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a b s t r a c t

We present an algorithm to detect doors in images. The key to the algorithm’s success is its fusion of
multiple visual cues, including standard cues (color, texture, and intensity edges) as well as several novel
ones (concavity, the kick plate, the vanishing point, and the intensity profile of the gap below the door).
We use the Adaboost algorithm to determine the linear weighting of the various cues. Formulated as a
maximum a posteriori probability (MAP) problem, a multi-cue functional is minimized by a data-driven
Markov chain Monte Carlo (DDMCMC) process that arrives at a solution that is shown empirically to be
near the global minimum. Intensity edge information is used in the importance probability distribution
to drive the Markov chain dynamics in order to achieve a speedup of several orders of magnitude
over traditional jump diffusion methods. Unlike previous approaches, the algorithm does not rely upon
range information and yet is able to handle complex environments irrespective of lighting conditions,
reflections, wall or door color, or the relative orientation between the camera and the door. Moreover,
the algorithm is designed to detect doors for which the lintel is occluded, which often occurs when the
camera on amobile robot is low to the ground. The versatility of the algorithm is tested on a large database
of images collected in a wide variety of conditions, on which it achieves approximately 90% detection
rate with a low false positive rate. Versions of the algorithm are shown for calibrated and uncalibrated
camera systems. Additional experiments demonstrate the suitability of the algorithm for near-real-time
applications using a mobile robot equipped with off-the-shelf cameras.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade, much progress has been made toward
solving the problem of simultaneous localization and mapping
(SLAM) [1]. Primarily, the focus has been upon recovering the
geometric structure of the scene by estimating the Euclidean
coordinates of a number of points, irrespective of the identity
of the object to which they belong. Building interiors, however,
are designed to be highly structured environments, in which the
various components (e.g., walls, floors, doors, and corridors) are
placed in a highly predictable manner in relation to one another.
Detecting these semanticallymeaningful components is extremely
important for mobile robot navigation in such environments.
Doors, in particular, are important landmarks for navigation
because they occur frequently, provide the entrance and exit points
of rooms, and are intentionally designed to provide stable and
semanticallymeaningful structures for determining the location of
an observer.
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Much of the previous work on door detection has relied upon
three-dimensional (3D) range information available from sonar,
laser, or stereo vision sensors [2–5]. We are interested, however,
in using off-the-shelf cameras for detecting doors, because of
their low-cost, low-power, and passive sensing characteristics, in
addition to the rich information they provide. Fig. 1 illustrates
our scenario, as well as the difficulties of solving this problem.
The robot is equipped with two webcams, each one pointing
at a different side of the hallway as the robot drives. Because
there is no overlap between the cameras, stereo vision is not
possible. Even more importantly, because the cameras are low
to the ground, the top of the door (the lintel) – which otherwise
would provide a powerful cue for aiding door detection – is often
occluded by the top of the image. Pointing the cameras upward
is not possible, because of the importance of being able to see
the ground to avoid obstacles. Even with these constraints, our
goal is to detect doors in a variety of environments, containing
textured/untextured floors, similarly coloredwalls and doors, low-
contrast edges, bright reflections, variable lighting conditions, and
varying robot orientation, as shown in the figure.

In the computer vision community, the most popular approach
to object detection is to train a classifier to distinguish between
positive and negative examples of rectangular image patches, an
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Fig. 1. Top-left: our robot is equipped with two non-overlapping off-the-shelf webcams, mounted on top. Top-right: an image taken by one of the cameras, showing a
door whose color is the same as the surrounding wall and whose lintel is not visible. Bottom: two additional examples, showing doors with drastically different orientations
and colors, along with a variety of floor patterns and lighting conditions. These challenges make vision-based door detection difficult.
approach which has been applied successfully to objects such as
faces and cars with clearly identifiable local features [6–8]. Doors,
however, present a challenge for such an approach because they
often have no locally unique features to indicate their presence.
Rather, a door is observed, it seems, by the interplay of a number
of different geometric and photometric cueswhose spatial relation
to one another is not pixel based due to the unknown orientation.

As a result, in this paper, we present a solution to the prob-
lem based upon combining multiple cues. Our approach augments
standard features such as color, texture, and vertical intensity
edges with novel geometric features such as the concavity of the
door and the gap below the bottom door edge. The approach builds
on our previous research [9] by incorporating these features into
a maximum a posteriori (MAP) framework. Adaboost [10] is used
to compute the linear weighting of the different features, and a
data-driven Markov chain Monte Carlo (DDMCMC) technique is
used to explore the solution space [11]. By incorporating inten-
sity edges in the importance proposal distribution, a significant
speedup is achieved in comparison to the traditional jump diffu-
sion methods. Experimental results on a large database of images
show the versatility of the algorithm in detecting doors in a variety
of challenging environmental conditions. The algorithm is incorpo-
rated into a nearly real-time system that detects doors as the robot
drives down a corridor. In addition, a modified version of the al-
gorithm is presented for uncalibrated camera systems common in
non-robotics applications.

