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of more than 400 indoa corridor images from dozens of
different buil dings, exhibiting a wide range of condtions. On
this challenging dataset, our algorithm is able to successully
deted the oor on around 9% of the images.

Figure 1 shows an owverview of our approach. Horizontal
and werticd line segments are deteded, and three awes
are used to evaluate the likelihood d ead haizontd line
segment being onthe wall- oor boundry. The weighted sum
of these values is threshdded, and the remaining segments
are onreded to form the estimated wall- oor boundry.
Note that our approach operates on a single image, withou
stereo or motion information.

[I. DETECTING LINE SEGMENTS
A. Detecting and classifying line segments

The rst step of the goproach isto deted intensity edges by
applying the Canny edge detedor [8] to the grayscde image.
Then arobust line tting method is applied to the intensity
edges to oltain a set of line segments. We use the Doudas-
Peucker algorithm [9], with the modi cdion described in
[11] to improve the retention o small li ne segments that
occur at the bottom edge of doas. Each line segment is
de ned by two endpdnts in the image. Line segments are
divided into two caegories: verticd and haizontal. Based on
over threehunded corridor images and the groundtruth, we
determined a tight slope range to the verticd li ne segments,
so that a line segment is class ed as verticd if its dope is
within +5° of the verticd diredion. Horizontal li ne segments
are given a wider slope range: A line segment is class ed
as horizontal if its dope is within £45° of the horizontal
diredion. All other slopes are discarded.

B. Pruning line segments

Due to the noisy condtions of red-world scenes, the
procedure just described often produces gpurious line seg-
ments that are not related to the wall- oor boundry. We
apply two additional steps to prune such segments. First,
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Flowchart of the propased method for oor detedion.

we discard segments whaose length is less than a threshdd
(60 pxels for verticd lines, and 15 pxels for horizontal
lines). Then we compute the intersedions of the horizontal
line segment pairs, after which we compute the mean of the
y coordinate of the intersedions inside the image to yield
an estimate of the vanishing line. For any pair of horizontal
line segments, the intersedion padnt is cdculated by the aoss
product between the two line extensions, using hanogeneous

coordinates:
WU, a; a;
woy | =Y bi | x| b |, )
w 7,7 C; Cj

where eat haizontal line is described by ax + by + ¢ =
0, and the intersedion pant [v, fuy]T is determined by
dividing by the scding fador w. Once the intersedion pant
has been deteded, al horizontal li ne segments that lie ehove
the vanishing line ae discarded. The result of detedion,
class caion, and pruning o line segments is ill ustrated in
Figure 2.

IIl. SCORE MODEL FOR EVALUATING LINE SEGMENTS

Not al of the horizontal line segments that remain from
the pruning step will be related to the wall- oor boundry.
To determine the likelihood that a horizontal segment ¢), is
nea this boundry, we mmpute aweighted sum of scores
for threeindividual visual cues:

Dol (ln) = wsbs () + wpdy (n) + widy (), (2

where w,, wy, and wy, are the weights, and ¢, (¢5), ¢, (¢n),
and ¢, (¢) are the three individual scores, which are now
described.

A. Structure Score

We have found that a surprisingly effedive aue for dis-
tingushing the walls from the oor in typicd corridor
environmentsisto simply threshold the image. This approach
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Fig. 2. The wall- oor boundry of typicd corridor images is dif cult to
determine due to strong re edions and shadows. Top: Two images, with
the result of the modi ed Doudas-Peucker line tting algorithm applied to
Canny edge detedion owerlaid. The line segments are dass ed into two
groups: verticd (blue) and haizontal (yellow). BOTTOM: Line segments
have been pruned ac®rding to length and the vanishing pant, as described
in the text, to reduce the in uence of re edions and shadows.

works espedaly well in environments in which the walls
are darker than the oor, and it also takes advantage of the
fad that the baseboard is often darker than the oor due
either to its painted color, shadows, or colleded dirt. In fad,
even when the walls, doas, and oor are nealy white, the
technique is more dfedive than ore might at rst exped.
This is partly due, perhaps, to the shadows under the doas
that appea no matter the color of the surfacesin the corridor.
In some ewironments, the walls are lighter than the oor, in
which case threshading will still distinguish between the two
but with reverse binary labels compared with those situations
just described.

