
Fig. 1. Flowchart of the proposed method for � oor detection.

of more than 400 indoor corridor images from dozens of
different buildings, exhibiting a wide range of conditions. On
this challenging dataset, our algorithm is able to successfully
detect the � oor on around 90% of the images.

Figure 1 shows an overview of our approach. Horizontal
and vertical li ne segments are detected, and three cues
are used to evaluate the likelihood of each horizontal li ne
segment being onthe wall -� oor boundary. The weighted sum
of these values is thresholded, and the remaining segments
are connected to form the estimated wall -� oor boundary.
Note that our approach operates on a single image, without
stereo or motion information.

II . DETECTING LINE SEGMENTS

A. Detecting and classifying line segments

The� rst step of the approach is to detect intensity edgesby
applying the Canny edge detector [8] to the grayscale image.
Then a robust line � tting method is applied to the intensity
edges to obtain a set of line segments. We use the Douglas-
Peucker algorithm [9], with the modi� cation described in
[11] to improve the retention of small li ne segments that
occur at the bottom edge of doors. Each line segment is
de� ned by two endpoints in the image. Line segments are
divided into two categories: vertical and horizontal. Based on
over threehundred corridor images and the groundtruth, we
determined a tight slope range to the vertical li ne segments,
so that a line segment is classi� ed as vertical i f its slope is
within±5◦ of thevertical direction. Horizontal li nesegments
are given a wider slope range: A line segment is classi� ed
as horizontal i f its slope is within ±45◦ of the horizontal
direction. All other slopes are discarded.

B. Pruning line segments

Due to the noisy conditions of real-world scenes, the
procedure just described often produces spurious line seg-
ments that are not related to the wall -� oor boundary. We
apply two additional steps to prune such segments. First,

we discard segments whose length is less than a threshold
(60 pixels for vertical li nes, and 15 pixels for horizontal
lines). Then we compute the intersections of the horizontal
line segment pairs, after which we compute the mean of the
y coordinate of the intersections inside the image to yield
an estimate of the vanishing line. For any pair of horizontal
linesegments, the intersection point iscalculated by the cross
product between the two line extensions, using homogeneous
coordinates:
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where each horizontal li ne is described by ax + by + c =
0, and the intersection point [ vx vy ]

T is determined by
dividing by the scaling factor w. Once the intersection point
has been detected, all horizontal li ne segments that lie above
the vanishing line are discarded. The result of detection,
classi� cation, and pruning of line segments is ill ustrated in
Figure 2.

III . SCORE MODEL FOR EVA LUATING LINE SEGMENTS

Not all of the horizontal li ne segments that remain from
the pruning step will be related to the wall -� oor boundary.
To determine the likelihood that a horizontal segment ℓh is
near this boundary, we compute a weighted sum of scores
for three individual visual cues:

Φtotal(ℓh) = wsφs(ℓh) + wbφb(ℓh) + whφh(ℓh), (2)

where ws, wb, and wh are the weights, and φs(ℓh), φb(ℓh),
and φh(ℓh) are the three individual scores, which are now
described.

A. Structure Score

We have found that a surprisingly effective cue for dis-
tinguishing the walls from the � oor in typical corridor
environments is to simply threshold the image. Thisapproach
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Fig. 2. The wall -� oor boundary of typical corridor images is dif� cult to
determine due to strong re� ections and shadows. TOP: Two images, with
the result of the modi� ed Douglas-Peucker line � tting algorithm applied to
Canny edge detection overlaid. The line segments are classi� ed into two
groups: vertical (blue) and horizontal (yellow). BOTTOM : Line segments
have been pruned according to length and the vanishing point, as described
in the text, to reduce the in� uence of re� ections and shadows.

works especially well i n environments in which the walls
are darker than the � oor, and it also takes advantage of the
fact that the baseboard is often darker than the � oor due
either to its painted color, shadows, or collected dirt. In fact,
even when the walls, doors, and � oor are nearly white, the
technique is more effective than one might at � rst expect.
This is partly due, perhaps, to the shadows under the doors
that appear no matter the color of the surfaces in the corridor.
In some environments, the walls are lighter than the � oor, in
which case thresholdingwill still distinguish between the two
but with reverse binary labels compared with those situations
just described.

