhole") aperture image. Results were

averaged over all orientations in the frequency domain, thus increasing the reliability of the

estimation.

An example for the better robustness of DFD is the \monocular stereo" system presented

in [51], whose principle of operation is similar to that shown in Fig. 2. This was demonstrated

in [17, 18]. There, the same system was used for depth sensing once by di�erential DFD

and once by di�erential stereo. The empirical results indeed show that the estimated depth


uctuations were signi�cantly smaller in DFD than in stereo.

Note, that at high frequencies the estimation becomes unstable, at a moderate rate (� p�).
However, for other models of the OTF, it might be much more severe. Consider for example

a Gaussian kernel for DFD [35, 41, 53, 58]. Accounting for the total light energy (as in

Eqs. 15,16), the frequency response behaves like

HD(
�!
� )

H0

=
D

2

D
2
0

e
�[��Df(u)]2

; (49)

where � is a constant (real). The response to the perturbation (38) is

@fgauss(û;
�!
� )

@jND(
�!
� )j = � e

j#(�!� )

jG(�!� )j2f(û)�2D4

1

�2
e
[��Df(û)]2

; (50)

which is very ill conditioned in the high frequencies. This situation is also schematically

described in Fig. 14: if the slope of the frequency response from ~d to 1 is very small, the

4This immunity is also shared by \stereo" systems having vertical parallax as well as a horizontal one.
However, these require at least three images to be acquired and processed, in contrast to DFD which requires
two images. We therefore do not deal with such systems. Nevertheless, this problem can be avoided by
nonlinear camera trajectory (in DFMB), as used in [27].
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estimation error is unbounded.

5.5 The optimal axial interval in DFD

In this subsection we refer to the method considered in subsection 4.3, where the change

between the two images is achieved by changing the focus settings, in particular the axial

position of the sensor. Since the aperture D is the same for all images, we parameterize the

transfer function by the blur diameter d in the equations to follow. Since the system has

circular symmetry we use H(�) instead of H(�!� ). Let one image be (in the frequency domain)

G1(�) = G0(�)Hd(�) +N1(�) ; (51)

where N1(�) is a perturbation while the other image is

G2(�) = G0(�)Hd+�d(�) : (52)

If there is no perturbation, the two images should satisfy the constraint

G2(�)Hd(�)�G1(�)Hd+�d(�) = 0 : (53)

We wish to estimate d̂ by searching for the value that will satisfy

G2(�)Hd̂(�)�G1(�)Hd̂+�d(�) = 0 : (54)

Similar to the discussion in subsection 5.1, this can be satis�ed for a single frequency signal.

For other signals an error can be de�ned and minimized. Substituting Eqs. (51,52) into Eq. (54)

yields

Hd̂+�d(�)Hd(�) = Hd̂(�)Hd+�d(�) � N1(�)

G0(�)
Hd̂+�d(�) : (55)

Assume for a moment that Hd(�) 6= 0, and de�ne (as in Eq. (25))

H(�) =
Hd+�d(�)

Hd(�)
; Ĥ(�) =

Hd̂+�d(�)

Hd̂(�)
: (56)

Eq. (55) can be written as

Ĥ(�) = H(�)

"
1 +

N1(�)

G0(�)Hd(�)

#�1
: (57)

The perturbation causes the estimated transfer function to change:

@Ĥ(�)

@jN1(�)j = �
1h

1 +
N1(�)

G0(�)Hd(�)

i2 e
j#(�)

jG0(�)j
Hd+�d(�)

H
2
d (�)

� � e
j#(�)

jG0(�)j
Hd+�d(�)

H
2
d (�)

; (58)
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where the approximation in the right hand side of Eq. (58) is for the case that jN1(�)j is small

compared to jG0(�)Hd(�)j. Similarly to Eq. (34) we seek the error induced by the perturbation

on the depth estimation. For small perturbations we assume that Ĥ(�) � H(�), so

@f(û; �)

@jN1(�)j =
@Ĥ(�)

@jN1(�)j �
"
@Ĥ(�)

@f(û)

#�1

� � e
j#(�)

jG(�)jD2
0

Hd+�d(�)

D
@Hd+�d(�)

@d
Hd(�)�D

@Hd(�)

@d
Hd+�d(�)

: (59)

According to Eqs. (58) and (59), if Hd+�d(�) = 0 for this frequency, a perturbation N1 does
not a�ect the estimation.

