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Abstract. Aiming at ensuring privacy preservation in personal data
publishing, the topic of anonymization has been intensively studied in
recent years. However, existing anonymization techniques all assume each
tuple in the microdata table contains one single sensitive attribute (the
SSA case), while none paid attention to the case of multiple sensitive
attributes in a tuple (the MSA case).
In this paper, we conduct the pioneering study on the MSA case, observe
new privacy risks, and reason why generalization, the most common ap-
proach for anonymization, is impractical in this case. Instead, we propose
a new framework, decomposition, to tackle privacy preservation in the
MSA case. We elaborate decompose by extending it naturally from the
SSA case and introducing the (l1, l2, . . . , ld)-diversity principle. Experi-
ments with real data verify the effectiveness of decomposition.
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1 Introduction

With a host of organizations increasingly publishing personal data for scientific
and business uses, the issue of privacy preservation in personal data publication
has drawn broad attention. Anonymization[1, 2] is the most popularly adopted
approach for this objective.

Typically, attributes in the microdata, like Table 1, can be categorized into
three types: identifying attributes are the attributes that can be used to ex-
plicitly identify an individual; quasi-identifying (QI) attributes are the set of
attributes that can be linked with public available datasets to reveal personal
identity; sensitive attributes contain personal privacy information like disease,
salary. Therefore, the exact value for an individual’s sensitive attributes should
not be directly or indirectly revealed. In the running example of Table 1, Name
is the identifying attribute; {Gender,ZipCode,Birthday} is the set of QI at-
tributes; Occupation and Salary are the sensitive attributes.

To fulfill the privacy goals, removing identifying attributes is necessary but
insufficient, because the set of QI attributes can be linked with public available
datasets, to reveal personal identity[2]. In the running example, Table 1 may be
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linked with the voter register of Table 2 on the QI attributes. To counter such
“link attack”, anonymization techniques typically perform generalization[1–3]
on QI attributes. Generalization transforms original QI values into a “less specific
but semantically consistent form”[2] and partitions the table into QI-groups, each
composed of tuples with identical and generalized QI values. The generalized
table (Table 3 in the running example) is finally published.

Anonymization principles such as k-anonymity[2], l-diversity[5], put con-
straints on each QI-group. The pioneering principle, k-anonymity, requires each
QI-group with size at least k. The subsequent and widely-adopted principle,
l -diversity, further requires each group contains at least l “well-represented”
sensitive values. In this way it reduces the risk of sensitive attribute disclosure
to no higher than 1/l.

1.1 Motivation

Current researches on anonymization all assume that there is one single sensi-
tive attributes (the SSA case) in the microdata table. This assumption is arbi-
trary and inapplicable to practical use. For instance, in the “Adult” dataset we
adopted in the experiment, multiple attributes, like “Work-class”, “Education”
and “Hours per Week” can be treated as sensitive attributes (the MSA case).

In the running example, two attributes, Occupation and Salary are treated
as sensitive attributes. In Table 3, the first group satisfies 3-diversity for both
Occupation and Salary attributes. Consider an adversary who obtains the QI
values {M, 10076, 1985/03/01} of Carl. Given the published Table 3, s/he can
locate Carl in the first QI-group. However, since the first two tuples of Group 1
have “nurse” as the occupation value and according to common sense, nurse is
generally a female occupation, thereby the adversary can locate Carl in the last
two tuples. S/he will be able to reveal with high confidence that Carl’s monthly
salary is 8000-10000 dollars, belonging to the high-end. There is another case
when the adversary previously knows Carl’s occupation is cook. Since there is
only tuple 3 in Group 1 having cook as the occupation value, the adversary can
also reveal Carl’s salary information.

In the forgoing examples, although Table 3 satisfies 3-diversity for Occupation
and Salary separately, if the adversary obtains some information about the tar-
get’s occupation value through background knowledge, s/he would be able to
reveal the salary value.

1.2 Contributions

This paper provides the first study towards privacy preservation in the MSA case.
First, we observe new privacy risks and conduct both exemplary and theoretical
observation to conclude that generalization is ineffective in this case.