An important step is to determine the value of the thresh-
old to use. Our proposed approach to thresholding, which
will be described in a moment, involves examining the
structure of the scene, i.e., the intensity edges. In Figure 3,
for example, the top-right image containing the pixels with
large gradient magnitude reveals the edges of the doors,
lights, wall , and so forth. A human observer looking at this
type of image could infer the structure of the scene with
littl e dif� culty, as was observed by Lee et al. [1]. One idea
that we tried is to compute the desired threshold as the av-
erage graylevel intensity of these intensity edges. While this
approach works fairly well , the distracting intensity edges
caused by the re� ections on the � oor skew the computed
threshold in such a way as to reduce the quality of the
thresholded image. Therefore, we � rst discard these intensity
edges in a manner described in a moment, in order to result
in a relatively clean thresholded image. Figure 3 ill ustrates
the process.

For comparison, Figure4 shows theoutput of two standard
algorithms based onthe gray-level histogram, Ridler-Calvard
[15] and Otsu [16], on the same image. Compared with our
approach, the standard techniques mistakenly label re� ective
pixels on the � oor, due to the failure of the simpli � ed model

Fig. 3. TOP-LEFT: A typical corridor image. TOP-RIGHT: Pixels with
gradient magnitude greater than a threshold are shown in white. BOTTOM-
LEFT: Using the separating curve from Fig. 5, the edge pixels mostly follow
the boundaries of the wall , door frames, and � oor. BOTTOM-RIGHT: The
original image thresholded by a value determined by the separating curve,
thus revealing the structure of the corridor.

of a bimodal gray-level histogram to accurately capture the
subtle complexities of indoor scenes. Table I provides a
quantitative comparison using the images from our corridor
image database. The table shows the percentage of images
for which the thresholded result does not contain spurious
pixels on the � oor.

Fig. 4. Results of two standard thresholding algorithmson the sameimage
as the previous � gure: Ridler-Calvard [15] (left), and Otsu [16] (right).
Notice the spurious pixels on the � oor due to re� ection and shadows.

Ridler-Calvard [15] Otsu [16] Ours
correctness 62% 66% 82%

TABLE I

QUANTITATIVE COMPARISON OF OUR THRESHOLDING METHOD WITH

TWO STANDA RD ALGORITHMS. SHOWN ARE THE PERCENTAGE OF

IMAGES WITHOUT SPURIOUS PIXELS ON THE FLOOR.

We now describe our approach to determining the thresh-
old value. The intensity edges that arise due to re� ections
on the � oor tend to have very high intensity values but quite
low gradient magnitude values, the latter being because of
the inherent blur that occurs because � oors are not perfectly
re� ective surfaces. To test this hypothesis, we used our
database of over 400images. We manually selected over 800
points on these images that lie on true edges on the walls in
the world (i.e., they lie on door frames, etc.), and we also
randomly selected the same number of points that are not
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C. Homogeneous Score

In many cases, the � oor of a typical corridor environment
is fairly homogeneous in its color throughout. In contrast,
there tend to be moderate to high amounts of texture on
the wall regions due to decorations, posters, door knobs,
kick plates, nameplates, windows, and so forth. Similarly,
the lights in the ceili ng cause texture in that region as well .
To take advantage of this information, we perform color-
based segmentation of the image to favor horizontal li ne
segments which are located just above large homogeneous
regions, since the � oor is generally the largest homogeneous
region in the image.

We employ the graph-based segmentation algorithm of
Felzenszwalb and Huttenlocher [5] because it is computa-
tionally ef� cient, requires few parameters (e.g., the minimum
sizeof a region), and produces reasonable results. The results
of this algorithm on a couple of typical corridor images
are shown in Figure 7. Notice that the � oor is the largest
homogeneous region in both images, which is often the
case in our image database. Occasionally, disturbance from
re� ection or texture on the � oor prevent this cue from being
successful, which helps to motivate the need for multiple
cues.

Fig. 7. The result of graph-based segmentation [5] on two corridor images
used in Figure 6, with each region assigned a random color. Note that the
� oor is almost a homogeneous areain both images, while the wall and doors
are divided into several smaller regions.