If jHd(�)j � jHd+�d(�)j we de�ne the transfer function between the images as the reciprocal

of Eq. (56):

H
�1(�) =

Hd(�)

Hd+�d(�)
;

d
H�1(�) =

Hd̂(�)

Hd̂+�d(�)
: (60)

This takes care of the cases in which Hd(�) = 0 but Hd+�d(�) 6= 0. Eq. (55) can be written as

d
H�1(�) = H

�1(�) +
N1(�)

G0(�)Hd+�d(�)
: (61)

The perturbation causes the estimated transfer function to change:

@
d
H�1(�)

@jN1(�)j =
e
j#(�)

jG0(�)jHd+�d(�)
: (62)

Calculating the in
uence on the depth estimation based on this transfer function, we arrive at

the same relation as Eq. (59). Thus, we do not need to assume that jN1(�)j is small compared

to jG0(�)Hd(�)j.
In the pillbox model we use Eq. (23), and Eq. (59) takes a relatively simple form,

� e
j#(�)

2jG(�)j
f(u)

D2

J1[��(d+�d)]

J2[��(d+�d)]J1(��d)� J2(��d)J1[��(d+�d)]
(63)

which at the high frequencies (or defocus) becomes (48)

@f(û; �)

@jN1(�)j �
e
j#(�)

jG(�)j
�d

p
�d

D32
p
2

sin[��(d+�d)� (�=4)]

sin(���d)
: (64)

A similar relation is obtained in case a perturbation N2 is present in G2 rather than in G1:

@f(û; �)

@jN2(�)j � �
e
j#(�)

jG(�)j
�(d+�d)

q
�(d +�d)

D32
p
2

sin[��d� (�=4)]

sin(���d)
: (65)

To appreciate the signi�cance of Eqs. (64,65), observe that the reliability of the defocus
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estimation at high frequencies is optimized (for unknown u, hence for unknown d) if

j��dj = 0:5 ; 1:5 ; 2:5 :::: (66)

Then, the magnitude of the term sin(���d) in the denominator is maximal, minimizing the

e�ect of the perturbation on the estimation d̂ = Df(û; �). Thus, if DFD is achieved by

changing the focus settings, the change (e.g. the axial movement of the sensor) is optimized if

it causes the blur-diameter to change according to Eq. (66), where � is the high frequency of

choice. Alternatively, if �d is given, Eq. (66) indicates the optimal frequencies around which

the depth estimation would be done.
On the other hand, if

j��dj = 1 ; 2 ; 3 ::::: (67)

the denominator of Eqs. (64,65) is nulled. In this situation the estimation is highly ill-

conditioned. Note that as the axial interval is increased, hence �d is increased, for a given

scene, the number of problematic components that satisfy Eq. (67) is increased (as well as the

number of useful frequency components that satisfy Eq. (66)).

The optimal �d was used in Figs. 10 and 11. Note that at high frequencies Bessel functions

resemble a cosine function, and the two functions (Fig. 10) are out of phase by �=2. Hence,

in this situation extrema of the Hd are at zero-crossings of Hd+�d, and vice-versa, yielding

the maximum changes in the ratio between these functions. On the other hand, if Eq. (67)

is satis�ed, at the high frequencies the functions of Fig. 10 have a ratio of � �1 for all blur-

diameters, except for the zero crossings where the ratio is not de�ned. Thus, the transfer

function between the images is \indi�erent" to the exact blur diameter, and thus does not

provide a good estimation.

In subsection 4.3 we noted that if ��d is small, the lowest band without ambiguities is

0 < �d < 1:63 but that this band becomes narrower if �d increases. If we use the guideline5

of Eq. (66), Fig. 11 (where ��d = 0:5) shows that for unambiguous estimation

0 < �d < 1:46 : (68)

This result too is supported by the tests performed in [60]. Although the authors noticed that

range of unambiguous solutions can be extended to �d = 1:6, for reasons of numerical stability

(measured by the behavior of the Newton-Raphson algorithm that was used for estimation),

the frequency band limit was actually set in [60] to �d = 1:46 (i.e., �r = 0:73). Within

this band the results came out to be unique and stable, while beyond it the range estimation

became unstable. Note that this is in excellent agreement with Eq. (68)!