2. Previous work

Many door detection systems use only range information, with-
out cameras. Early work involved sonar sensors [3], while more re-
cent work utilizes laser range finders [12,13]. In these approaches,
the detector requires the door plane to be distinguishable from
the wall plane either because the door is recessed, a molding pro-
trudes around the door, or the door is slightly open. Thus, if a door
is completely flush with the wall, such detectors will be unable to
find it.

Perhaps the most popular approach to door detection involves
combining range sensors with vision. Kim and Nevatia [2] extract
both vertical (post) and horizontal (lintel) line segments from
an image, then analyze whether these segments meet minimum
length and height restrictions, verifying door candidates by a 3D
trinocular stereo system. Stoeter et al. [4] extract vertical lines in
the image using the Sobel edge detector followed bymorphological
noise removing, and then combine the resulting lines with range
information from a ring of sonars to detect doors. In contrast, the
system of Anguelov et al. [5] does not use intensity edges at all, but
rather the colors along a single scan of an omnidirectional image
combined with a laser range finder. Doors are first detected by
observing their motion over time (i.e., whether an open door later
becomes closed, or vice versa) in order to learn a global mean door
color. Doors are then detected in an expectation–maximization
framework by combining the motion information with the door
width (as estimated by the laser range finder) and the similarity
of image data to the learned door color. This approach assumes
that the doors are all similarly colored, that the mean color of the
doors andwalls are significantly different fromeach other, and that
enough doors change state to learn the appropriate color models.
Another piece of interesting research is that of Hensler et al. [14],
who augment our recent vision-only algorithm [9] with a laser
range finder to estimate the concavity andwidth of the door,which
are then combined with other image-based features.

A few researchers have focused upon the much more difficult
problemof detecting doors using vision alone,without range infor-
mation. Monasterio et al. [15] detect intensity edges correspond-
ing to the posts and then classify the scene as a door if the column
between the edges is wider than a certain number of pixels, an ap-
proach that assumes a particular orientation and distance of the
robot to the door. Similarly, Munoz-Salinas et al. [16] apply fuzzy
logic to establish the membership degree of an intensity pattern
in a fuzzy set using horizontal and vertical line segments. Jauregie
et al. [17] propose an approach to identify the door by recogniz-
ing the door edges using color information. Rous et al. [18] gen-
erate a convex polygonal grid based on extracted lines, and they
define doors as two vertical edges that intersect the floor and ex-
tend above the center of the image. Theirwork employsmean color
information to segment the floor, thus assuming that the floor is
not textured. An alternate approach by Cicirelli et al. [19] analyzes
every pixel in the image using two neural networks: one to detect
the door corners, and one to detect the door frame, both of which
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Fig. 2. Door configuration: a door candidate can be described using two vertical
lines ℓl and ℓr in an image, defined by four end points (xl, ylt ), (xl, ylb), (xr , yrt )
and (xr , yrb). Assuming that the door rotates around the right vertical line, the
bottom left corner of the door is located at (x̃, yrb) when the door is parallel to the
image plane. ∆x is the width of the aligned door in image coordinates, while ∆y is
the height from the bottom of the door to the horizontal line passing through the
principal point (u0, v0) of the image.

are applied to the hue and saturation color channels of the image.
Murillo et al. [20] present a color-based approach to door detec-
tion that works well when the door color is uniform throughout
the environment.

While these previous systems have achieved some success, no
vision-only systemhas yet demonstrated the capability of handling
a variety of challenging environmental conditions (changing
orientation, similarly colored doors and walls, strong reflections,
and so forth) in the presence of lintel occlusion that often occurs
when the camera is low to the ground and the door is nearby.

