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Abstract— The increasing pervasiveness of location-acquisition 

technologies (GPS, GSM networks, etc.) enables people to 

conveniently log their location history into spatial-temporal data, 

thus giving rise to the necessity as well as opportunity to 

discovery valuable knowledge from this type of data. In this 

paper, we propose the novel notion of individual life pattern, 

which captures individual’s general life style and regularity. 

Concretely, we propose the life pattern normal form (the LP-

normal form) to formally describe which kind of life regularity 

can be discovered from location history; then we propose the LP-

Mine framework to effectively retrieve life patterns from raw 

individual GPS data. Our definition of life pattern focuses on 

significant places of individual life and considers diverse 

properties to combine the significant places. LP-Mine is 

comprised of two phases: the modelling phase and the mining 

phase. The modelling phase pre-processes GPS data into an 

available format as the input of the mining phase. The mining 

phase applies separate strategies to discover different types of 

pattern. Finally, we conduct extensive experiments using GPS 

data collected by volunteers in the real world to verify the 

effectiveness of the framework.  

I. INTRODUCTION 

Nowadays, the development in location-acquisition 

technologies and its embedding into people's daily life results 

in a novel type of spatial-temporal data, which traces 

individual location history and can be collected by the 

wireless network infrastructures. For instance, when mobiles 

phones are connected to GSM network, they left positioning 

logs together with the timestamp of each log point. Likewise, 

GPS-embedded portable devices can also record the latitude-

longitude position at every moment when exposed to a GPS 

satellite. The increasing availability of individual location 

history data bring us challenges as well as opportunities to 

discover valuable knowledge from the raw data. 

On this topic, some literatures aim at performing traditional 

data mining tasks on spatial-temporal data, like classification 

[1], clustering [2], pattern mining [3], [4] and outlier detection 

[5]. In the meantime, some techniques have been proposed to 

discovery higher level knowledge from individual GPS data 

[15], including detecting significant locations of an individual, 

predicting the movement destination [6], [11], recognize 

individual mobility [14], etc. 

However, the first class of research treats location history 

data as general spatial-temporal trajectory; thereby loses some 

of their inner properties. For instance, each log point in the 

location history contains absolute time spot. However, either 

Temporally Annotated Sequences in [7] or Trajectory Pattern 

Mining in [3] discards this absolute time information and just 

calculate the time interval between two points as time 

annotation. While current works in the second class typically 

mine first-level knowledge about position and mobility from 

location history, like significant places, possible destinations, 

attribute of mobility like stationary and walking. 

Since location history data are individually generated, 

given the close relationship between people's daily life and 

geographic locations, we claim that one's general life style and 

regularity can be discovered from his/her location history. 

Resembling traditional definitions of frequent pattern in 

transaction database [8], we term individual’s general life 

style and regularity life pattern. In contrast to the first level 

knowledge about position and mobility, life patterns represent 

a higher level knowledge drawn from location history data. 

The discovery of life pattern has a manifold of application 

scenarios. To illustrate, life pattern reflects the regularity of 

one individual, thus can help people better learn their way of 

life; it can also be embedded into location recommender 

system, context-based computing, precise advertising, 

computer-aided schedule and route arrangement. For instance, 

if Tom's life pattern about the time he goes to work is 

discovered, his intelligent cell phone can automatically help 

arrange the travelling route according to that day's traffic 

condition. If Tom's general body-building time and place is 

discovered, intelligent advertising system may choose that 

moment to cast health products advertisement to his mobile 

equipment. Also, computer-aided schedule and route 

arrangement system can intelligently advice Tom to arrange 

the time, route or position of new activities, given his general 

life pattern. In the meantime, through collecting and analysing 

life patterns of multiple individuals, a lot of statistical and 

mining work can be done to discovery valuable knowledge 

about social trends and generalities. 

This paper is motivated by the increasing availability of 

individual GPS data and the usefulness of life pattern. We aim 
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at mining individual life pattern from individual generated 

GPS data. Concretely, the contribution of this paper lies in 

following aspects: 

 We propose the novel notion of individual life 

pattern. We introduce the life pattern normal form 

(LP-normal form) to formalize the expression of life 

patterns and facilitate the mining framework. Life 

pattern emphasize significant places in one’s daily 

life, because these places reflects his/her typical life 

activities. An atomic life pattern corresponds to one 

significant place. LP-normal form takes into 

consideration several properties to combine atomic 

patterns into complicated ones. We also introduce 

life associate rules as a special type of pattern.  

 We propose the LP-Mine framework to effectively 

extract life patterns from raw GPS data. In the first 

phase, through two steps of modelling: stay point 

detection and stay point clustering, LP-Mine 

transformed individual GPS data into the location 

history sequence as the input of the mining phase. In 

the second phase, LP-Mine applies separate 

methodologies for different types of patterns, 

including temporal sampling and partition, frequent 

itemset and sequence mining, corset discovery, etc.  

 We conduct extensive experiments using GPS data 

collected by volunteers over a period of 6 months to 

verify the effectiveness of LP-Mine framework. We 

inject LP-Mine into “GeoLife”, a GPS-log-driven 

application on Web Map, to visualize the mined 

patterns, thus we can conduct user study to verify the 

interestingness and representativeness of mined 

patterns.  

The rest of the paper is organized as follows. In Section II, 

we survey related work and point out the differences between 

ours and others. In Section III, we detailedly analyse several 

aspect with regard to life patterns; then propose the life pattern 

normal form to formalize the definition of life patterns. In 

Section IV and V, we respectively detail the “modelling” and 

“mining” phase of LP-Mine. The experimental evaluations 

and discussions are provided In Section VI. Our conclusion 

and outlook on the future work are given in Section VII. 

