
Recognition of Deformable Object Category and Pose

Yinxiao Li, Chih-Fan Chen, and Peter K. Allen

Abstract— We present a novel method for classifying and
estimating the categories and poses of deformable objects,
such as clothing, from a set of depth images. The framework
presented here represents the recognition part of the entire
pipeline of dexterous manipulation of deformable objects, which
contains grasping, recognition, regrasping, placing flat, and
folding. We first create an off-line simulation of the deformable
objects and capture depth images from different view points as
training data. Then by extracting features and applying sparse
coding and dictionary learning, we build up a codebook for a
set of different poses of a particular deformable object category.
The whole framework contains two layers which yield a robust
system that first classifies deformable objects on category level
and then estimates the current pose from a group of predefined
poses of a single deformable object. The system is tested on a
variety of similar deformable objects and achieves a high output
accuracy. By knowing the current pose of the garment, we can
continue with further tasks such as regrasping and folding.

I. INTRODUCTION

Deformable objects such as clothes, fabrics, paper, and
things that are soft, are ubiquitous in our daily life. In order
to enable robots to manipulate deformable objects, we first
have to let the robots recognize them through perception.
Compared with rigid object recognition which has finite
state spaces, deformable object recognition is much harder
because of the very large dimensional spaces. Each space
may have completely different appearance in terms of the
material and pose of the object. For example, in robot
grasping, it is possible to identify the grasping point location
on a rigid object by a shape matching algorithm from a
known object in a training set. However, due to the large
number of states of a deformable object, it is much more
difficult to identify the pose and grasping point.

In this paper, we are focusing on the recognition of
deformable object category and pose as one component of
a larger pipeline for manipulating deformable objects such
as clothing. The main idea of our method is to use off-line
simulation of models of garments in different poses to predict
online category and poses. Key contributions are:

- A method for estimating deformable object pose using
simulation results and dictionary learning via spatial
pyramid matching and sparse coding.

- A system that captures 90 depth images from different
view points of a target object in 20−50 different poses.
Figure 1 shows two garment mesh models and one of
their poses hanging by gravity.

Y. Li, C. Chen, and P. K. Allen are with the Department of Computer
Science, Columbia University, New York, NY 10027, USA {yli@cs.,
cc3500@, allen@cs. } columbia.edu

- Formulation of the pose recognition problem as a hier-
archical image classification task that uses depth images
regardless of complicated texture on the object.

- Experimental results in simulation, with real clothing,
and also with a physical robot on a variety of de-
formable objects including sweaters, jeans, and shorts
in different sizes. The results show that our approach
is robust to estimate the object pose and to facilitate
regrasping and folding tasks.

(a) (b) (c) (d)

Fig. 1. (a), (b): Garment mesh models of sweater and jeans rendered in
Maya. (c), (d): Simulation of hanging under gravity of the garment mesh
models, respectively.

II. RELATED WORK

A significant amount of previous research has focused on
deformable object detection. In these works, the primary goal
is to detect the deformable objects in the scene via some
features, but they do not explicitly compute object pose.
Felzenszwalb, et. al [3] described an algorithm based on
mixtures of multi-scale deformable part models trained using
a discriminative procedure. Another fast deformable object
detection approach was proposed by Pedersoli, et. al [16],
which improved the part-based model by doing a multiple-
resolution hierarchical layer structure which increased the
detection accuracy. Though their work has very promising
detection accuracy on many different object categories, it
still does not address the pose recognition problem.

There has been previous work on the recognition and
manipulation of deformable objects. B. Willimon, et. al [22],
[21] used interactive perception to classify the clothing type.
However, their work basically focused on small clothing such
as socks and shorts which usually consist of a single color.
The proposed method may fail with some fully textured
clothes because it relies on a color-based image segmentation
algorithm. Miller, et. al [15], Wang, et. al [20], Schulman,
et. al [17], Cusumano-Towner, et. al [1] have done some
impressive work in clothing recognition and manipulation.