Second, we propose a new publishing methodology, decompose, to achieve
privacy preservation in the MSA case. Instead of performing generalization on
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Table 1. The Microdata Table

Tuple# Gender ZipCode Birthday Occupation Salary 1

1(Alice) F 10078 1988/04/17 nurse 1
2(Betty) F 10077 1984/03/21 nurse 4
3(Carl) M 10076 1985/03/01 police 8

4(Diana) F 10075 1983/02/14 cook 9
5(Ella) F 10085 1962/10/03 actor 2

6(Finch) M 10085 1988/11/04 actor 7
7(Gavin) M 20086 1958/06/06 clerk 8
8(Helen) F 20087 1960/07/11 clerk 2

Table 2. Part of a Vote Register List

Name Gender ZipCode Birthday

Alice F 10078 1988/04/17

Betty F 10077 1984/03/21

Carl M 10076 1985/03/01

Diana F 10075 1983/02/14

Ella F 10085 1962/10/03

Finch M 10085 1988/11/04

Gavin M 20086 1958/06/06

Helen F 20087 1960/07/11

Table 3. The Generalized Table

# Gender ZipCode Birth. Occ. Sal.

1 * 1007* 1983-88 nurse 1
2 * 1007* 1983-88 nurse 4
3 * 1007* 1983-88 police 8
4 * 1007* 1983-88 cook 9
5 * *008* 1958-88 actor 2
6 * *008* 1958-88 actor 7
7 * *008* 1958-88 clerk 8
8 * *008* 1958-88 clerk 2

QI attributes and forming QI-groups, our technique decomposes the table into so-
called SA-groups.To retain valuable information lost in the transformed sensitive
attributes, the original sensitive table is also published without privacy leakage.

We describe decompose by first elaborating it in the SSA case then extending
it to the MSA case and introducing the (l1, l2, . . . , ld)-diversity principle. Decom-
position in the SSA case largely resembles Anatomy [6] and Permutation[7]. But
we amends their defects by concretely formalizing the group forming procedure
and theoretically presenting its rationale. The theoretical analysis also provides
us crucial knowledge about the limit of privacy preservation.

The rest of the paper is organized as follows. Section 2 formalize the problem
and Section 3 introduce the general ideas of decompose. Section 4 detailedly
describes decompose in the SSA case and Section 5 extends it to the MSA case.
Section 6 gives the experimental evaluations. Section 7 introduces the related
work and Section 8 concludes this paper.

1 Here and in other tables, integer i means the monthly salary is between the range of
1000i− 1000(i+1) dollars, This representation, instead of concrete value is adopted
in real datasets.
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2 Preliminary

2.1 Basic Notations

Let T = {t1, t2, · · · , tn} be the micordata table. Each tuple t contains a set of
quasi-identifying attributes {A1, A2, . . . , Aq} and multiple sensitive attributes
{S1, S2, . . . , Sd}. We use t.A to denote t’s value of attribute A. We use TS to
denote the “sensitive table”, or the projection of T on {S1, S2, . . . , Sd}.

2.2 Privacy Goal and Utility Goal

To model the power of the adversary, we assume s/he has strong background
knowledge that s/he knows: (i) the existence of target individual o in T , (ii)
the whole QI values of o, and (iii) arbitrary information of o’s some sensitive
attributes.

The adversary obtains o’s QI values by a ccessing the external database D.
We assume each distinct combination of QI values can uniquely identify a single
individual. Besides linking with D, the adversary can get plentiful knowledge
about o’s privacy by just observing the overall distribution of the sensitive at-
tributes. For instance, if for attribute S, there are just two values: v1 and v2,
with appearances of 10000 and 100 times respectively, the adversary can deduce
with high confidence that the S value for any target is v1. To sum up, the pri-
vacy goal can be stated as: (i) investigating the limit of privacy preservation
techniques, achieve privacy requirement if within such limit; (ii) reducing the
privacy leakage of one sensitive attribute because of background knowledge on
other sensitive attributes.

A legal researcher should be allowed to obtain valuable information from the
published table. (i) The researcher should be able to research the overall distri-
bution of one sensitive attribute and the relationship between different sensitive
attributes. This goal can be easily achieved through publishing the sensitive table
TS . (ii) The researcher should be able to retrieve valuable correlation between
sensitive attributes and QI attributes.

3 From Generalization to Decomposition

3.1 Ineffectiveness of Generalization in the MSA Case

To illustrate the ineffective of generalization in the MSA case, we attempt to pro-
tect the privacy in one sensitive attribute, say Sd, even when the adversary have
arbitrary background knowledge about S1, S2, . . . , Sd−1, like the most extreme
case “the adversary obtains the exact value of other sensitive attributes”.