II. RELATED WORK 

A. Traditional Frequent Pattern Mining and Association 

Discovery 

As a major task of data mining, frequent pattern mining and 

associate rule discovery have been exhaustively studied in the 

last decade. In [8], the idea of frequent pattern and associate 

rules is first introduced based on basket analysis. A basket 

corresponds to a transaction containing different items. Given 

a threshold s and a transaction dataset D, the mining task is to 

discovery itemsets whose support (percentage of transactions 

in D containing the itemset) is greater than s as frequent 

patterns. Associate rule is extension of frequent pattern. An 

associate rule “𝐴 → 𝐵” carries the semantic that if people buy 

items in 𝐴  , they tend to buy items in 𝐵 . Associate rule 

discovery uses frequent itemset mining as the first step. 

Frequent sequential pattern is first addressed in [9]. Items 

forming a sequential pattern must obey certain order and the 

mining task is to discovery frequent subsequence from a 

sequence dataset. 

Early frequent pattern mining algorithms tend to generate 

exponential number of patterns, most of which are valueless. 

Therefore, closed itemset and subsequence are proposed. A 

pattern is called “closed” if none of its superset or super-

sequence is frequent. Closed patterns retain valuable 

information and are of polynomial number; therefore they are 

widely applied. Representative algorithms for closed itemset 

and sequence mining are closet+ [10] and CloSpan [11]. 

Frequent pattern mining is extended to various types of data 

and applied in different contexts. J. Han. [19] presents a 

comprehensive survey of frequent pattern mining categories, 

techniques and applications. Traditional frequent pattern 

mining cannot be directly applied to trajectory data because of 

the fussiness of space (no two point in trajectory data is 

exactly the same) and the introduction of temporal 

information.  

B.  Trajectory Data Mining 

On applying traditional data mining tasks to spatial-

temporal data or trajectory data, several paradigms have been 

proposed to solve the fuzziness in locations and utilize the 

temporal information in original data. On mining sequential 

pattern on spatial data, [4] defines pattern elements as spatial 

regions around frequent line segments. First, original 

sequence is transformed into a list of sequence segments; then 

frequent regions are detected in a heuristic way; finally 

patterns are detected using a substring tree structure. On 

extending sequence pattern mining, the temporal annotation 

sequence (TAS) is first introduced in [7] to represent the 

transmission time between sequence elements. However, [4] 

does not assume temporal information and [7] does not 

assume the fussiness of sequence elements. In [3], both space 

(i.e., the regions of space visited during movements) and time 

(i.e., the duration of movements) are taken into consideration 

to define a trajectory pattern. 

In [2], [1], [5], the same definition of perpendicular, 

parallel and angular distance between two trajectory partitions 

(t-partitions) is proposed. Then a similar partition phase is 

employed to divide original trajectory into set of t-partitions 

based on the notion of minimal descriptive length (MDL). 

Finally, different mining tasks: clustering, classification and 

outlier detection are performed on the resulted t-partition set. 

All these trajectory data mining works deals with the raw data.  

Most existing techniques on trajectory data mining can be 

applied to general trajectory data like hurricane track and 

animal movement. Even when applied to individual GPS data, 

they typically cannot discovery knowledge about personal life.  

In contrast, our work focuses on individual GPS data and 

discovers individual life regularity as life patterns. 

C. Mining Location History 



 

 

There are also several works on mining location history 

based on GPS data. On mining individual location history, [13] 

focuses on detecting significant locations of a user, predicting 

user’s movement among these locations. [14] deals with 

recognizing user-specific activities among significant 

locations. [15] introduces a hierarchical Markov model that 

can learn and infer a user’s daily movements through an urban 

community. [16] presents a method of learning a Bayesian 

model of a traveler moving through an urban environment. 

This method simultaneously learns a unified model of 

thetraveler’s current mode of transportation as well as his 

most likely route in an unsupervised manner. [6] uses a 

history of a drivers destinations, along with data about driving 

behaviors, to predict where a driver is going as a trip 

progresses 

There are also works on mining multiple users’ location 

history. [17] develops a system called LOCADIO, which uses 

Wi-Fi signal strengths from existing access points measured 

on the client to infer user mobility such as, stationary and 

walking, etc.. [18] conducts similar work, while based on 

GSM network. Zheng et al. [15] aim to infer users’ 

transportation mode like walking and driving, etc., based on 

GPS trajectories of 60 individuals. In [19], a hierarchical-

graph-based similarity measurement is developed to mine 

similarity between different users from location history. 

These techniques and systems generally discover 

knowledge about mobility, like positioning, destination, way 

of moving, etc. In contrast, we aims at mining individual life 

regularity.  

III. PROBLEM FORMALIZATION 

A. Preliminary Analysis 

To formalize the definitions of life patterns, we first 

deliberate several aspects of life patterns in this section. 

 

1. (Temporal Granularity and Condition) The atomic 

temporal observation unit of life is “day”. This should be 

attributed to the daily-repetitious natural of human 

activity. While different scale of temporal unit (temporal 

granularity) correspond to patterns of different semantics. 

For instance, using “day” as the unit, life patterns like  

“Tom visits the cinema once a week”             (1) 

can never be discovered. In the meantime, there are also 

life patterns and associations with specific temporal 

conditions, such as “on Mondays”, “on work days”. These 

conditions are intuitive because the individual may have 

different life style in different type of days. 

2. (Significant Places) Life pattern emphasizes the 

significant places in one’s GPS record while ignores the 

transition between these places (in fact the transition can 

also be viewed as one type of life pattern, which we do 

not include in the framework and leave as future work). 