0

1

2

3

4

5

6

7

8

Fig. 2. Overview of our proposed pipeline for manipulation of deformable objects. TOP ROW: The entire pipeline of dexterous manipulation of deformable
objects, which contains five phases. In this paper, we are focusing on the phase of recognition and identification of deformable object category and pose,
as highlighted in purple rectangle. If the recognition and identification are not successful, the robot will regrasp the object and repeat the same process
again for recognition and identification. BOTTOM TWO ROWS: In training flow (in red rectangle), we apply off-line simulation of the deformable objects
such as mesh models of sweater and jeans in different poses. By using sparse coding and dictionary learning on depth images, we build up a codebook for
recognition. In testing flow (in green rectangle), we capture depth images by the Kinect sensor and use the precomputed codebook to predict the categories
and poses of deformable objects.

They have successfully enabled the PR2 robot to fold cloth-
ing and towels. Their methods mainly focus on aligning the
current edge/shape from observation to an existing shape,
which may fail when the clothes shape is uninformative. A
series of works on clothes pose recognition were done by Y.
Kita, et. al [6], [8], [7]. Their work demonstrated the ability
to identify the pose of the clothes by registration to pre-
recorded template images. Without showing more statistical
results, it is not clear that the proposed algorithm works on
a random grasping point over the entire target clothing.

We formulate our pose estimation problem as an image
classification task aiming at depth images of the target
garment. We employ the idea of bag-of-feature (BOF) in our
method. There are several noticeable works done in the past
years [9] [5] [10]. In addition to that, Yang et al. [23] im-
proved the SPM by generalizing vector quantization to sparse
coding followed by spatial max-pooling and a linear-kernel
SVM. The proposed method outperformed a few previous
methods with a relatively high speed. In our approach, we
employed Yang’s idea with modifications to some specific
cases.

III. A DATABASE FOR DEFORMABLE OBJECT
RECOGNITION

Figure 2 shows an overview of our pipeline for dexterous
manipulation of deformable objects and the focus of this
paper (in purple rectangle) which is visual recognition of
deformable objects. There are two phases in the recognition.
In the first phase, we train on a previously computed database
of deformed objects. From that we build a recognition
codebook that can be used in the second phase to first
recognize the category and then the pose of an object through

a two-layer classifier that we have developed. The framework
is discussed in detail below.

A. Simulating Deformable Objects

We have developed an off-line simulation process whose
results can be used to predict poses of deformable objects.
The off-line simulation is time efficient and more accurate
compared with acquiring data via sensors from real objects.
In the off-line simulation, we use a few well-defined garment
mesh models such as sweaters, jeans, and shorts, etc. Fig-
ure 1 shows a few of our current garment models rendered
in Maya software.

B. Generating Training Exemplars

In Maya, virtual cameras can be set up to capture depth
images of the rendered object. In the real world, a garment
can be picked up by a robot with various view points from the
camera. So it is meaningful to build up a geodesic dome with
cameras placed on it that capture the images from various
view points. Our previous work [4] has shown that depth
images can help to recognize object categories via feature
descriptors and clustering algorithms. Also, we use 3D depth
images instead of 2D color images which rely on texture
rather than the shape. In our off-line simulation, we set up a
group of 90 cameras on a geodesic dome with different view
points and positions.

In our experiments, the depth images were captured via
the 90 cameras. The workflow of getting the depth images
can be summarized as:

1. For each input garment model, a set of 20−50 grasping
points is predefined in terms of the garment categories.

2. For each of the grasping points, a simulation of draping
under gravity is carried out and rendered when the
garment achieves a stable state (e.g. no shaking).