3. Bayesian formulation

In this section, we formulate the problem in a Bayesian frame-
work. Assuming that the camera is oriented so that the image plane
is perpendicular to the floor, a door d = (xl, xr , ylt , ylb, yrt , yrb) in
an image I is represented using the six coordinates of the four end
points of two vertical line segments ℓl and ℓr , as shown in Fig. 2.
Our goal is to find the number of doors in the image, along with
the location of each door. Invoking the first-orderMarkov assump-
tion, and letting d1, . . . , dk represent the sequence of k doors from
left to right in the image, the goal is expressed probabilistically as
maximizing

p(k, d1, . . . , dk|I) = p(d1|I)p(k|I)
k∏

i=2

p(di|I, di−1). (1)

A straightforward approach to solve this problem would be to
apply the reversible jump Markov chain Monte Carlo (RJMCMC)
technique [21] to simultaneously estimate the number k and the
joint configuration of all the doors. Such an approach, however, is
notoriously computationally intensive. In contrast, the formulation
above suggests that a simpler approachmight be sufficient: search
the image from left to right (or vice versa) in a sequential manner
to find the doors one at a time. Since the coupling between the
doors can be modeled as a prior on location, the primary problem
becomes to find a single door given the image by maximizing
p(d|I), which, according to Bayes’ rule, is
p(d|I) ∝ p(I|d)p(d). (2)
Following the sum rule of Kittler and colleagues [22–24], this is
similar to maximizing the following functional:
E(d) = Ψdata(I|d) + Ψprior(d), (3)
where Ψdata and Ψprior are combinations of expert opinions for the
likelihood and prior, respectively.

4. Prior model

The prior model captures information about the expected door
configuration without considering image evidence relevant to the
particular door being found. We formulate the prior of a door
candidate as a linear combination of various pieces of evidence:

Ψprior(d) =

Nprior−
i=1

αifi(d), (4)

where Nprior is the number of tests aggregated, and αi is the weight
that governs the relative importance of the ith test,

∑Nprior
i=1 αi = 1.

All the tests fi are normalized to yield values between 0 and 1.
Our approach employs two tests (Nprior = 2). First, we compare

the width w of the door in world coordinates with the expected
width ŵ of real doors:

f1(d) = exp

−

(w − ŵ)2

2σ 2
w


. (5)

Several real world doors were measured in order to determine
the expected door width and standard deviation, leading to ŵ =

0.96 m, and σw = 0.08 m. To enable the measuring of the
door width in world coordinates, the camera is first calibrated
by capturing an image of a piece of paper of known dimensions
placed on the floor. The normalized direct linear transformation
(DLT) technique [25] is used to calculate a homography between
the floor plane and the image plane, which enables the image to
world transformation of the two points at the bottom of the door.

Secondly, we expect the height of the two vertical door edges
(inworld coordinates) to be similar to theheight of a standard door.
However, since the lintel (top) of the door could be occluded, itmay
be impossible to measure the height of these two edges. Instead,
we measure the height hh of the hinge edge between the ground
plane and the horizontal plane passing through the optical center
of the camera. If the image plane is perpendicular to the ground
plane, the ratio ρ = w/hh of the door width to this height should
be constant, leading to

f2(d) = exp


−

(ρ − ρ̂)2

2σ 2
ρ


, (6)

where ρ̂ is the ratio of a standard door. Based on measurements of
25 real doors, and a camera height of 0.32 m above the ground, we
obtain ρ̂ = 3.0 and σρ = 0.2.

Fig. 2 illustrates the computation of ρ. Given the homogra-
phy H between the image and world coordinate systems, H−1
xr yrb 1

T yields the homogeneous world coordinates of the
intersection of the door’s rotation axis (assuming that it rotates
around its right edge) and the ground plane. Let C be the 3 × 3
homogeneousmatrix representing, inworld coordinates, the circle
centered at this locationwith radius equal to thewidth of the door.
Then C ′

= H−TCH−1 describes the ellipse in the image tracing
the coordinates of (xl, ylb), the bottom of the left line, as the door
rotates about its hinge. For any image point along this ellipse, the
world width of the door is, of course, the same. Thus, the point
(x, yrb), which is the intersection of C ′ with the line y = yrb,
indicates the image location of the bottom of the door that would
result if the door were parallel to the image plane. (Note that in
most cases the ellipse will not be aligned with the image axes, so
the line y = yrb is not themajor axis of the ellipse.) Assuming unity
aspect ratio of the image sensor, this yields the ratio as

ρ =
w

hh
=

∆x

∆y
=

xr −x
yrb − v0

. (7)

5. Data model

Similar to the prior model, the data model is formulated as a
linear combination of evidences:

Ψdata(I|d) =

Ndata−
j=1

βjgj(I|d), (8)
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where the weights βj are chosen based on Adaboost,
∑Ndata

j=1 βj =

1, and all the tests gj are normalized between 0 and 1. We now
describe the Ndata = 9 tests.