Because the significant places, like schools, companies 

and hospitals, can represent the individual’s typical 

activity. One (simplest) life pattern could be: 

“In 70% of the days, Tom visits Sigma Building”    (2) 

3. (Sequentiality) We shall take into consideration not only 

the isolated significant places, but also the order in 

which the individual visits them. Life patterns without  

and with sequentiality correspond to their counterparts 

in traditional pattern mining [8], [9]. An typical 

sequential life pattern could be: 

 “In 50% of the days, Tom takes this route: 

       𝑇𝑠𝑖𝑛𝑔ℎ𝑢𝑎 𝑈𝑛𝑖𝑣. → 𝑆𝑖𝑔𝑚𝑎 𝐵𝑙𝑑. → 𝑊𝑎𝑙 − 𝑀𝑎𝑟𝑡” (3) 

4. (Timestamp-Annotation and Timespan-Annotation) We 

may care about not only the places themselves, but also 

the individual’s arrival time, departure time (timestamps), 

and duration time (timespan) of the significant places, 

because these timestamps and timespan give valuable 

description about the individual’s life style. An example 

of this type of life patterns is:  

“In 63% of the days, Tom arrives at Sigma Bld. 

 between 8:50 a.m. to 9:10 a.m. and stays for 

 more than 3 hours and less than 5 hours”             (4) 

5. (Conditional Life Pattern) We may also concern about 

some pattern-conditioned life pattern, which use another 

life pattern to constrain the observation unites, like: 

“Among the days on which Tom visits Sigma Bld., 

 in 90% of them he arrives between 8:50 a .m. to 

 9:10  a.m. and stays for more than 3 hours and 

 less than 5 hours”                                                   (5) 

The condition and consequence may also refer to 

different significant places. In fact, they can be arbitrary 

non-conditional life pattern, like:  

“Among the days on which Tom takes this route: 

𝑇𝑠𝑖𝑛𝑔ℎ𝑢𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 → 𝑆𝑖𝑔𝑚𝑎 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 
 in 60% of them he also arrives at Wal-Mart 

between 5:00 p.m. to 5:30 p.m.”                           (6) 

6. (Life Associate Rule) Life pattern (5) and (6) should be 

treated separately. The condition and consequence of (5) 

share the same location (Sigma Building) while those of 

(6) do not. (5) indicates the regular arriving time while (6) 

suggests some association between “taking the route: 

𝑇𝑠𝑖𝑛𝑔ℎ𝑢𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 → 𝑆𝑖𝑔𝑚𝑎 𝐵𝑙𝑑.” and “arriving at 

Wal-Mart between 5:00 p.m. to 5:20 p.m.”.  

     In fact, Patterns (1) through (6) are real cases drew 

from our experiments and “Tom” is an anonym of an 

Tsinghua University student who has an internship at 

MSRA located at Sigma Building. Pattern (1) through (5) 

seem trivial while (6) is somewhat interesting. Indeed, the 

Walmart supermarket is near Sigma Building and Tom 

tends to go shopping, or have dinner around Wal-Mart 

after work.  

     We term the first type of conditional life pattern 

“temporal-knowledge life pattern”, which concerns about 

temporal knowledge of given places. While the second 

type of pattern give rise to a “life associate rule”, which 

we treat as another type of pattern. It suggests implied 

association between different life regularities. The 

definition of life associate rule is not simple extension 

from traditional associate rule in that the condition and 



 

 

consequence can take arbitrary non-conditional life 

pattern, like in pattern (6). 

B. The LP-Normal Form 

Summing up previous analysis, we formally present the 

definition of life patterns in this section. Figure 1 gives the 

architecture of life patterns.  

 

 

Fig. 1 Hierarchy of life patterns   

 

A life pattern 𝑃  can be either non-conditional (𝑃𝑛𝑐 ) or 

conditional (𝑃𝑐). A conditional life pattern can be interpreted 

as one non-conditional pattern given another non-conditioned 

pattern. That is 

                                      𝑃 ∶=  𝑃𝑐  ∥ 𝑃𝑛𝑐                                   (1) 

                                      𝑃𝑐 ∶= 𝑃𝑛𝑐
1 | 𝑃𝑛𝑐

2                                   (2) 

A non-conditional life pattern can be either a non-

sequential pattern (𝑃𝑛𝑠 ) or a sequential pattern (𝑃𝑠). 

                                      𝑃𝑛𝑐 ∶= 𝑃𝑠
 ∥ 𝑃𝑛𝑠                               (3) 

To define non-sequential and sequential life patterns, we 

introduce “atomic life pattern”, which refers to visiting single 

significant place, with or without timestamp/span annotations. 

An atomic life pattern A is of the form: 

       𝐴 ∶=  𝑣𝑖𝑠𝑖𝑡  𝑋 . (? 𝑎𝑟𝑣  𝑡1, 𝑡2  . (? 𝑠𝑡𝑎𝑦  𝜏1 , 𝜏2       (4)   

Here the symbol ? means 𝐴 can either be timestamp/span 

annotated or not. 𝑡1 , 𝑡2  are two timestamps and 𝜏1 , 𝜏2  are 

lengths of two timespans. Note we do not need a “leave time” 

annotation because it can be decided by the arrival timestamp 

and stay timespan. 

There are two operators which combine atomic life patterns 

into a more complex one: the “and” operator “∧” and the 

“sequence” operator “ → ”. The former generates non-

sequential life pattern 𝑃𝑛𝑠
 and the latter generates sequential 

life pattern 𝑃𝑠                                           

                                      𝑃𝑛𝑠 ∶=  𝐴 ∥ 𝑃𝑛𝑠 ∧ 𝐴                         (5)                              

                                      𝑃𝑠 ∶=  𝐴 ∥ 𝑃𝑠 → 𝐴                           (6)    

We don’t assume non-conditioned life patterns of the form 

𝑃𝑠
 ∧  𝑃𝑛𝑠 .  Because their semantic meaning, one’s lifestyle 

that s/he both visits some places without order constraint and 

visits some other places follow a certain order, is unclear and 

not useful in applications.                        