3. The 90-cameras system will capture depth images of
the model from different view points.

IV. ESTIMATING POSES OF DEFORMABLE OBJECTS

The goal of building a deformable object database is to
help in recognizing the category and the pose of a deformable
object. In our research scenario, the robot may randomly
grasp and pick up a garment without any prior knowledge.
After the grasping, we are interested in identifying the
category of the garment first and then the position of the
grasping point, which are both very important for further
actions such as regrasping and folding. From a technical
point of view, given a set of features computed from a vision
source, (e.g. a depth camera) we would like to index into the
deformable object database via feature space, to identify the
pose of a targeted deformable object. The problem can be
then formulated as an image classification problem. Given a
set of depth images captured from a single object, we are
interested in identifying the category and grasping point.

A. Feature Extraction

Our method uses the SIFT descriptor which has some
outstanding properties, such as rotation invariance. Unlike
the approach of using the descriptor in [12], we applied
Dense SIFT over our depth images using VLFeat [19]. We
also crop the original depth images in terms of the position
of the object. This will guarantee that the object always
stays in the center of the image, which insures that the
spatial pyramid pooling, described below, achieves a better
performance. In addition, we discard those sample positions
of descriptors that not on the object area for fast computation
and encoding.

B. Generating and Learning Feature Signatures

1) Sparse Coding: There are two important components
in the BOF model: dictionary learning and feature quan-
tization. The goal of the BOF model is to find a new
feature space that has a better ability to represent the training
features. Therefore, how to build a codebook is crucial in the
BOF model. We define a set of N SIFT descriptor as {X}N ,
where X is a sample descriptor in the depth image. The
problem is then formulated as the following cost function:

min
V

N∑
1

min
i=1...k

‖Xi − vi‖2 (1)

where V = [v1,...,vk]
T is the final k clustering vectors and

v1,...,vk are the codewords. We can rewrite the cost function
(1) into the following matrix factorization:

min
W,V

N∑
i=1

‖Xi −wiV‖2 (2)

where W = [w1,...,wN]T is the weight vector for each
of the clusters which will be solved. Traditional method
usually applies constraints such that Cardinality(w) = 1

and |wi| = 1 which lead to vector quantization method.
This method only allows feature vectors of one sample be
assigned to one “word”. Sometimes, it is too restrictive
that the codebook may have a coarse reconstruction of the
original feature vectors. In our scenario, it is highly likely
that a depth image from the current view point is in between
two or more predefined view points. So it may be inaccurate
to reconstruct the current sample via only one word in the
codebook. In order to improve this, we apply sparse coding
method. In the work of Lee et al. [11], it is stated that if
another L1 norm was added to the cost function (1), the
result yields sparsity property, which is called sparse coding.
Equation (3) shows the sparse coding equation after we add
the L1 norm term.

min
W,V

N∑
1

‖Xi −wiV‖2 + λ |wi| (3)

In sparse coding, there is more than one non-zero number
in wi, meaning the feature vector can be reconstructed via
several “words” in the dictionary. In our problem, the pose
of the garment is continuous whereas the training poses
are discrete (currently we have defined 90 poses for each
grasping point). It is highly likely that the pose of one
input garment is in between several training poses. So sparse
coding scheme will reduce the errors in reconstruction of the
input feature vectors. Since the training task involves large
amounts of data, we also employ an online training algo-
rithm that dynamically adjusts the model with less memory
consumption (see [13], [14] for details on this method).

2) Max pooling and Linear SVM: In our recognition
pipeline, we are interested in a fast classification speed. After
the training feature vectors are quantized, we apply a SVM
to learn the model. Though the non-linear SVM is more
accurate in most of the cases, it brings a high training cost of
O(n3) and a storage cost of O(n2). According to Yang’s [23]
work, spatial max-pooling combined with linear-SVM [2] for
classification yields an optimal solution for a large data set.
After sparse coding on the feature vector, we apply spatial
pyramid construction to the feature vector to preserve spatial
information. Let W′ be the output weight vector after sparse
coding and spatial pyramid construction. The max-pooling
function F is defined on each column of W′. Then the
weight vector r for one depth image can be computed by
F(W′) where r = [r1...rJ]. The function F computes the
max weight among each column that is defined as:

rj = max{
∣∣w′

1j

∣∣ , ∣∣w′
2j

∣∣ ... ∣∣w′
Nj

∣∣} (4)

According to the observation in [23], spatial max-pooling
on sparse coding obtains a high classification accuracy be-
cause of less quantization error in sparse coding, robustness
in max-pooling to local translation, and sparsity in the image
patch. This strategy is only applied to the second layer of
the classification which will be described below.