An important step is to determine the value of the thresh-
old to use. Our proposed approach to threshdding, which
will be described in a moment, involves examining the
structure of the scene, i.e., the intensity edges. In Figure 3,
for example, the top-right image cntaining the pixels with
large gradient magnitude reveds the alges of the doas,
lights, wall, and so forth. A human observer looking at this
type of image ould infer the structure of the scene with
little dif culty, as was observed by Lee & a. [1]. One idea
that we tried is to compute the desired threshald as the ar-
erage graylevel intensity of these intensity edges. While this
approach works fairly well, the distrading intensity edges
caused by the re edions on the oor skew the computed
threshdd in such a way as to reduce the quality of the
thresholded image. Therefore, we rst discard these intensity
edges in a manner described in a moment, in order to result
in a relatively clean thresholded image. Figure 3 ill ustrates
the process

For comparison, Figure 4 shows the output of two standard
algorithms based onthe gray-level histogram, Ridler-Calvard
[15] and Otsu [16], on the same image. Compared with our
approad, the standard techniques mistakenly label re edive
pixels onthe oor, due to the failure of the simpli ed model

Fig. 3. Top-LEFT: A typicd corridor image. TOP-RIGHT: Pixels with
gradient magnitude greder than a threshold are shown in white. BOTTOM-
LEFT: Using the separating curve from Fig. 5, the edge pixels mostly foll ow
the boundxries of the wall, doar frames, and oor. BOTTOM-RIGHT: The
origina image thresholded by a value determined by the separating curve,
thus reveding the structure of the corridor.

of a bimodal gray-level histogram to acairately capture the
subtle complexities of indoa scenes. Table | provides a
guantitative comparison wsing the images from our corridor
image database. The table shows the percentage of images
for which the thresholded result does not contain spurious
pixels on the oor.

Fig. 4. Results of two standard thresha ding algorithms on the same image
as the previous gure: Ridler-Calvard [15] (left), and Otsu [16] (right).
Notice the spurious pixels on the oor due to re edion and shadows.

Ridler-Calvard [15] | Otsu [16] | Ours
corredness 62% 66% 8%
TABLE |

QUANTITATIVE COMPARISON OF OUR THRESHOLDING METHOD WITH
TWO STANDARD ALGORITHMS. SHOWN ARE THE PERCENTAGE OF
IMAGES WITHOUT SPURIOUS PIXELS ON THE FLOOR.

We now describe our approach to determining the thresh-
old value. The intensity edges that arise due to re edions
onthe oor tendto have very high intensity values but quite
low gradient magnitude values, the latter being becaise of
the inherent blur that occurs becaise oors are nat perfedly
re edive surfaces. To test this hypahesis, we used ou
database of over 400images. We manually seleded over 800
points on these images that lie on true alges on the wallsin
the world (i.e., they lie on doa frames, etc.), and we dso
randanly seleded the same number of points that are not
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C. Homogeneous Score

In many cases, the oor of atypicd corridor environment
is fairly homogeneous in its color throughou. In contrast,
there tend to be moderate to high amounts of texture on
the wall regions due to decorations, posters, doa knobs,
kick plates, nameplates, windaws, and so forth. Similarly,
the lights in the caling cause texture in that region as well.
To take advantage of this information, we perform color-
based segmentation o the image to favor horizontal line
segments which are locaed just above large homogeneous
regions, sincethe oor is generally the largest homogeneous
region in the image.

We employ the graph-based segmentation algorithm of
Felzenszwalb and Huttenlocher [5] becaise it is computa
tionaly ef cient, requires few parameters (e.g., the minimum
sizeof aregion), and produces reasonable results. The results
of this algorithm on a coupe of typicd corridor images
are shown in Figure 7. Notice that the oor is the largest
homogeneous region in bah images, which is often the
case in our image database. Occasiondly, disturbance from
re edion a texture onthe oor prevent this cue from being
succesgul, which helps to motivate the need for multiple

Cues.
Fig. 7. Theresult of graph-based segmentation [5] on two corridor images
used in Figure 6, with ead region assgned a random color. Note that the

oor isamost a homogeneous areain bath images, while the wall and doas
are divided into several smdler regions.