Each pattern P is associated with a support value s, which 

denotes the percentage of temporal observation units when P 

is satisfied. Thus, a life pattern can be represented as 

                                            (𝑃, 𝑠)                                     (7)  

A conditional life pattern 𝑃𝑐 =  𝑃𝑛𝑐
1 | 𝑃𝑛𝑐

2
 naturally gives rise 

to a life associate rule 𝑅 ∶  𝑃𝑛𝑐
2

 →  𝑃𝑛𝑐
1

, Like in traditional 

associate rules, the confidence of R, denoted 𝑐(𝑅), is defined 

as the conditional probability of 𝑃𝑛𝑐
1

 given 𝑃𝑛𝑐
2 , thus equals the 

support of  𝑃𝑐 . The support of R, denoted  𝑠(𝑅) , equals the 

probability that 𝑃𝑛𝑐
1  and 𝑃𝑛𝑐

2  both happen. We have:                     

                𝑐 𝑅 = Pr[𝑃𝑛𝑐
1 | 𝑃𝑛𝑐

2 ] =
Pr  𝑃𝑛𝑐

1 ,   𝑃𝑛𝑐
2  

Pr  𝑃𝑛𝑐
2  

=
𝑠(𝑅)

s(𝑃𝑛𝑐
2 )

      (8) 

In sum, a life associate rule can be represented as: 

                                     (𝑃𝑛𝑐
2

 →  𝑃𝑛𝑐
1 , 𝑠, 𝑐)                           (9) 

Having formalized the definition of life patterns, the mining 

task can be described as: given individual GPS data and a 

support threshold  𝑠  and confidence threshold c, discover 

individual life patterns with support (percentage of temporal 

observation unites containing the pattern) greater than s. For 

life associate rules, the confident should also be greater than c.  

In following two sections, we shall concretely describe the 

LP-Mine framework towards mining life patterns presented in 

this section. Section IV details the modeling phase, which pre-

processes raw GPS data into an available format, as the input 

of the mining phase described in Section VII. 

IV. DATA PRE-PROCESSING 

A. Preliminary---GPS Log and GPS Sequence 

The data collected by the GPS devices are of the GPS log 

form, which is a sequence of GPS points 𝑃 = {𝑝1 , 𝑝2 , 𝑝3 , …, 
𝑝𝑛  } .Each point 𝑝𝑖 ∈  𝑃 contains the longitude ( 𝑝𝑖 . 𝐿𝑛𝑔𝑡 ), 

latitude (𝑝𝑖 . 𝐿𝑎𝑡) and timestamp (𝑝𝑖 . 𝑇).   As depicted in the 

left part of Figure 2. We can connect GPS points according to 

their time series into a GPS trajectory. 

 

 

Fig. 2 GPS log and stay points  

Since GPS point contains no semantic meaning like the 

spot name or attribute of places, we first need to extract 

significant places based on the spatial and temporal values of 

GPS points.  

B. First Level Modelling---From GPS Sequence to Stay Point 

Sequence 

We introduce the notion of stay points. A stay point 𝑆 

represents a geographic region in which the user stays for a 
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while. Therefore, each stay point carries its semantic meaning. 

For instance, the living and working places, the restaurant and 

shopping mall we visit, the spot we travel, etc. 

We clarify two types of stay points as depicted in the right 

part of Figure 2. In the first case like stay point 1, the 

individual maintains stationary at 𝑃3 for over a time threshold. 

This type of stay points generally occur when the individual 

enters a building and loses the satellite signal until returning to 

the outdoors. In the second case like stay point 2, the 

individual wanders around within a spatial region for over a 

time threshold. We use the mean longitude and latitude of the 

GPS points within the region to construct a stay point. 

Generally, this type of stay points occur when the individual 

wanders around some places, like a park, a campus, etc. 

Figure 3 depicts the algorithm we apply to extract stay 

points from GPS data. We iteratively seek the spatial region in 

which the individual stays for a period over a threshold. For 

instance, in the experiments, a stay point is detected if the 

individual spends more than 30 minutes within a range of 200 

meters. Note that each extracted stay point retains the 

temporal information: the arrival time ( 𝑆. 𝑎𝑟𝑣𝑇 ) and the 

leaving time (𝑆. 𝑙𝑒𝑣𝑇) respectively equals the timestamp of the 

first and last GPS point constructing this stay point. 

 

 

Fig. 3 Stay points detection Algorithm  

The reason we detect stay points in this way instead of 

directly clustering the GPS points, or using grid-based 

partition method to extract ROI (regions of interest) [3] lies in 

several aspects. For clustering GPS points as demonstrated in 

Figure 4-A, the first type of stay points will be lost, because 

the devices lose satellite signals indoors like homes and 

shopping malls. These places have few GPS points, therefore 

cannot satisfy the density condition to be detected by 

clustering. In the meantime, some regions like road crosses 

that a user iteratively passes will have a lot of GPS points. 

Although not containing valuable semantic information, they 

may be detected by clustering techniques.  For grid based 

techniques as shown in Figure 4-B, the boundary problem will 

also results in missing significant places, because GPS points 

corresponding to the same place falls in different grids.  

 

Fig. 4 Other possible stay points detection algorithms  

C. Second Level Modelling ---From Stay Point Sequence to 

Location History Sequence 

When stay points are detected, we use the stay point 

sequence 𝑆 = {𝑠1 , 𝑠2, 𝑠3 , … , 𝑠𝑛  }  to represent the individual’s 

location history. Each stay point 𝑠𝑖  corresponds to some 

significant place and 𝑠𝑖 . 𝑎𝑟𝑣𝑇 and 𝑠𝑖 . 𝑙𝑒𝑣𝑇  correspond to the 

time of arriving and leaving this place.  

However, this sequence still cannot be directly applied to 

mining life pattern. Actually no two stay points have the same 

spatial coordinates because of the fussiness of locations. For 

instance, different days’ stay points for the place “company” 

are not identical, although they are very close to each other. 

Thus we need a second level modelling to group up different 

stay points with the same semantic meaning.  

To address this, we apply density-based clustering as 

demonstrated in Figure 5. All individual’s stay points are put 

into a dataset and clustered into several geographical regions. 

In comparison to partition-based clustering methods like k-

means and grid-based methods like STING, density-based 

methods are capable of detecting clusters with irregular 

structure. For instance, in the experiments, we adopt the 

OPTICS clustering method which has two parameters, number 

of points (NoP) and distance threshold (disThre), when there 

are at least NoP points within disThre of a already clustered 

point, the new points are added to the cluster. In this way, a 

cluster is formed as a closure of points. OPTICS suits well in 

our application. Stay points of the same place are directly 

clustered into a density-based closure. In the meantime, 

clusters with valuable semantics may also be detected, such as 

a set of restaurants or travelling spots near a lake.  