An important application of Eq. (66) is to show a new aspect of depth of �eld. Suppose

that the highest frequency in the image is �max = 1=(2�x) where �x is the inter-pixel period

of the sensor (the Nyquist rate). Since � � �max, Eq. (66) yields

�d � 1

2

�
1

2�x

��1
= �x : (69)

5This guideline is approximate for the low frequencies and exact for the high ones.
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So, in order to obtain reliable results, it is preferable to sample the axial position so that the

change in the blur-diameter is at least one inter-pixel spacing. However, to avoid instability at

any frequency, we should avoid Eq. (67) and thus require that �max�d < 1. Hence the safe and

optimal range of change of the focus settings is such that the blur diameter change is bounded

by

�x � �d < 2�x : (70)

With the threshold �d = �x, if one of the images is in focus (having d = 0), the blur

kernel at the other image will have a diameter of dth = 0+�d = �x. This threshold diameter

determines the depth of �eld of the system (the threshold of ~u� u) by the geometric relation

(1). Thus, using a �d which is smaller than the threshold given in Eq. (69) is an attempt

to sense defocus or change of defocus smaller than the uncertainty imposed by the DOF. As

noted above, optimality with respect to noise sensitivity is achieved only above the threshold.

Hence, sampling the axial position in DOF intervals (for which �d = �x) is optimal with
respect to robustness to perturbations at the Nyquist frequency. Changing the focus settings in

a smaller interval means that no frequency in the image will satisfy the optimality condition

(66). Changing the focus settings in a larger interval will be sub-optimal for the Nyquist

frequency, but will be optimal for some lower frequency. If the interval of the axial position is

twice than the DOF or more, estimation based on some frequencies will be very unstable (67).

5.6 DFF

dth determines the DOF of the DFF system (see the geometric relation (1)). Note that in the

same manner we can de�ne the \DOF for vergence", which is the amount of axial displacement

without detectable disparity. The latter DOF is related to dth by Eq. (3), and is thus the

same as the DOF of the DFF system, for the same system dimensions. To sample the depth

eÆciently6, the image slices should be taken at DOF intervals [1, 2]. In this situation, the

highest frequencies in the image are detectably a�ected by defocus.

For transfer functions (between an image and a reference image) which change scale with

d (including stereo, the pillbox model and the Gaussian model), the least detectable blur-

diameter/disparity satis�es

dth(�) / 1

�
; (71)

for 1D images. It is clear that for low frequencies the blur-diameter/disparity has to be larger

in order to be detected (dth(�) > dth). Thus if we sample the scene eÆciently, the frequencies

below �max will yield results which are within the inherent uncertainty of the system and are

thus ine�ective.

For 2D images the DOF of the DFF system is rotation-invariant. For all �

d
DFF
th (�!� ) = dth

�max

�
; (72)

6Note that according to the conclusion in subsection 5.5, these intervals do not only make the sampling
eÆcient for DFF but also best for reliable estimation in DFD.
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In stereo only the frequency component along the baseline changes between the frames:

d
stereo
th (�!� ) = dth

�max

� cos �
: (73)

Thus, for frequency orientations not parallel to the baseline, the \DOF for vergence" (as de�ned

above) is larger than that of DFF (the aperture problem).

In critical sampling, the only frequency components for which defocus/disparity will be

detected are those with � = �max. However, comparing Eqs. (72) and (73), in stereo, all the

frequencies yield results which are within the inherent uncertainty of the measurement and

are thus ine�ective, except for cos� = �1. For DFF, all � yield reliable results. Hence, DFF

allows more frequencies �!� to reliably participate in the detection of depth deviation, leading

to a more reliable depth estimation.

6 Conclusions

We have shown that, in principle, the sensitivities of Depth from Focus and Defocus techniques

are not inferior but similar to those of stereo and motion based methods. The apparent

di�erences are primarily due to the di�erence in the size of the physical setups. This also

accounts for the fact that matching (correspondence) problems are uncommon in DFD and

DFF. The \absence" of the occlusion problem in DFD and DFF is not a fundamental feature

and is mostly a consequence of the small aperture (\baseline") that is normally used. Stereo

systems having a similar level of immunity can be constructed.

The observation that physical size (baseline in stereo, aperture size in DFD/DFF) deter-

mines the characteristics of various range imaging approaches in a similar manner is important

in performance evaluation of depth sensing algorithms. It indicates that performance results

should be scaled according to setup dimensions. As long as enlarging the baseline is cheaper

than enlarging the lens aperture (beyond a few centimeters), stereo will remain the superior ap-

proach in terms of resolution/cost. Improvements of DFD/DFF by algorithmic developments

is limited in common implementations by the small aperture size.