5.1. Image gradient along edges (g1)

Perhaps the most distinguishing visual characteristic of doors
in images is the change in intensity that usually accompanies the
sides of the door. As a result, we measure

g1(I|d) = 1 − exp


−

−
x∈Re

(∇I(x))T n(x)
 , (9)

where x is a pixel on the door edge, ∇I(x) is the 2D image gradient
at the pixel, and n(x) is the normal to the door edge at the pixel.
The set Re of pixels includes the left and right edges of the door,
the bottom edge, and the top edge (if xlt ≠ 0 and xrt ≠ 0). The
gradient of the image is computed using a 3-tap separableGaussian
derivative filter with a standard deviation of 1 pixel.

5.2. Placement of top and bottom edges (g2 and g3)

After computing the gradient of the image, vertical and hori-
zontal line segments are found by applying the Douglas–Peucker
line fitting algorithm [26], as modified in [9] to use an adaptive
threshold, to the output of the Canny edge detector. The horizon-
tal segments between the two vertical door edges are compared
to determine the topmost segment, which is then extended to in-
tersect with the vertical edges, yielding expected values ŷlt and ŷrt
for the top points of the two edges. If there is no such segment,
then ŷlt = ŷrt = 0, indicating a lintel-occluded door. Similarly, the
bottom endpoints of the vertical edges are compared with the line
forming the boundary between the wall and the floor:

g2(I|d) = exp

−

(ylt − ŷlt)2

2σ 2
t

−
(yrt − ŷrt)2

2σ 2
t


(10)

g3(I|d) = exp

−

(ylb − ŷlb)2

2σ 2
b

−
(yrb − ŷrb)2

2σ 2
b


, (11)

where ŷlb and ŷrb are the intersections of the wall–floor boundary
with the two vertical edges, computed as in [27]. The standard
deviations σt and σb are set to 5 pixels.

5.3. Color and texture (g4 and g5)

Color provides a helpful cue to distinguish the door from its
surroundings. We use the Bhattacharyya coefficient [28]

g4(I|d) =

Ncol−
i=1


φ(i)φwall(i) (12)

to compare the normalized color histogram φ computed using
the pixels inside the door parallelogram, and the normalized color
histogram φwall that models the colors in the wall, where Ncol = 83

is the number of bins in the histogram. The HSV (hue, saturation,
value) color space is used due to its insensitivity to illumination
changes compared with RGB (red, green, blue) space. In our
system, the robot builds a model of the wall color automatically
as it moves down the corridor, described later.

Although the top half of a door may contain windows, signs,
or flyers, the bottom half of a door is often untextured. Texture is
measured using the entropy of the normalized histogram of the
image gradient magnitude and phase:

g5(I|d) = 1 −
1
η

Ntex−
i=1

Mtex−
j=1

φtex(i, j) log (φtex(i, j)) , (13)
Fig. 3. Left: a door with a kick plate. Right: the segmentation of the image using
the efficient minimum-spanning-tree algorithm [29], in which the kick plate is
identifiable as the olive green region at the bottom of the door. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. The bottom line of a door intersects the vanishing point (left), while a
distracting line caused by shadows does not (right).

where i and j index the magnitude and phase, respectively, in the
histogram φtex; Ntex = 16 and Mtex = 8 are the numbers of bins
along the two directions of the histogram; and η = log (NtexMtex)
is the entropy of a uniform distribution, used to normalize the
result. We use entropy because of its ability avoid being distracted
by strong intensity edges that may occur near the bottom of the
door, such as the boundary of the kick plate. Typically, such edges
are fairly localized in magnitude and phase, thus resulting in low
entropy.

5.4. Kick plate (g6)

Some doors have kick plates near the bottom which provide
an additional cue for door detection. The image is first segmented
using the efficient minimum-spanning-tree algorithm [29], as
shown in Fig. 3. A region in the segmented image is considered
as kick plate if it is located within the two vertical door lines and
above the bottom of the door candidate, and if its height is about a
quarter of the height of the door candidate. This results in

g6(I|d) = exp


−

(kx − k̂x)2

2σ 2
kx


exp


−

(ky − k̂y)2

2σ 2
ky


, (14)

where (kx, ky) is the centroid of the kick plate, k̂x = xr − xl is
the x coordinate of the centroid of the door candidate, and k̂y =
1
4∆y is the expected y coordinate of the centroid of the kick plate,
assuming that the height of the kick plate is approximately one half
the distance from the bottom of the door to the principal point.We
set σkx =

1
4 (xr − xl) and σky =

1
4∆y. If no kick plate is detected,

then g6(I|d) = 0.