 

Fig. 5 Clustering stay points  

After clustering the stay points, we transform the individual 

stay point sequence into the location history sequence𝐶 =
{𝑐1 , 𝑐2, 𝑐3 , … , 𝑐𝑛 }. Each stay point is substitute by the cluster it 

pertains to. In the meantime, the arriving time and leaving 

time of this stay point are retained and associated with the 

cluster. In this way, we will have location history records for 

different days’ visiting of the same place like company or 

restaurant. The temporal value will be use in mining timespan-

annotated and timestamp-annotated life patterns.  

Input:   A GPS log P, a distance threshold distThreh    

             and time span threshold timeThreh

Output: A set of stay points SP={S}

1. i=0, pointNum = |P|; //the number of GPS points in a GPS logs

2. while i < pointNum do,

3.        j:=i+1;

4.       while j < pointNum do,                 

5.            dist=Distance(pi, pj);  //calculate the distance between two points

6.            if dist > distThreh then

7.                  ΔT=pj.T-pi.T;   //calculate the time span between two points

8.                  if ΔT>timeThreh then

9.                       S.coord=ComputMeanCoord({pk | i<=k<=j})

10                      S.arvT= pi.T;  S.levT=pj.T ;                        

11.                     SP.insert(S);

12.                i:=j; break;

13.           j:=j+1;

14.   return SP.

Algorithm StayPoint_Detection(P, distThreh, timeThreh)
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V. MINING INDIVIDUAL LIFE PATTERN 

Through the abstraction phase, LP-Mine transforms GPS 

log data into individual location history sequence, which is a 

sequence of stay point clusters with timestamp annotation.  

Figure 6 presents an overview of LP-Mine framework. 

Through data pre-processing, GPS log files are transformed 

into an individual location history sequence. We apply 

separate methodologies to mine different type of patterns.  

 

 

Fig. 6 Architecture of LP-Mine 

A. Temporal Sampling and Temporal Partition 

Temporal sampling deals with temporal condition 

discussed in Section III-A. For life patterns with specific 

temporal condition like “on Mondays”, “on Weekdays”, etc., 

original location history sequence is sampled according to the 

condition. For patterns and associations without temporal 

condition, this step is omitted. 

Temporal partition corresponds to temporal granularity. 

Original location history sequence is partitioned into sub-

sequences according to the specific granularity like “day”, 

“week”, etc. In this way, we construct a life sequence 

dataset 𝐷𝑠 = {𝑑1, 𝑑2 , 𝑑3, … , 𝑑𝑛 }. Each 𝑑𝑖  in 𝐷𝑠  corresponds to 

the life sequence of one day, or one week or etc., according to 

the granularity. Mining work is then performed on 𝐷𝑠. 

B.  Mining Non-Sequential and Sequential Life Patterns 

For non-sequential life patterns, we apply the closet+ [10] 

frequent pattern mining algorithm. For each  𝑑𝑖  in 𝐷𝑠 , the 

sequential property is ignored and each 𝑑𝑖  is treated as a set of 

significant places. Closet+ applies several strategies including 

the hybrid tree projection method, the item skipping technique, 

etc. to effectively retrieve frequent closed itemset.   

For sequential life patterns, we apply the CloSpan[11] 

algorithm. By mining frequent closed subsequences only, 

CloSpan produces a significantly less number of discovered 

sequences than the traditional full set methods while 

preserving the same expressive power. 

C. Mining Temporal-Annotated and Temporal-Knowledge 

Life Pattern 

Previously mined life patterns are out of timestamp/span 

annotation. As discussed in Section III-A, based on one 

(sequential or non-sequential) non-temporal life pattern, two 

types of temporal pattern can be mined: temporal-annotated 

life pattern and temporal-knowledge life pattern. The former 

uses whole 𝐷𝑠  as the mining base, such as pattern (4) in 

Section III-A; the latter considers temporal knowledge given 

fixed locations, like pattern (5).  

Assume the base non-temporal pattern to be 𝑃 =  𝐴1 ∧
 𝐴2 ∧ …∧  𝐴𝑑  or 𝑃 =  𝐴1 →  𝐴2 → ⋯ →  𝐴𝑑  and there are 

totally 𝑚 sequences in 𝐷𝑠  containing 𝑃, denoted 𝑑𝑝1, 𝑑𝑝2, …,    

𝑑𝑝𝑚 . The temporal annotations of all 𝑑𝑝𝑖 ’s form a set of 𝑚 

points in 2𝑑-dimension space. (𝑑  dimensions are Ai.arv for 

each 1 ≤ 𝑖 ≤ 𝑑 and 𝑑 dimensions are corresponding Ai.stay ) 

Indeed, temporal annotation can be added on any subset of the 

2d-diemensions, but annotation on all 2d dimensions, on all d 

timestamp dimensions or on all d timespan dimensions should 

be most meaningful and widely adopted.   

Denote the temporal-annotated pattern from 𝑃  to be 𝑃𝑡1 

and the temporal-knowledge pattern from 𝑃  to be  𝑃𝑡2 . 

Assume the relative support threshold for temporal-annotated 

life pattern to be  𝑠1 , since  𝑠 𝑃𝑡1 ≤ 𝑠(𝑃) ; we should first 

mine non-temporal-annotated patterns with support at least 𝑠1, 

for each 𝑃 of them and corresponding 𝑚 sequences containing 

𝑃, each sequence with 2𝑑 temporal annotations can be viewed 

as a point in 2𝑑 -dimension space. Thus the task can be 

described as: 

“Finding a hyper-rectangle in 2d (d, or other selected 

temporal-dimensions) – dimension space that contains at least 

𝑠1/𝑠(𝑃) proportion of the m points while minimize the volume 

of the hyper-rectangle.” 

Here we define volume to be the sum of all edge’s lengths. 

Unfortunately, this combinatory optimization problem is NP-

complete. In our experiment, when the temporal granularity is 

“month”, there are at most 18 sequences corresponding to one 

year and a half. 𝑚  should be even smaller. We can just 

enumerate all the  
𝑚

 
𝑠1

𝑠 𝑃 
 ∙𝑚    

  candidate solutions.  