C. Defining Deformable poses

Our approach is to use a large simulated dataset of the
garments that have been picked up and hung by gravity to

Fig. 3. LEFT: A real sweater with 50 labels pasted on it which are
corresponding to the predefined 50 labels in the figure 4. MIDDLE: A real
pair of jeans with 40 labels pasted on it. RIGHT: A real pair of shorts with
25 labels pasted on it.

1
2

22
20
18

13
10
8
4
5

30
26
23

28
27
25
24

19
17
16
14
12
11
9
6
7

47

45

44
42

41
39
38

36

35

49

48

46

43

40

37
34

31
33
32

Fig. 4. 50 predefined grasping points within the region of interest on the
sweater mesh model. All the grasping points will be picked up once and
simulated individually.
predict some unknown poses. For every pick up (grasping
point), a pose is defined. Specifically, we predefine a set of
grasping points on the garment mesh in terms of structural
complexity of the garment. At the same time, we can define
the region of interest by eliminating those redundant grasping
points based on symmetric geometry of the garment. For
example, a sweater, which is symmetric between front and
back, left and right so that a reasonable set of grasping
points should be within one fourth of the entire surface area.
Figure 3 shows color coding label pads on real garments
within the region of interest.

Considering the sweater model as an example, given a re-
gion of interest, we predefine 50 grasping points on the mesh
empirically. These points will be treated as “constraints” in
the Maya simulation, whereas in real experiments, there
are hanging points. For each of the predefined points, we
simulate the draping effect in Maya and a set of 90 depth
images are captured as the training data of this particular
grasping point. A sample of the predefined points on the
sweater model is shown in Figure 4. We also apply the same
predefined points on the real sweater, jeans, and shorts which
are shown in Figure 3. The real garments we use are very
similar to the mesh models we simulated in Maya.

D. Two-layer Classifier

We use a two-layer hierarchical classifier whose structure
is shown in Figure 5. For both layers, we first extract features
and build up the codebook. Then by applying the sparse
coding, we encode features using the codebook. Finally, we
use the SVM to classify the garment category and pose.
Figure 2 also shows the described work flow.

On the first layer (in red shade), each of the input depth

Algorithm 1 Label Pruning Algorithm
Input:

A predicted label set Ω = {L1,L2...Lnd}
Geometry table T contains 3D coordinates of each label

Output:
One predicted label Lp for the current pose

1: n = ||Ω||
2: center1← 0, center2← 0
3: while 1 do
4: center1← mean(Ω)
5: dist table← pdist(center1,Ω)
6: Ω← Ω− {5farthest points}
7: center2← mean(Ω)
8: if ||center1− center2|| < ξ then
9: break

10: end if
11: if ||Ω|| < 0.5× n then
12: break
13: end if
14: end while
15: dist table← pdist (center2, T)
16: Lp = find label with {min(dist table)}
17: return Lp

images vote for the garment category and the dominant one
yields the final category. On the second layer (in green
shade), each input depth image will give an output – a
grasping point label. For each grasping point, we may have
nd depth images so that we will have nd predicted labels
correspondingly. Here we apply a label pruning algorithm,
which iteratively removes predicted labels that are far from
the current mean of all labels, and then outputs one label
from a set of labels. Details are described in Algorithm 1.