5.5. Vanishing point (g7)

The vanishing point provides an additional test, as shown
in Fig. 4. The vanishing point is computed as the mean of the
intersection of pairs of non-vertical lines inside the door region:

wvx
wvy
w


=

1
Nv

−
i,j

ai
bi
ci


×

aj
bj
cj,


(15)



970 Z. Chen et al. / Robotics and Autonomous Systems 59 (2011) 966–976
Fig. 5. A concave door exhibits a slim ‘‘U’’ to its side, as well as a recession of the
bottom edge. These two geometric cues are exploited in the concavity measure.

where the sum is over all pairs of lines i and j, Nv is the number
of such pairs, each line is described by an equation aix + biy +

ci = 0, × denotes the cross product, and the result is expressed
in homogeneous coordinates. The vanishing point v =


vx vy

T
is determined by dividing by the scaling factor w. Vanishing point
consistency is measured by

g7(I|d) = exp

−

(vx − v̂x)
2

2σ 2
vx


exp


−

(vy − v̂y)
2

2σ 2
vy


, (16)

where v̂ =

v̂x v̂y

T is the vanishing point estimated as themean
of the intersection of pairs of non-vertical lines outside the door.We
set σvx and σvy as 1

10 of the width and height, respectively, of the
image.

5.6. Concavity (g8)

In many environments, doors recede into the wall, creating
a concave shape for the doorway. A simplified concave door
structure is illustrated in Fig. 5, leading to two observations
regarding the intensity edges. First, a slim ‘‘U’’ exists consisting of
two vertical lines (the door edge and jamb) and one horizontal line
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Fig. 6. The intensity profile of a vertical slice through the bottom door edge. Left: images of three doors. Top-right: the intensity profile of a vertical slice through the
bottom edge, showing a dark trough caused by the shadow of the door. Middle-right: alternatively, if the light in the room is on, the presence of the door is evident from
the bright peak. Bottom-right: however, if the vertical slice covers the wall–floor intersection, the intensity profile changes smoothly, and no sharp peak occurs.
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Fig. 7. Pseudocode of the DDMCMC-based door detection algorithm.

Fig. 8. The relative width of two doors can be computed using only image
measurements, given the vanishing point.

(between the door frame and floor). Second, the bottom edge of the
door is slightly recessed from the wall–floor edge.

Let (x, y) be a pixel on the line formed by extending the
wall–floor boundary in front of the door (the dashed line in the
figure), and let (x, yb) be the pixel on the bottom of the door in the
same column of the image. Then we define

g8(I|d) = exp

−

(wu − ŵu)
2

2σ 2
u

−
(y − yb − ∆ŷrec)2

2σ 2
r


, (17)

where ŵu =
1
4 (xr − xl), ∆ŷrec = 2 pixels, σu = 2 pixels, and

σr =
1
4 (xr − xl), where xr − xl is the width of the door in the image.

The first factor tests the slim ‘‘U’’ by comparing its width wu with
an expected width ŵu, and the second factor tests the recession.
Fig. 9. ROC curves showing the performance of our algorithm compared with the
performance of single-cue detectors.

MCMC
DDMCMC
Linebased approach

Fig. 10. ROC curves showing the performance of the MCMC and DDMCMC
algorithms, as well our previous line-based approach [9] on the database of 477
images.

5.7. Gap below the door (g9)

Almost without exception, doors are constructed with a gap
below them to avoid unnecessary friction with the floor as they
open or close. As a result, when the light in the room is on, the
area under the door tends to be brighter than the immediate
surroundings, whereas, if the light is off, then the area tends to
be darker due to the shadow. In either case this piece of evidence,
which is often just a few pixels in height, provides a surprisingly
vital cue to the presence of the door, which is illustrated in Fig. 6.
In particular, this phenomenon is important for disambiguating the
bottom door edge from the wall–floor edge. For each pixel along
the bottom door edge, we compute the minimum and maximum
intensities in the surrounding vertical profile and perform a test to
ensure that the extremum value is near the center of the profile,
and that the difference between the extremum value and the
average of the surrounding values is above a threshold. The gap
below the door is then measured as the ratio of the number of
pixels Ng that satisfy the bottom gap test to the total number of
pixels Nb along the bottom edge:

g9(I|d) =
Ng

Nb
. (18)

6. Door detection using the DDMCMC technique

The Markov chain Monte Carlo (MCMC) technique uses a
stochastic algorithm for finding the extremum of a functional
by a discrete search of the state space. The sequence of states
encountered during the search forms aMarkov chain, and the state
with the best score is retained as the solution once the search
terminates. At the heart of the algorithm is a jump from the current
state d to the next state d′ according to the proposal probability
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Line-based [3] Line-based [3] DDMCMCDDMCMC

Fig. 11. Example doors successfully detected by stochastic search but unsuccessfully or incompletely detected by our previous line-based algorithm [9].
q(d′
|d). Using theMetropolis–Hastingsmethod [30], the new state

is then accepted according to the probability

p(d → d′) = min

1,

E(d′)q(d′
|d)

E(d)q(d|d′)


, (19)

where the equation corresponds to a maximizing of E and hence a
maximum a posteriori (MAP) estimate of the door.