When the temporal granularity is “day” or “week”, 

enumeration does not work. We resort to corsets [21] and 

geometric approximation via corsets [20].  

A corset is a subset 𝑄 of point set 𝑈 that approximates the 

original set.  In our application scenario, consider the optimal 

hyper-rectangle with minimized volume. 𝑉𝑜𝑝𝑡 , and 

points  𝑈′ = 𝑈 ∩ 𝑉𝑜𝑝𝑡  , here 𝑈  is the set of 𝑚  points in 2𝑑 -

space. According to [21], we can find a corset 𝑄 ⊆ 𝑈′  such 
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that (1)  𝑄 = 𝑂(1/𝜀) and (2) the smallest enclosing hyper-

rectangle of 𝑄 , if 𝜀 -expanded (all lengths multiplied by 

(1 + 1/𝜀 ) ), contains at least  
𝑠1

𝑠 𝑃 
 ∙ 𝑚   points of 𝑈. Thus, we 

can enumerate all possible subsets of size 𝑂(1/𝜀)  as 

“candidates” for 𝑄, and for each subset, compute its smallest 

enclosing hyper-rectangle, 𝜀-expand the rectangle and check 

how many points of 𝑈  it contains. The smallest candidate 

hyper-rectangle that contains at least   
𝑠1

𝑠 𝑃 
 ∙ 𝑚   points of 𝑈 is 

the required approximation. The running time of this 

algorithm is 𝑑𝑛𝑂(1/𝜀).  

Likewise, for temporal-knowledge life pattern and support 

threshold 𝑠2, the mining base is all 𝑚 sequences containing 𝑃, 

and we just need apply the same methodology to find the 

smallest hyper-rectangle containing at least 𝑠2  proportion of 

all points. 

D. Mining Conditional Life Pattern and Life Associate Rules 

A conditional life pattern of the form 𝑃𝑐 = 𝑃𝑛𝑐
1 | 𝑃𝑛𝑐

2  carries 

semantic meaning that a sequence contains 𝑃𝑛𝑐
1  given that it 

contains 𝑃𝑛𝑐
2 . For mining conditional life patterns, we apply a 

project-and-mining procedure. Given a mined non-conditional 

pattern 𝑃𝑛𝑐
2  and the set of sequences containing 𝑃𝑛𝑐

2 , denoted 𝑈. 

We construct the projected sequences set of 𝑈  on  𝑃𝑛𝑐
2 , 

denoted 𝑈′ . Namely, for each sequence in 𝑈 , delete the 

elements corresponding to  𝑃𝑛𝑐
2 . Then another step of mining 

procedure is performed on 𝑈′ . 

Generating life associate rules from conditional life pattern 

is intuitive but more complicated in that not only support 

threshold 𝑠  but also confidence threshold 𝑐  should be 

considered. According to Equation (8) in Section III, for 

associate rule 𝑅 ∶  𝑃𝑛𝑐
2

 →  𝑃𝑛𝑐
1  ,  we have: 

                                    𝑠 𝑅 = 𝑐 𝑅 ∙ s(𝑃𝑛𝑐
2 )                      (10) 

Thus 

                                         𝑠 𝑅 ≤ s(𝑃𝑛𝑐
2 )                             (11) 

Therefore, in order to mine life associate rules with support 

no less than threshold 𝑠, we should first mine non-conditional 

patterns 𝑃𝑛𝑐
2  with support no less than 𝑠 . Secondly, find all 

conditional life patterns 𝑃𝑐  with 𝑃𝑛𝑐
2  as the condition and have 

support greater than  𝑐 (Note the support of conditional life 

pattern equals the confidence of corresponding life associate 

rule). Finally, check if  𝑠(𝑃𝑐) ∙ s(𝑃𝑛𝑐
2 ) is greater than 𝑠. If so, 

this life associate rule is retained. 

E. Summary 

Summing up previous discussions, we summarize LP-

Mine's procedure of mining individual life pattern in this 

section. 

 First level modelling. Through stay point detection, 

LP-Mine extracts the significant places from GPS 

sequence, and transforms individual GPS sequence 

into stay point sequence. 

 Second level modelling. Through density-based 

clustering, stay points pertaining to the same or similar 

significant places are clustered up. LP-Mine transforms 

individual stay point sequence into location history 

sequence. 

 Temporal sampling and partition. For given temporal 

condition and temporal granularity, individual life 

sequence dataset is constructed by temporal sampling 

and partition.  

 Mining non-temporal life patterns. LP-Mine applies 

closet+ and CloSpan techniques respectively for 

mining (non-temporal) non-sequential life patterns and 

sequential life patterns from the life sequence dataset. 

 Mining temporal-life patterns. Based on one non-

temporal life pattern, LP-Mine mines temporal-

annotated and temporal-knowledge life patterns using 

the same technique of geometric approximation 

through corsets. 

 Mining conditional life patterns. Based on one non-

conditional life pattern 𝑃𝑛𝑐 , LP-Mine mines conditional 

life pattern using a projection-and-mining step. A 

projected life sequence dataset 𝑈′  is constructed 

deleting elements corresponding to 𝑃𝑛𝑐  from sequences 

containing the pattern. Then another step of pattern 

mining is performed on 𝑈′ . 

 Mining life associate rules. The procedure resembles 

that of mining conditional life pattern. While LP-Mine 

considers not only support but also confidence 

threshold. For 𝑅 ∶ 𝑃𝑛𝑐
2

 →  𝑃𝑛𝑐
1 , s(𝑃𝑛𝑐

2 ) should be no less 

than threshold  𝑠 . 𝑠(𝑃𝑛𝑐
1  | 𝑃𝑛𝑐

2  )  should be above 

threshold 𝑐 . Finally, it’s also checked  𝑠(𝑃𝑛𝑐
1  | 𝑃𝑛𝑐

2  )  ∙ 
s(𝑃𝑛𝑐

2 )  is greater than 𝑠. 