The only difference between the two layers is that on the
first layer we applied a Radial Basis Kernel function (RBF)
SVM while the Linear Kernel function SVM was used on the
second layer. The RBF kernel is more accurate but relatively
slow, so we apply it to the first layer where less classes
exist. The Linear kernel is applied to the second layer which
usually has 20 to 50 classes.

... ...

...

...

... ...

...

...

Fig. 5. Structure of the two-layer classifier. The first layer predicts the
categories of the garment candidates using an SVM with an RBF kernel
whereas the second layer predicts the grasping point label using an SVM
with a linear kernel.

V. EXPERIMENTAL RESULTS

A. Test Using Simulation Data

This test focuses on the performance of the second layer of
the classifier using simulation data. We have one data sample
for one grasping point label. Therefore, each time we take
one entire sample of a grasping point label out and test it on
the classifier which is trained by the rest of the grasping point

Sweater Jeans Shorts
Height Group # of Cam Rank 1 Rank 1 Rank 1

Group 1 9 6.06 6.12 7.19
Group 2 18 4.93 5.12 5.67
Group 3 36 4.52 4.44 5.48
Group 4 18 4.84 5.06 6.29
Group 5 9 5.38 6.05 7.29

Group 2, 3, 4 72 5.02 5.09 5.81
All 90 5.79 5.73 6.76

TABLE I. Ranking table of the garment models (sweater, jeans, and shorts)
using simulation data from Maya. The training images are divided into
7 different groups by height and tested individually. We can see that the
rank 1 for sweater and jeans is between 4 and 5 on average. It means the
estimated grasping points is very close to the take-out label according to the
distribution of the grasping point labels shown in Figure 4. The rank 1 for
shorts is a little bit higher which is because the depth images of the shorts
are less informative. We can also see that height group 3 always achieves
the best recognition rank among all groups.

label samples. If the output labels are close to the take-out
label, then the simulation data can be considered continuous
and our algorithm should perform well on similar real depth
images from a range sensor such as the Kinect.

Taking the sweater model as an example, which has 50
grasping points, each time we select a different target class
(a set of depth images from one grasping point) for testing
and the rest of the classes (the remaining 49 classes) for
training. All depth images can be divided into 5 groups based
on their view perspective heights as individual training sets,
which are labeled from 1 to 5 from top to bottom. We also
add group 2+3+4 and all groups to the training sets. Since we
take out the entire testing class, we expect that the estimated
grasping point is close to the testing grasping point label.
One way to evaluate it is to use the distance ranking as a
metric. For example, in Figure 4, if we take out the 17th
grasping point, the 14th, 15th, 16th, 18th, 19th, and 20th
grasping points can be considered as the closest six points
in a sorted order by distance to the 17th point. If the 14th
point is identified as the output, the rank is 1.

We apply this strategy to the simulation data which has
three categories, each of which has 25 − 50 predefined
grasping points. The ranks for all camera groups, and several
group combinations are shown in Table I. We can see that the
best rank for sweater and jeans are between 4 and 5. This
is because on average, there are 4 − 5 labels with similar
distances to the take-out label, which are considered as the
closest label sets. The best rank for shorts is a little bit
higher because the depth images of its deformable poses are
not as informative as those for sweater and jeans. In real
experiments, we also observed that in terms of camera view
points of the garment, selecting depth images from certain
group(s) as the training data yields better recognition results.

Garment Categories
Height Group Sweater Jeans Shorts

Group 3 75.79% 63.33% 84.71 %
Group 2, 3, 4 79.61% 62.83% 90.76 %

All 73.77% 72.73% 91.40%

TABLE II. Accuracy table of the garment models (sweater, jeans, and
shorts) using depth images from the Kinect sensor. We can see that using
all depth images from simulation for training yields better classification
results.