The homogeneous score of a horizontal li ne segment is
computed as

φ̄h(ℓh) =
|R|

|Rmax|
, (9)

where |R| denotes the number of pixels in the region R
just below the line segment, and Rmax is the maximum
region size amongall the segments found bythe graph-based
segmentation.

D. Detecting the wall-floor boundary

Each horizontal segment ℓh for which Φtotal(ℓh) > τφ,
where τφ is a threshold, is retained. These remaining line
segments are then ordered from left to right in the image, and
their endpoints are connected. At the left and right borders of
the image, the lines are extended. This results in a polyline
stretching across the image de� ning the boundary between
the wall and the � oor.

IV. EXPERIMENTAL RESULTS

To test the performance of our algorithm, an image
database of more than 400 corridor images was taken in

twenty different buildings exhibiting a wide variety of dif-
ferent visual characteristics. The images were captured by a
Logitech QuickCam Pro 4000webcam mounted about 30 cm
above the � oor on an ActivMedia Pioneer P3AT mobile
robot. The images were processed by an algorithm imple-
mented in the C++ programming language on a 2.4 GHz
Core 2 processor (Dell XPS M1330 laptop). Although the
computation time varies somewhat according to the number
of detected line segments, the algorithm runs at approxi-
mately 5 frames/sec.1

For all environments, the equation of the SVM-based
separating curve is

[
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the weights for the individual scores are ws = 1.6, wb =
0.75 and wh = 1.0, respectively, and the total threshold is
τφ = 2.7.

To evaluate the algorithm, the images in the database were
manually labeled by clicking ona number of points and then
� tting a B-spline curve to yield a ground truth wall -� oor
boundary. We de� ne the error of the algorithm applied to an
image as the number of pixels misclassi� ed as � oor or non-
� oor, normalized by the total number of ground truth � oor
pixels. Equivalently, the error can be computed as the sum,
over all the columns x = 0, . . . , width − 1 in the image, of
the difference between the ground truth y coordinate y

(x)
GT

and the estimated y coordinate ŷ(x):
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where the image is of size width × height, and the sub-
traction in the denominator arises from the convention that
the y coordinate is with respect to the top of the image. We
set a threshold of 10%, so that the detection for an image
is considered a failure for a particular image if rerr > 0.1
for that image. Using this convention, our approach correctly
detects the � oor region in 89.1% of the image database.

Figure 8 presents the results of our algorithm on some
typical corridor images. The � rst row displays wall -� oor
boundaries that extend upward from left to right in the
image, while the second row shows the reverse situation.
In the third row, both sides of the corridor are visible, so
that the boundary extends in both directions. And the fourth
row shows � oors with extremely strong re� ections on the
� oor, where the � oor and wall are again distinguished using
only low-level information. From these results, we can see
that our approach is capable of detecting � oors in corridors
under different ill umination conditions and perspectives. In
addition, Figure 9 shows some successful results on images
downloaded from the internet, showing the versatilit y of the
approach.

1See http://www.ces.clemson.edu/˜stb/research/� oor detection for videos
of the results.
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Fig. 10. Examples for which our algorithm fails to properly detect the � oor. From left to right, the failures are caused by strong texture on the � oor,
texture on the wall , an overly dark image from poor image exposure, and excessive bright lights at the end of the corridor (Best viewed in color).

Fig. 11. Results of our algorithm working on three failure examples given in Lee et al. [1] (Best viewed in color).

V. CONCLUSION AND FUTURE WORK

We have presented an image-based � oor detection algo-
rithm using an uncalibrated camera. The � oor is detected
by a camera mounted on a mobile robot, which maintains a
low perspective of the scene. The novel approach combines
the results of applying threedifferent visual cues to test the
validity of horizontal li ne segments detected in the image.
Our approach achieves nearly 90% detection of the wall -
� oor boundary on a rather large database of over 400images
captured in a variety of environments exhibiting dif� cult
conditions such as extreme re� ection. The algorithm is
suitable for real-time mobile robot applications using an off-
the-shelf camera. One limitation of the current approach is its
tendency to get confused when the � oor is highly textured, or
when the image is especially dark due to poor gain control.
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