The monocular structure of DFD/DFF systems does not ensure the avoidance of occlusion

and matching problems. Adelson and Wang [3] formalized the correspondence problem in the

frequency domain. They have shown that in stereo it is a manifestation of aliasing, since the

transfer function between the stereo images is not one-to-one. Matching problems in DFD

arise due to the same reason. There are scenes for which the solution of depth estimation

by DFD (i.e. matching blur kernels to image pairs) is not unique. Moreover, for the same

system dimensions, common triangulation techniques, such as stereo, may be less prone to

matching ambiguity than DFD. A coarse to �ne approach may resolve the matching problem

in a way analogous to a method used in stereo and motion [25]. In this way frequencies that

are \lost" [60] can be used. Unlike DFD (and stereo), DFF seems indeed to be immune to

matching ambiguities, if the evaluation patch of the focus measure is larger than the support

of the widest blur-kernel expected, and if the depth is homogeneous in that patch.

In contrast to common belief, for the same system dimensions the chance of occurrence

of the occlusion phenomenon is higher in DFD/DFF than in stereo or motion. However,
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DFD/DFF are more stable in the presence of such disruptions. Note that in the presence of

severe occlusion, straightforward DFF may yield double valued depth. A layered scene model

resolves this ambiguity.

We analyzed the e�ect of additive perturbations by examining their in
uence in each spatial

frequency component of the images. An estimation that relies on some frequency components

yields stable results, while the contribution of other frequencies is very sensitive to pertur-

bations. A possible future research may be on algorithms that rely on a coarse estimate of

the disparity/blur-diameter to select the optimal spatial frequencies (for which the response

to perturbations is very small) to obtain a better estimate. In DFD, if the frequency selected

for the estimation is �, the axial movement of the sensor is optimal if it causes the change �d

in the blur diameter to satisfy j��dj = 0:5; 1:5; 2:5 : : : . Sampling the axial position in DOF

intervals is optimal with respect to robustness to perturbations. Using an interval which is

twice or more than that, may yield unstable results.

Our analysis of the response to perturbations is deterministic and is based on the assump-

tion that a perturbation exists only in a single frequency. In order to extend this analysis to the

general case, and obtain the response to noise, a stochastic analysis, based on the deterministic

results derived here, is needed.

The two dimensionality of the aperture is the principal di�erence between DFD/DFF and

conventional triangulation methods. It allows much more image points to contribute to the

depth estimation and the higher light energy that passes the large-aperture lens leads to a

higher signal to noise ratio. This di�erence accounts for the inherent robustness of methods

that rely on depth of �eld. In this respect DFF and DFD methods are also superior to Depth

from Motion Blur. Speci�cally, the insensitivity to the orientation of features in DFD/DFF

provides higher 
exibility in the depth estimation process. Another advantage of DFD that

follows from the two dimensionality of the PSF is that full depth recovery may be possible in

the presence of slight occlusion. A practical implication of the advantages of methods that

are based on DOF is that if the full resolution potential of stereo imaging is not needed, and

the resolution obtainable with common DFD/DFF implementations is suÆcient, DFD/DFF

should be preferred over small baseline stereo.

The analysis of the depth estimation methods done in this work was based solely on ge-

ometrical optics, and is thus valid for setups (i.e., objects and systems) in which di�raction

e�ects are not dominant. In particular, it does not apply to microscopic DFF. A more rigorous

analysis requires the consideration of physical optics (e.g., di�raction). Doing the analysis in

systems based on depth of �eld is straightforward. However, in comparison to stereo or mo-

tion, we should note that geometric triangulation methods have traditionally been based on

the geometric optics approximation. Therefore, for a full derivation of the relations between

DFD/DFF and stereo, a model for the di�raction e�ects in triangulation has to be developed.

Note also that the comparison was based on the assumption of small angles (paraxial optics) in

the imaging setup. It would be bene�cial to extend this work to the general case. In particular,

the characteristics of the epipolar geometry, and the space-varying transfer function between

the images may provide new points of view in the comparison between DFD and stereo. An-

other possible generalization is to analyze DFD when the two images are taken with a �xed

focus setting, but with di�erent apertures of which none is a pinhole.
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