B. Test Using Depth Images From the Kinect

Our next experiment is to predict the grasping point of a
garment from the depth images captured by a real sensor.
We use the Microsoft Kinect as the vision sensor. We used
the same (or very similar) garments to our models in off-
line simulation. We manually labeled the garments by using
color coding label pads, shown in Figure 3, with comparison
to the pre-labeled simulated models shown in Figure 4. Then
for each of the labels (label pads), we hung and rotated the
garments about the grasping point vertically and took 150 to
200 depth images with more than 2 rotating circles.

Table II shows the accuracy of the category classification.
(The first layer in Figure 5) In this experiment, we treat each
grasping point as an individual test group. Each of the depth
images in a test group votes for a garment category. If more
than 60% of the depth images vote for one category, we take
the result as an output judgment. Otherwise, we discard the
current grasping point and move to another grasping point.
On average, we discard 20% of the grasping points. The
results in Table II are calculated using this strategy. In real
experiments, this can be done by regrasping the garment and
repeating the whole recognition process. Currently we have
three categories which are sweater, jeans, and shorts. Among
the depth images taken from various poses and view points
from a garment, we also notice that there exists a few, that
even for human observers, it is hard to identify the category.

Figure 6 shows some output results of our algorithm
on single depth images. The top row is the color images
captured by the Kinect sensor with different grasping points.
The second row is the depth images, which are captured by
the Kinect sensor as well. The third row shows the simulation
results of garment mesh models in Maya hanging by the
ground truth grasping points with similar view perspectives.
The fourth row shows the simulation results of garment
mesh models in Maya hanging by the predicted grasping
points with similar view perspectives. We demonstrate both
the ground truth and the predicted results to show that our
approach can always identify the grasping point with the
same or similar appearance from database. The two numbers
below the fourth row are the ground truth and predicted
grasping point labels (in parenthesis). The number below
followed by “cm” is the actually distance between the two
labels on the garments.

The last column of the sweater and jeans samples in
Figure 6 is one failure example. Comparing the ground truth
with the predicted results from database, we can observe that
the appearance of the predicted results looks more similar to
the real garments. It is because the material property of the
real garment is different from the property applied in the
off-line simulation, which causes varieties in deformation.
In future, we plan to apply different material properties to
the garment mesh models in the off-line simulation [18].

In Figure 7, we apply different training sets (height group
3, height group 2+3+4, and all) to test depth images. The X-
coordinate of each point in Figure 7 represents the tolerance
distance in cm whereas the Y-coordinate represents the

C
ol

or
im

ag
es

fr
om

th
e

K
in

ec
t

D
ep

th
im

ag
es

fr
om

th
e

K
in

ec
t

G
ro

un
d

tr
ut

h
fr

om
da

ta
ba

se
Pr

ed
ic

te
d

re
su

lt
fr

om
da

ta
ba

se

38(38) 33(36) 40(39) 22(24) 4(40) 38(38) 13(11) 22(22) 17(18) 33(7)
0.0 cm 4.6 cm 3.2 cm 5.9 cm 22.6 cm 0.0 cm 5.7 cm 0.0 cm 4.9 cm 23.2 cm

Fig. 6. Sample results from the experiments. The left 5 columns are the sweater while the right 5 columns are the jeans. The top row is the color images
captured by the Kinect sensor with different grasping points. The second row is the depth images captured by the Kinect sensor which are in the same
pose corresponding to their color images in the first row. The depth images shown are after preprocessing such as filtering, etc. The third and fourth rows
show the simulation results of garment mesh models in Maya hanging by the ground truth grasping points and predicted grasping points, respectively. The
two numbers below the fourth row are the ground truth grasping point labels and predicted labels (in parenthesis). For example, 33(36) means the ground
truth grasping point label is 33 whereas the predicted grasping point label is 36. The numbers followed by “cm” are the estimated distances between the
ground truth and the predicted labels on the garments. For example, 33(36) and 4.6 cm indicate that the distance between predefined grasping point label
33 and 36 is 4.6 cm. The last column of the sweater and jeans samples is one failure output example of our approach. We can see that the appearance
hanging by the predicted grasping points is more similar to the real clothing compared with hanging by the ground truth grasping point.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error o!set distance in cm