VI. EXPERIMENTS 

In this section, we experimentally evaluate the 

effectiveness of LP-Mine framework. Firstly, we present the 

experimental setting including the GPS devices we used, the 

volunteers we summoned, the data collected and the 

assignment of some parameters in the framework. Then, we 

conduct both objective and subjective experiments. In the 

objective experiment, we equally divide individual GPS data 

into two parts and verify how the second part of data matches 

patterns mined from the first part. This experiment aims at 

measuring the predictability of LP-Mine. In the subjective 

experiment, we visualize the mine patterns into GeoLife, a 

GPS-log-driven application on Web Map, and perform user 

study to verify the interestingness and representativeness of 

mine patterns. The subjective experiment is conducted by 

evaluating life patterns with different temporal conditions and 

temporal granularities; and conditional life patterns. 

A. Settings 

1)  Data 

Figure 10 shows the GPS devices we chose to collect data. 

They are comprised of stand-alone GPS receivers (Magellan 

Explorist 210/300, G-Rays 2 and QSTARZ) and GPS phones. 

All of them are set to receive GPS coordinates every two 

seconds.  Using these devices, volunteers respectively log 

their life experience with GPS. The length of different 



 

 

individuals’ GPS logs varies according to the time they join 

the data collection. The earliest one records data of 16 months; 

the latest one has log of merely several weeks. All volunteers 

are  suggested  to  switch  on  their  devices  as  long  as  they  

travel outdoors. The  data  they  collected  covers  28  big  

cities  in China and  some  cities  in  USA,  South  Korea,  and  

Japan.  The total distance of these GPS logs exceeds 50,000 

KM. 

 

Fig. 7 GPS devices used in the experiment 

2)  Parameter 

In stay point detection, we set timeThreh to 30 minutes and 

distThreh to 200 meters.  In other words, if an individual stays 

over 30 minutes within a distance of 200 meters, a stay point 

is detected.  

In stay point clustering, we set NoP parameter to be 4 and 

disThre to be 0.15K.M. That is, if there are at least 4 stay 

points within 0.15km of an already clustered stay point, they 

will be added to the cluster.  

These stay pint detection and clustering parameters enable 

us to find out each individual’s significant places, such as 

restaurant, home, and shopping mall, etc., while ignoring the 

geographic regions without semantic meaning, like the places 

where people wait for traffic lights or meet congestion. 

B. Objective Experiments 

One major task of mining individual life pattern is to 

predict future life trends based on patterns mined from 

previous data. To evaluate the predictability of patterns mined 

by LP-Mine, we conduct following objective experiment: 

 For each volunteer o, the life sequences dataset 𝐷𝑠  is 

divided into two parts: 𝐷𝑠1  contains sequences 

corresponding to the 1
st
, 3

rd
, 5

th
 … days, 𝐷𝑠2 contains 

sequences corresponding to the 2
nd

, 4
th

, 6
th
 … days. 

Here we assign no temporal condition and the temporal 

granularity is set to “day”.  

 For support threshold set from 0.1 to 0.8, step by 0.1, 

we mine all non-sequential and sequential life patterns 

from 𝐷𝑠1 . The temporal-annotation is set on all 

timestamp/span dimensions. 

 For Individual o’s life pattern p with support s, we use 

𝐷𝑠2  to match p. Here we introduce a “match 

coefficient” m, which equals the percentage of 

sequences in 𝐷𝑠2 containing p. And the predictability 

of p is defined as: 

                               𝑝𝑟𝑒𝑑 𝑝 = 1 −
 𝑠−𝑚 

max (𝑠,𝑚)
                      (12) 

 For each individual the predictability of all his/her 

patterns is defined as: 

                            𝑝𝑟𝑒𝑑(𝑜) = 𝑎𝑣𝑔(𝑝𝑟𝑒𝑑 𝑝)              (13) 

And the total predictability of all volunteers’ life 

pattern is defined as: 

                    𝑝𝑟𝑒𝑑 =  𝑤𝑒𝑖𝑔ℎ𝑡(𝑜) ∙ 𝑝𝑟𝑒𝑑(𝑜)             (14) 

Here 𝑤𝑒𝑖𝑔ℎ𝑡(𝑜) is assigned to 𝑜 based on the number 

of data collecting days (different volunteers in our 

experiment have different data collecting days) 

and  𝑤𝑒𝑖𝑔ℎ 𝑜 = 1. 

Figure 8 plots the predictability of all individual life 

patterns as the function of support threshold. For both 

sequential and non-sequential life patterns, the predictability 

grows with support threshold. This result is intuitive, because 

higher support corresponds to more general life style. Even 

when the support threshold equals 0.1, the predictability is 

also relatively high (0.73 for sequential patterns). To conclude, 

we claim that life patterns mined by LP-Mine can be 

reasonably employed to predict future life trends. 

 

Fig. 8 Predictability of patterns as function of support threshold 

C. Subjective Experiments 

In subjective experiments, we visualize the life pattern by 

injecting them into a web application based on live search 

map called “GeoLife”, thus we can conduct user study to 

collect user’s judgement on the mined patterns. 

From all volunteers, we choose 5 of them with longest GPS 

logs. We report the aggregate result (mean) of all users’ study. 

We conduct three subjective experiments, separately on 

temporal condition, temporal granularity and conditional life 

pattern.  

 

Temporal Condition: On temporal condition experiment, we 

set the temporal granularity to “day” and separately mine life 

patterns of all days, workdays and holidays. For each isolated 

pattern, it’s hard for the individual to judge how interesting it 

is (the interesting measure), or how it represents general life 

style (the representative measure). Thus, on each temporal 

condition, we sort all patterns in descendant order of their 

supports. By observing the ranking of different patterns, the 

user can judge how interesting or representative these patterns 

totally represent. Taking one user (with longest GPS log, 

whom we use as example in this section) for instance, the 

pattern “visit the girlfriend’s house” has support merely 0.12 

on workdays, so it ranks low in workday’s pattern sequence. 