The speed of the MCMC technique depends critically on the
design of the proposal probability distribution q. If a uniform
distribution is used, then all parameters of the state vector are
equally likely to change. With such a blind search, the Markov
chain will experience exponential waiting time before each jump.
Because we are interested in real-time applications, we turn to the
data-drivenMCMC (DDMCMC) technique in order to speed up this
computation. In the DDMCMC technique, the proposal distribution
q(d′

|d) is replaced by q(d′
|d, I), so that image data may be taken

into account when computing the next state.
Inspired by our previous work [9], we exploit the fact that

doors are frequently aligned with intensity edges in the image.
For the DDMCMC technique, the proposal distribution is split
according to the individual x and y elements as q(d′

|d, I) =

q(xl, xr |I)q(ylt , ylb, yrt , yrb|xl, xr). The x coordinates are found by
drawing from the distribution q(xl, xr |I) = q(xl|ℓ∗

l )q(xr |ℓ
∗
r )

q(ℓ∗

l , ℓ
∗
r ), where q(ℓ∗

l , ℓ
∗
r ) expresses that two vertical lines are

drawn at random from the detected vertical line segments and
ordered such that ℓ∗

l is to the left of ℓ∗
r , and the x coordinates

are then drawn from Gaussian distributions centered at ℓ∗

l and ℓ∗
r ,

respectively.
For the y coordinates, we find the horizontal line segment clos-

est to connecting the top of the two vertical lines ℓl and ℓr . We de-
fine the intersection of this line segmentwith the two vertical lines
Fig. 12. Comparison of the speed of the MCMC and DDMCMC algorithms with
and without Adaboost weighting, from averaging runs in ten typical images. The
DDMCMC algorithm with Adaboost converges in an average of seven iterations.

as y∗

lt as y
∗
rt . If no such horizontal line segment can be found, then

the door is assumed to be lintel occluded, and y∗

lt = y∗
rt = 0. Sim-

ilarly, we define the intersection of the wall–floor boundary with
the twovertical lines as y∗

lb and y∗

rb. Then the y coordinates are found
by drawing independently fromGaussian distributions centered at
these locations.

Once a certain number of jumps have not yielded any increase
in the score, the search stops, and the resulting state is considered
a door if the score is above a threshold. The process then repeats
to look for additional doors, excluding line segments near doors
that have already been detected in the image from the distribution
q(ℓ∗

l , ℓ
∗
r ). When no more doors can be found, the process is

complete. Pseudocode for the algorithm is given in Fig. 7, where
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Fig. 13. In lexicographic order, six sequential candidates found by the DDMCMC door detection algorithm on an example image. By the third candidate (top right), the door
is essentially detected, and the algorithm has achieve 90% of the maximum score. By the sixth candidate (bottom right), the algorithm has settled onto a better solution but
at the expense of much more computation time since the time is not linear in the number of candidates. Later candidates require more jumps, so achieving the result of the
sixth candidate requires more than 14 times as much computation as that of the third candidate.
Fig. 14. ROC curves of the DDMCMC algorithm with and without calibration.

ϵ is a small number to avoid dividing by zero, σx = 1 pixel, and
σy = 3 pixels.

7. Uncalibrated cameras

The only part of the algorithm that uses calibration information
is the prior terms, described in Section 4. Removing these terms
yields a system that requires no calibration, which may be useful
for non-robotic applications in which the height of the camera
above the floor is not known. One issue with an uncalibrated
system is estimating the door color. For a calibrated system, the
robot is run along the corridor, and thewidth betweenvertical lines
is compared with the expected door width in world coordinates to
yield the likelihood, based on width alone, that the vertical lines
arise from a door. These preliminary decisions are used to build a
color model of the wall, which then is used in the color cue when
the full system is run. For an uncalibrated system, however, we
cannot do this. Instead, we rely on the relative width of doors.