%
 o

f
g

ra
sp

in
g

 p
o

in
ts

 a
cc

u
m

u
la

te
d

 w
it

h
in

 t
h

e
 d

is
ta

n
ce

trained with group 3 only

trained with group 2,3,4

trained with all groups

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error o!set distance in cm

%
 o

f
g

ra
sp

in
g

 p
o

in
ts

 a
cc

u
m

u
la

te
d

 w
it

h
in

 t
h

e
 d

is
ta

n
ce

trained with group 3 only

trained with group 2,3,4

trained with all groups

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error o!set distance in cm

%
 o

f
g

ra
sp

in
g

 p
o

in
ts

 a
cc

u
m

u
la

te
d

 w
it

h
in

 t
h

e
 d

is
ta

n
ce

trained with group 3 only

trained with group 2,3,4

trained with all groups

sweater jeans shorts

Fig. 7. Accuracy plot for the garment candidates with different training height groups. The X-Axis is the error offset distance measured in cm. The
Y-Axis is the percentage of grasping point accumulated within the distance that corresponding to the X value. LEFT: The garment candidate is a sweater
that shown in Fig 3. The maximum distance between the two grasping points on the sweater is around 70 cm. MIDDLE: The garment candidate is a pair
of jeans. The maximum distance between the two grasping points on the jeans is around 65 cm. RIGHT: The garment candidate is a shorts. The maximum
distance between the two grasping points on the shorts is around 51 cm.

accumulated grasping point labels within this distance over
the entire garment. For example, one point (10.7, 0.5) on the
green curve (trained with all groups) in the plot of the sweater
is interpreted as: if we set 10.7 cm as the tolerance distance,
50% of the predefined grasping point labels are recognized
correctly. In our case, there are 50 predefined grasping point
labels on the sweater mesh model so 25 labels are considered
as correct. We observe that in our experiments, training with
all depth images achieves slightly better results. We also
observe that within 15 cm tolerance distance, around 70% of
grasping points can be identified. We believe this accuracy
is sufficient for regrasping and folding tasks.

C. Implementation on a Robot

We implemented a grasping algorithm on a Staubli arm
and a Barrett hand that picked up a real garment and applied
our algorithm to recognize its category and pose. We tested
our algorithm on real sweater and jeans through 8 times
robot trials of picking up and hanging clothing. Table III
shows the results of the the two-layer classifier in the robot
experiments. We can see that our algorithm can always
predict the grasping point within a short distance from the
ground truth. Figure 8 shows snapshots of the process of
the recognition pipeline using our approach which contains
initial state, grasping and picking up, and recognition from
different view points. A video of our experimental results is
available at: http://www.cs.columbia.edu/˜yli/
DeformObjDepth.html.

sweater jeans
1 2 3 4 5 6 7 8

Cat S S S S J J J J
Dist 3.2 15.7 9.1 3.0 7.6 7.4 15.1 10.8

TABLE III. Results of the robot experiments. Totally we have 8 trials.
First we classified the category (Cat) for sweater (S) and jeans (J). Then
we provide the distance (Dist) in cm between the predicted grasping point
and the ground truth.

Fig. 8. A Staubli arm grasps a real garment, picks it up, hangs it under
gravity, rotate it, and recognizes its category and pose using a Barrett hand.
From left to right: initial state, grasping and picking up, recognizing from
one view point, rotating and recognizing from another view point.

VI. CONCLUSION

The entire pipeline of dexterous manipulation of de-
formable objects includes grasping, recognition, regrasping,
placing flat, and folding deformable clothing objects. In

this paper, we focus on the recognition. We have shown
a framework for recognizing the categories and the poses
(grasping points) of a deformable object. We first built up a
deformable object database with a set of depth images from
off-line simulation as the training data. Then sparse coding
was applied to better quantize feature vectors and construct
a codebook. We also proposed a two-layer classifier for our
classification task. We then tested the performance of the
classifier using the off-line simulation data. Meanwhile, we
took real depth images via the Microsoft Kinect for testing
as well. Both testing results have shown that our proposed
framework worked well for estimating the categories and the
pose (grasping point) of the deformable object.