 

 

However, this pattern has support 0.72 on holidays, so it ranks 

highest on holiday’s pattern sequence. The pattern “visit the 

company” has contrary result. The user can thus judge that the 

patterns of holidays are more interesting while less 

representative and the patterns of workdays are less interesting 

but more representative. In other words, interesting and 

representative are used to measure the method of setting 

temporal condition, instead of isolated patterns. The users are 

required to grade each condition’s sequence of patterns on 

both measures with a scale of 0-5. The larger the grade, the 

more interesting or representative the individual judges it. 

The experimental results were analysed by a one way 

ANOVA with the grading as the dependent variable, the task 

(the 3 types of temporal condition) as independent variable. It 

was found that the tasks (𝐹 = 12.8, 𝑝 < 0.007 for interesting 

measure and 𝐹 = 10.7, 𝑝 < 0.007 for representative measure) 

significantly affected the grading. Figure 9 depicts the mean 

interesting and representative measure on different temporal 

conditions. 

 

 

Fig. 9 Measurements on different temporal conditions 

For the exemplary user, when condition is “all days” or 

“workdays”, the patterns are mostly trivial, about home, 

company, etc., but when it comes to “holidays”, we extract the 

most visited shopping mall, cinema, park etc. We also find the 

percentage of weekends when the individual takes overtime.  

The experiment on temporal condition accords intuition, 

revealing that more valuable life patterns tend to be found 

with special temporal condition. 

 

Temporal Granularity: On temporal granularity experiment, 

we set no special temporal condition and separately construct 

life sequence dataset with temporal granularity “day”, “week” 

and “month”. Likewise, the individuals judge the interesting 

and representative measure of mined patterns.  We also use 

ANOVA test to confirm that different granularities influence 

the result. Figure 10 plots the average grading.  

When granularity is set to “week”, we mined a lot of 

weekly repetitious life styles which cannot be discovered 

when granularity is “day”. Like the weekly sports-taking place 

and time; the weekly regularity of going to a digital products 

market, etc. When granularity is “month”, some patterns about 

visiting a friend and taking a short tour are discovered. The 

experiment on temporal granularity accords our discussion in 

Section III that life patterns with different granularities carry 

different semantics. 

 

 

Fig. 10 Measurements on different temporal granularities 

Conditional Life Pattern: We set temporal granularity to “day” 

and set three types of conditions: (1) not visiting the most 

frequent place; (2) visiting the second frequent place; (3) 

visiting the second frequent place while not visiting the most 

frequent place. The individuals grade the interesting and 

representative measure of patterns on each condition. Also 

ANOVA test certifies that different conditions affect result 

significantly. Figure 11 plots the average grading.  

For the exemplary user, the most frequent place is 

“company”; the second is “girlfriends’ home”.  On condition 1, 

most patterns contain “visiting the girlfriends’ home”; on 

condition 2, there are a lot of trivial life patterns about home 

and companies. When it comes to condition 3, a lot of 

interesting patterns are mined, with regard to the places and 

time he tends to go out with his girlfriend.  

 

 

Fig. 11 Measurements on different conditions 

D. Discussion 

In the experiment, we discover a lot of trivial or 

uninteresting life patterns about home, working place, etc. 

This should be attributed to the derivation from “support” 

framework, thus patterns with high support are naturally 

discovered.  

However, the paradox lies in that, for life pattern, the more 

frequent it is, the more trivial, or valueless it tends to be. 

Because most frequent life styles are trivial. Thus the utility of 



 

 

LP-Mine would be limited. In the “conditional pattern” 

experiment, we personally design specific condition to 

retrieve interesting patterns. However, a better interestingness 

measure to substitute “support” and enhanced algorithm to 

automatically discover interesting patterns should be expected. 

What is more, the temporal-annotated patterns are 

especially hard to be utilized because they typically contain 

timestamp or timespan interval with very large length. 

Although we include their mining in LP-Mine framework, 

experiments on them are not successfully conducted because 

mined temporal-annotated patterns are most hard to 

understand. Better formalization and methods to effectively 

extract temporal life knowledge is also a promising direction. 

In the meantime, we find an urge of privacy preservation in 

the context of individual life pattern mining, since we mined a 

lot of private patterns in the experiment. A properly designed 

protocol to ensure personal privacy is required when the 

individual provides personal GPS data. 

VII. CONCLUSIONS 

In this paper, we extend the notion of frequent pattern into 

the context of GPS data; we propose a novel definition of life 

pattern; we present LP normal form to formalize the definition 

of individual life patterns; we propose LP-Mine, an 

abstraction-and-mining framework to effectively retrieve life 

patterns from GPS data.  

This paper lies down a solid foundation for future works 

towards several directions: refinement of LP-Mine Framework; 

individual life knowledge mining from GPS data; multiple 

users’ life knowledge mining from GPS data and life pattern, 

life pattern based application, etc. 

 Refining the LP-Mine Framework. As discussed in 

the experiment section, LP-Mine framework generates 

a lot of trivial or uninteresting life patterns and 

temporal-annotated patterns tend to be useless. We 

aims at investigating better measure instead of 

“support” to evaluate the value of life pattern. We also 

aim at refining both the framework and its 

implementation so as to enhance its utility. We shall 

also investigate privacy preservation techniques with 

individual life pattern mining system. 

 Mining individual life knowledge from GPS data. The 

introduction of life pattern mining from GPS data in 

this paper may also be extended to other types of 

individual life knowledge mining, like “outlier 

detection”, “classification”, etc. Typically, life outlier 

detection is the counter part of pattern mining, which 

retrieves irregularity life activity. This irregularity 

generally corresponds to significant life change or 

events, so their detection is quite useful.   

 Mining multiple users’ life knowledge from GPS data. 
Although we focus on individual life pattern and 

associate rules, the formalization of life pattern and 

associate rules can also be extended to their 

counterpart of multiple user’s. In the meantime, the 

data processing technique and mining technique can 

also be extended to mining multiple users’ life pattern 

and associate rules. 

 Life pattern based application. Individual life pattern 

and associate rule can be injected into a manifold of 

applications, including computer-aid blogging system, 

personal schedule system, route recommending, etc. 

What is more, friend recommendation system may be 

built on collecting multiple users’ life patters. 
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