To detect relative door width, we rely on an assumption that
doors in an environment are likely to have similar widths in the
world. Given an image of two doors, 1D projective geometry can be
used to compute their relative width. The scenario is illustrated in
Fig. 8, which shows a top-down view of two doors projected onto
an image. In the 1D world coordinate system, the door posts lie
at locations A, B, C , and D along the line containing the wall. In
homogeneous coordinates, therefore, these posts lie at locations
(A, 1), (B, 1), (C, 1), and (D, 1), and (0, 1) is the point at infinity
associated with the line containing the posts. In the image, we
can detect the vertical lines associated with these edges, yielding
horizontal image coordinates of a, b, c , and d. Now suppose that
we also detect the vanishing point in the image and determine
that its horizontal coordinate is v. Translating the origin of both
coordinate systems to the leftmost edge, we can use the following
two equations to relate a and v to their world coordinates:
H2×2


0 1

T
=


0 1

T and H2×2

1 0

T
=


v − a 1

T . Then
we can solve for the 2 × 2 homography matrix H2×2 that maps
world coordinates to image coordinates:

H2×2 =

[
v − a 0
1 1

]
. (20)

Once H2×2 has been calculated, it is easy to see that the
homogeneous coordinates of the image projection of B are given
by H2×2


B − A 1

T
=


(B − A)(v − a) B − A + 1

T , so the
relationship between world point B and image point b is given
by b − a =

(B−A)(v−a)
B−A+1 , since A and a are the origins of the two

coordinate systems. Rearranging leads to an expression for the
width of the first door:

width1 = B − A =
b − a
v − b

. (21)

Similarly, again using (20), thewidth of the second door is given by

width2 = D − C =
d − a
v − d

−
c − a
v − c

=
(d − c)(v − a)
(v − c)(v − d)

. (22)

Now, these widths are only computed up to an unknown scaling
factor. Therefore, the important cue is not the absolute value of
either width, but rather whether the widths are nearly equal to
each other. After measuring the relative width of the two doors,
the result is verified by checking the similarity of color between
them, as well as the consistency of the cross ratio between a, b, c ,
and d as the robot moves, in order to verify that A, B, C , and D are
collinear. If all of these tests are passed, then the area between the
two doors is considered as awall, and is used to build thewall color
model.

8. Experimental results

To test the performance of the system, we created a database
consisting of 577 images of doors in more than 20 different build-
ings exhibiting a wide variety of different visual characteristics.
The images were captured by an inexpensive Logitech QuickCam
Pro 4000mounted 32 cm above the floor on an ActivMedia Pioneer
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Fig. 15. Doors successfully detected by our algorithm. Note the variety of door widths, door and wall colors, relative orientation of the door with respect to the robot, floor
texture, and lighting conditions. Distant doors are not considered by the algorithm.
P3ATmobile robot. Of these images, 100were used for training the
algorithm, and the remaining 477 imageswereused for testing. The
algorithmwas implemented in Visual C++, and it runs at a speed of
4 frames per second on 320 × 240 images using a 1.6 GHz Dell In-
spiron 700m laptop computer.

Our approach combines as many cues as possible, based on the
assumption that additional cues will contribute to improving the
detection results. To investigate the contribution of each individual
cue, we developed separate door detectors that use just that cue.
From the receiver operating characteristic (ROC) curves of these
single-cue detectors applied to the testing images, shown in Fig. 9,
we see that there is a vast difference in the importance of the
different cues. The most important single cue is our novel measure
of concavity, which alone can achieve an equal error rate (EER) of
80%. Following this cue are the door width, the bottom gap, and
color, each of which achieves an EER greater than 70%. The least
important cues are the vanishing point and the kick plate.

The Adaboost algorithm [10] was then applied to the training
images to automatically determine the weights of the various cues
to be used in the final algorithm. Fig. 10 shows the ROC curve of
two versions of the algorithm, along with our previous line-based
approach [9]. The two versions of the algorithm are the slower
MCMC algorithm, which detects 90% of the doors with a false
positive rate of one non-door for every 14.3 images on average,
and the faster DDMCMC algorithm, which detects 86% of the doors
with a false positive rate of one non-door for every 11.1 images
on average. Both versions achieve essentially the same EER at 90%.
While our previous approach worked well on the smaller database
used in that paper, its limitations are more apparent on this
larger database, which exhibits greater variety in appearance and
orientation.
Some example doors unsuccessfully or incompletely detected
by our previous line-based algorithm [9] but successfully detected
by the current system are shown in Fig. 11. Because it is able
to explore the entire solution space, the stochastic search of
the MCMC/DDMCMC algorithm achieves a nearly global optimal
solution. In contrast, the doors located by the previous algorithm
are highly dependent on the positions of the detected vertical
lines because it does not include a mechanism for overcoming
line detection errors by other cues. In addition, the line-based
algorithm does not model the door as a polygon in the image,
leading to disconnected line segments that often do not extend the
height of the door.