The homogeneous <core of a horizontal line segment is
computed as

on(ln) = R 9

Rmax|’

where |R| denctes the number of pixels in the region R

just below the line segment, and R,,.x IS the maximum

region size anongall the segments found bythe graph-based
segmentation.

D. Detecting the wall-floor boundary

Each haizontal segment ¢, for which ®y416:(¢r) > 74,
where 74 is a threshdd, is retained. These remaining line
segments are then ordered from left to right in the image, and
their endpants are mnreded. At the left and right borders of
the image, the lines are extended. This results in a palyline
stretching aaoss the image de ning the boundxry between
the wall and the oor.

IV. EXPERIMENTAL RESULTS

To test the performance of our agorithm, an image
database of more than 400 corridor images was taken in

twenty different buildings exhibiting a wide variety of dif-
ferent visual charaderistics. The images were catured by a
Logitech QuickCam Pro 4000webcam mourted about 30 cm
abowe the oor on an ActivMedia Pionea P3AT mobile
roba. The images were procesed by an agorithm imple-
mented in the C++ programming language on a 2.4 GHz
Core 2 procesor (Dell XPS M1330 laptop). Althoughthe
computation time varies sosmewhat acording to the number
of deteded line segments, the dgorithm runs at approxi-
mately 5 frames/sec?

For al environments, the euation o the SVM-based
separating curve is

3.5 26 475 T
[z y 1][ 26 50 —125] [y]:O, (10
475 —125 10 1
the weights for the individual scores are w, = 1.6, w, =
0.75 and wy, = 1.0, respedively, and the total threshdd is
T¢ =2.7.
To evaluate the dgorithm, the images in the database were
manually labeled by clicking ona number of points and then
tting a B-spline aurve to yield a ground truth wall- oor
boundiry. We de ne the aror of the dgorithm applied to an
image & the number of pixels misclass ed as oor or non
oor, normalized by the total number of groundtruth oor
pixels. Equivalently, the aror can be computed as the sum,
over dl the mlumns = =0, ..., width — 1 in the image, of
the difference between the ground truth y coordinate yg%
and the estimated y coordinate (*):

Zx
Zx

where the image is of size width x height, and the sub-
tradion in the denominator arises from the conwvention that
the y coordinate is with resped to the top o the image. We
set a threshold of 10%, so that the detedion for an image
is considered a failure for a particular image if 7., > 0.1
for that image. Using this convention, our approach corredly
deteds the oor region in 891% of the image database.
Figure 8 presents the results of our algorithm on some
typicd corridor images. The rst row displays wall- oor
boundries that extend upwvard from left to right in the
image, while the second row shows the reverse situation.
In the third row, both sides of the corridor are visible, so
that the boundry extends in bah diredions. And the fourth
row shows oors with extremely strong re edions on the
oor, where the oor and wall are again distinguished using
only low-level information. From these results, we can see
that our approach is cgpable of deteding oorsin corridors
under different ill umination condtions and perspedives. In
addition, Figure 9 shows ome succesgul results on images
downloaded from the internet, showing the versatility of the

approad.

9@ — gyl

; 1

Terr =

height — yg%

1see hitp://www.ces.clemson.edu”sth/reseach/ oor_detection for videos
of the results.
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Fig. 10. Examples for which ou agorithm fails to properly detedt the oor. From left to right, the failures are caused by strong texture on the oor,
texture on the wall, an overly dark image from poa image expasure, and excesdve bright lights at the end o the corridor (Best viewed in color).

Fig. 11 Results of our algorithm working onthreefailure examples given in Lee & a. [1] (Best viewed in color).

V. CONCLUSION AND FUTURE WORK

We have presented an image-based oor detedion algo-
rithm using an urcdibrated canera The oor is deteded
by a canera mourted on a mohile roba, which maintains a
low perspedive of the scene. The novel approach combines
the results of applying three different visual cues to test the
validity of horizontal line segments deteded in the image.
Our approach achieves nealy 90% detedion o the wall-

oor boundxry on arather large database of over 400images
cgptured in a variety of environments exhibiting df cult
condtions aich as extreme re edion. The dgorithm is
suitable for red-time mobile roba applications using an off-
the-shelf camera. One limitation o the aurrent approach isits
tendency to get confused when the oor is highly textured, or
when the image is espedally dark due to poa gain control.
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