Acknowledgments: We would like to thank Prof. E.
Grinspun, Prof. C. Zheng, Dr. A. Reiter, J. Weisz, and
A. Garg for many insightful discussions. This work was
supported by NSF grant 1217904.

REFERENCES

[1] M. Cusumano-Towner, A. Singh, S. Miller, J. F. OBrien, and P. Abbeel.
Bringing clothing into desired configurations with limited perception.
In Proc. ICRA, 2011.

[2] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin.
Liblinear: A library for large linear classification. JMLR, 2008.

[3] P. F Felzenszwalb and D. Ramanan R. B Girshick, D. McAllester.
Object detection with discriminatively trained part-based models.
IEEE Trans. PAMI, 32:1627–1645, 2010.

[4] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen. The Columbia
grasp database. Proc. ICRA, 2009.

[5] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative
classification with sets of image features. ICCV, 2005.

[6] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita. Clothes handling based
on recognition by strategic observation. In Humanoid Robots, 2011.

[7] Y. Kita and N. Kita. A model-driven method of estimating the state
of clothes for manipulating it. In Proc. WACV, 2002.

[8] Y. Kita, T. Ueshiba, E-S Neo, and N. Kita. Clothes state recognition
using 3d observed data. In Proc. ICRA, 2011.

[9] Fei-Fei. L and P. Perona. A bayesian hierarchical model for learning
natural scene categories. CVPR, 2005.

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. CVPR,
2006.

[11] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding
algorithms. Proc. NIPS, pages 801–808, 2007.

[12] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91 – 110, 2004.

[13] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning
for sparse coding. Proc. ICML, 2009.

[14] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. JMLR, 11:19 – 60, 2010.

[15] S. Miller, J. Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel.
A geometric approach to robotic laundry folding. IJRR, 2012.

[16] M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarse-to-fine approach
for fast deformable object detection. CVPR, 2011.

[17] J. Schulman, A. Lee, J. Ho, and P. Abbeel. Tracking deformable
objects with point clouds. In Proc. ICRA, 2013.

[18] N. Umetani, D. M. Kaufman, T. Igarashi, and E. Grinspun. Sensitive
Couture for Interactive Garment Editing and Modeling. ACM Trans-
actions on Graphics, 30(4), Aug 2011.

[19] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library
of computer vision algorithms, 2008. http://www.vlfeat.org/.

[20] P-C Wang, S. Miller, M. Fritz, T. Darrell, and P. Abbbeel. Perception
for the manipulation of socks. Proc. IROS, 2011.

[21] B. Willimon, S. Birchfield, and I. Walker. Classification of clothing
using interactive perception. In Proc. ICRA, 2011.

[22] B. Willimon, I. Walker, and S. Birchfield. A new approach to clothing
classification using mid-level layers. In Proc. ICRA, 2013.

[23] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid
matching uisng sparse coding for image classification. CVPR, 2009.

http://www.cs.columbia.edu/~yli/DeformObjDepth.html
http://www.cs.columbia.edu/~yli/DeformObjDepth.html

	Introduction
	Related Work
	A Database For Deformable Object Recognition
	Simulating Deformable Objects
	Generating Training Exemplars

	Estimating poses Of Deformable Objects
	Feature Extraction
	Generating and Learning Feature Signatures
	Sparse Coding
	Max pooling and Linear SVM

	Defining Deformable poses
	Two-layer Classifier

	Experimental Results
	Test Using Simulation Data
	Test Using Depth Images From the Kinect
	Implementation on a Robot

	Conclusion
	References