A comparison of the speed of the MCMC algorithm versus the
DDMCMC algorithm is demonstrated in Fig. 12, where it is seen
that the DDMCMC algorithm achieves a speedup of nearly 30 times
over the MCMC algorithm. In addition, the figure shows that an
additional speedup results from using Adaboost to weight the
different cues according to their importance rather thanweighting
them equally. For the DDMCMC algorithm, the Adaboostweighting
does not play an important role in the early iterations, but it
does increase the speed significantly in later iterations. Both the
MCMC and the DDMCMC algorithms compute essentially the same
solution, but stopping the iterations of the latter causes less harm
in the results. The progress of the DDMCMC algorithm on an
example image is shown in Fig. 13, where it can be seen that
the results are not significantly different when the algorithm is
stopped after achieving a value 90% of the maximum, and the yet
the speed is increased by more than a factor of 14.

Results of the DDMCMC algorithmwith andwithout calibration
are shown in Fig. 14. While the calibrated system does achieve
higher accuracy, the difference between the two systems is minor,
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Fig. 16. False negatives and positives. Left: one door is successfully detected, but
another is missed due to lack of contrast along its bottom edge coupled with strong
reflections on the floor; in addition a false positive occurs because of distracting
horizontal edges. Right: a dark door that is flush with the wall fails the concavity
and bottom gap tests and hence is missed, while edges on the wall are erroneously
detected.

Fig. 17. Top: two images of the hallway environment near our laboratory. Bottom:
2D plan view of the hallway, along with the results of the experiment. Beside each
door is indicated the number of detections/total number of trials.

particularly for low false positive rates. These data suggest that, in
situations in which calibration is not feasible (e.g., detecting doors
in images captured for non-robotics applications), the decrease in
accuracy should be small.

Typical doors detected by our system are shown in Fig. 15,
where it can be seen that our algorithm is capable of detecting
doors in difficult conditions, including a variety of illumination
conditions and viewpoints, in cluttered environments, and even
when the door has the same color as the wall. For completeness,
some errors of the algorithm are shown in Fig. 16.

To demonstrate the utility of the algorithm, we applied it to
live video from the robot shown in Fig. 1 equipped with two
webcams with diverging optical axes. As the robot moved down
a corridor, doors were detected on both sides of the hallway by the
algorithm by processing the images on-line. Doors were tracked
from frame to frame. Doors that were not repeatedly detected for
a certain number of image frames were regarded as false positives
and discarded. Fig. 17 shows the results of five trials in which the
robot was manually driven along approximately the same path at
a speed of 0.2 m/s down a 40m×15m corridor with a 90° turn. 25
closed doors in the corridor were detected and tracked with 100%
accuracy, that is, 5 detections out of 5 trials. A door partly occluded
by water fountain was also detected and tracked. However, the
doors of a cabinet were detected mistakenly because they look
similar to real doors. Overall, the detection rate was 100%, with a
false positive rate of 0.008 per meter driven.
9. Conclusion

We have presented a vision-based door detection algorithm
based on a data-driven Markov chain Monte Carlo (DDMCMC)
process. Models of doors utilizing a variety of features, including
color, texture, and intensity edges, are presented. We introduce
two novel geometric features that increase performance signifi-
cantly: concavity and bottom-edge intensity profile. The Bayesian
formulations are constructed and a Markov chain is designed to
sample proposals. The features are combined using Adaboost to
determine the linear weighting. Doors are detected based on the
idea of maximizing a posterior probability (the MAP technique).
Using the Monte Carlo technique, our algorithm is able to explore
the complex solution space and achieve a nearly global optimal so-
lution. Data-driven techniques, such as edge detection, are used
to compute importance proposal probabilities, which drive the
Markov chain dynamics and achieve speedup in comparison to the
traditional jump diffusion methods. On a large database of images
collected in a wide variety of conditions, the algorithm achieves
approximately 90% detection with a low false positive rate. Addi-
tional experiments demonstrate the suitability of the algorithm for
real-time applications using a mobile robot equipped with an off-
the-shelf camera and a laptop.

There is much room for future work in this area. Additional fea-
tures can be incorporated into the Adaboost framework to increase
performance. One such cue that could improve results would be
door knobs, whose detection will be a challenge due to their ex-
tremely small size in the image. Coupling camera calibration with
3D line estimation would enable orientation and distance mea-
surements to facilitate the building of a geometricmap. In addition,
open and closed doors can be distinguished usingmotion informa-
tion inside the door, specifically themotion parallax of features in-
side the room that are visible when the door is open. Our ultimate
goal is to integrate the algorithm into a complete navigation sys-
tem that is able to build a map of an environment and then drive
down a corridor and turn into a specified room.
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