Exploring Indoor Environment for a Mobile Robot

Yinxiao Li

Robotics Lab Columbia University 04/16/2013

Project Objectives

Floor Segmentation: Free space to go for a mobile robot

"Image-Based Segmentation of Indoor Corridor Floors for a Mobile Robot", Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2010

Door detection: Build a semantic map of the locations of doors as the robot drives down a corridor

"Visual Detection of Lintel-Occluded Doors by Integrating Multiple Cues Using Data-Driven Markov Chain Monte Carlo Process", *Journal of Robotics and Autonomous Systems (RaS), 59(11): 966-976, Nov. 2011*

Low-resolution Geometry: Free CPU, doing basic navigation

"Extracting Minimalistic Corridor Geometry from Low-Resolution Images", Proceedings of International conference on Intelligent Robotics and Applications (ICIRA), 2012

Challenging problem: Reflections

Also:

- variety of poses (vanishing point, ceiling not always visible)
- sometimes wall and floor color are nearly the same

Motivation

Goal: Segment the floor in a single corridor image

Why?

- obstacle avoidance
- mapping
- autonomous exploration and navigation

Douglas-Peucker Algorithm

Purpose: Reduce the number of points in a curve (polyline)

Algorithm:

- 1. Connect farthest endpoints
- 2. Repeat
 - 1. Find maximum distance between the original curve and the simplified curve
 - 2. Split curve at this point *Until* max distance is less than threshold

Detecting Line Segments (LS)

- 1. Compute Canny edges
- 2. Modified Douglas-Peucker algorithm to detect line segments

Vertical LS: slope within $\pm 5^{\circ}$ of vertical direction Horizontal LS: Slope within $\pm 45^{\circ}$ of horizontal direction

3. Pruning line segments (320x240)

Vertical LS: minimum length 60 pixels Horizontal LS: minimum length 15 pixels Vanishing point (height selection): The vanishing point is computed as the mean of the intersection of pairs of nonvertical lines. It is used for throwing away horizontal line segments coming from windows, ceiling lights, etc.

Score Model

$\Phi_{total}(\ell_h)$ is assigned to each horizontal line ℓ_h

Score Model – Structure

 $|\nabla I(x,y)| > T_1 \text{ and } I(x,y) < T_2$ -Yinxiao Li

Given a typical corridor image

- 1. $|\nabla I(x,y)| > T_1$ (gradient magnitude) (How to set threshold T_1 ?)
- 2. $I(x,y) < T_2$ (image intensity) (How to set threshold T_2 ?)

Approximate using two thresholds:

Score Model – Structure

 $d[(x,y),\mathcal{S}]$

Given a typical corridor image

- 1. $|\nabla I(\mathbf{x},\mathbf{y})| > T_1$ (gradient magnitude)
- 2. $I(x,y) < T_2$ (image intensity)
- 3. Now threshold original image using T_{LC} (average gray level of pixels satisfying #1 and #2)
- 4. Compute the chamfer distance between the line segments and structure blocks

$$\phi_s(\ell_h) = \sum_{(x,y) \in \ell_h} d[(x,y),\mathcal{S}]$$

Score Model – Bottom

- 1. Connect the bottom points of consecutive vertical line segments to create "bottom" wall-floor boundary
- 2. Compute the distance of each horizontal line segment to the "bottom" wall-floor boundary

(red circled horizontal line segments indicates a positive contribution)

$$\phi_b(\ell_h) = \sum_{(x,y) \in \ell_h} d[(x,y), \ell_b]$$

Score Model – Homogeneous

-Yinxiao Li

Idea: The floor tends to have larger regions (due to decorations, posters, windows on the wall).

Algorithm:

- 1. Color-based segmentation of the image (using Felzenszwalb-Huttenlocher's minimum spanning tree algorithm)
- 2. For each horizontal line segment, compute size of region

 $\bar{\phi}_h(\ell_h) = \frac{|\mathcal{R}|}{|\mathcal{R}_{\max}|}$

just below

segment

size of largest segment

Segmenting the floor

- Normalize the scores and sum
- Threshold the final score:

 $\Phi_{total}(\ell_h) > \tau_{\phi}$

 Connect the remaining line segments and extend the endpoints to the edges of the image

Sample Results

89.1% success on database of 426 images:

-Yinxiao Li

Sample Results Images downloaded from the internet:

Project Objectives

Floor Segmentation: Free space to go for a mobile robot

"Image-Based Segmentation of Indoor Corridor Floors for a Mobile Robot", Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2010

Door detection: Build a semantic map of the locations of doors as the robot drives down a corridor

"Visual Detection of Lintel-Occluded Doors by Integrating Multiple Cues Using Data-Driven Markov Chain Monte Carlo Process", *Journal of Robotics and Autonomous Systems (RaS), 59(11): 966-976, Nov. 2011*

Low-resolution Geometry: Free CPU, doing basic navigation

"Extracting Minimalistic Corridor Geometry from Low-Resolution Images", Proceedings of International conference on Intelligent Robotics and Applications (ICIRA), 2012

What is Lintel-Occluded?

Lintel-occluded

- post-and-lintel architecture
- camera is low to ground
- cannot point upward b/c obstacles

lintel

post

Our Approach

-Yinxiao Li Key idea: Multiple cues are necessary for robustness (pose, lighting, ...)

width

Bayesian Formulation

image door $p(\mathbf{d} | \mathbf{I}) \propto p(\mathbf{I} | \mathbf{d}) p(\mathbf{d})$

Taking the log likelihood,

$$E(\mathbf{d}) = \Psi_{\text{data}}(I \mid \mathbf{d}) + \Psi_{\text{prior}}(\mathbf{d})$$

Prior model
$$\Psi_{\text{data}}(\mathbf{d}, I) = \sum_{i=1}^{N_{\text{data}}} \alpha_i f_i(\mathbf{d}) \qquad \Psi_{\text{prior}}(\mathbf{d}) = \sum_{j=1}^{N_{\text{prior}}} \beta_j g_j(\mathbf{d})$$

where $f_i(\mathbf{d})$ and $\mathbf{g}_j(\mathbf{d}) \in [0,1]$

Data Model Features (cont.)

Prior Model Features: Width and Height

Data Model (Posterior) Features

Image gradient along edges (g_1)

Placement of top and bottom edges (g_2, g_3)

Color (g_4)

texture (g_5)

Kick plate (g_6)

Vanishing point (g_7)

Experimental Results: High Reflection / Textured Floors

-Yinxiao Li

Experimental Results: Different Viewpoints

Navigation in a Corridor

- Doors were detected and tracked from frame to frame.
- Fasle positives are discarded if doors were not repeatedly detected.

Project Objectives

Floor Segmentation: Free space to go for a mobile robot

1. "Image-Based Segmentation of Indoor Corridor Floors for a Mobile Robot", Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2010

Door detection: Build a semantic map of the locations of doors as the robot drives down a corridor

"Visual Detection of Lintel-Occluded Doors by Integrating Multiple Cues Using Data-Driven Markov Chain Monte Carlo Process", *Journal of Robotics and Autonomous Systems (RaS), 59(11): 966-976, Nov. 2011*

Low-resolution Geometry: Free CPU, doing basic navigation

"Extracting Minimalistic Corridor Geometry from Low-Resolution Images", Proceedings of International conference on Intelligent Robotics and Applications (ICIRA), 2012

Exploring Indoor Environment for a Mobile Robot

Q&A

Yinxiao Li

www.cs.columbia.edu/~yli Robotics Lab, Columbia University