In this situation, to reduce the privacy risk for Sd to 1/l, for each combi-
nation of (S1, S2, . . . , Sd−1) values, there should be at least l distinct associ-
ated Sd values in G. Likewise, to protect attribute Si, for each combination of
(S1, S2, . . . , Si−1, Si+1, . . . , Sd) values, there should be at least l distinct asso-
ciated Si values in G. We term this hypothetical diversity requirement d-SA-l-
diversity. We can prove:
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Theorem 1. For QI-group G to satisfy d-SA-l-diversity, it must have exactly l
distinct value for each Si(1 ≤ i ≤ d) and G is composed of ld tuples, each taking
one of the ld possible combinations of (S1, S2, . . . , Sd).

Proof. We prove by induction on d. When d = 1, the result is apparent. Assume
when d = k, the conclusion holds. There are totally lk tuples, each taking one
of the lk possible combinations of (S1, S2, . . . , Sk). For the privacy guarantee to
be held when d = k + 1, for each combination of (S1, S2, . . . , Sk), there must
be at least l associated distinct Sk+1 values. If there are more than l associated
distinct Sk+1 values. This leads to some combination of (S2, S3, . . . , Sk+1) that
requires more S1 values to be associated with. Likewise some combination of
(S1, S3, . . . , Sk+1) that requires more S2 values to be associated with, and so
on. So there must be exactly l distinct Sk+1 values, and totally lk+1 tuples, each
taking one of the lk+1 possible combinations.

Theorem 1 presents the ineffectiveness of generalization in the MSA case: the
contradiction between the tough selectivity requirement on sensitive attribute
distribution within a group and the arbitrary and unpredictable distribution of
microdata’s sensitive attributes. In fact, the hypothetical d-SA-l-diversity re-
quirement is almost unachievable even when d = 2 and l = 2, not to mention
the information loss even if achieved. In sum, we can conclude:

Generalization is ineffective for privacy preservation in the MSA case

3.2 General Idea of Decomposition

The privacy risk in the MSA case arises because of the linkage between different
sensitive attributes. Therefore, a better approach may be directly cutting off
such linkage and publish TS separately without revealing privacy. If the target
o can be directly associated with a set of distinct values for each Si while values
of different Si do not have one-to-one linkage, any background knowledge about
some Si could not increase the risk of other sensitive attributes.

We term our methodology “decomposition”. Firstly, it publishes the decom-
posed sensitive table. Secondly, instead generalized on QI attributes, tuples are
grouped properly. Their QI values remain unchanged while tuples within a group
share the union of their sensitive values. We decompose the table into such so-
called SA-groups.

Definition 1. (SA-group) A SA-group G contains tuples with their original,
non-transformed QI values and for each Si, each tuple in G is associated with
the set of G.Si values.

In the SSA case, decomposition resembles anatomy[6] and permutation[7]. Table
4 depicts a possible result of decompose on Table 1 with single sensitive attribute
Occupation.
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Table 4. The Decomposed Table for Single
Sensitive Attribute

# Gender Zip. Birth. Occ.

F 10078 1988/04/17 police
F 10085 1962/10/03 nurse1
M 20086 1958/06/06 actor
M 10076 1985/03/01 clerk

F 10077 1984/03/21 nurse
M 10085 1988/11/04 actor2
F 10075 1983/02/14 cook
F 20087 1960/07/11 clerk

Table 5. The Decomposed Table for Two
Sensitive Attributes

# Gender Zip Birth. Occ. Sal.

F 10078 1988/04/17 police
F 10085 1962/10/03 nurse 1

1 M 20086 1958/06/06 actor 2

M 10076 1985/03/01 clerk 8

F 10077 1984/03/21 nurse 2
M 10085 1988/11/04 actor 4

2 F 10075 1983/02/14 cook 7
F 20087 1960/07/11 clerk 9

4 Decomposition in the SSA case

In this section, we assume there is one single sensitive attribute S and aim at
achieving l-diversity, namely, each tuple is associated with l distinct S values,
so as to reduce the risk of privacy leakage to 1/l. We shall research, given a
diversity parameter l, how to properly decompose the table into SA-groups so
that: (i) each group had better contains exactly l distinct sensitive values. (ii)
the number of such SA-groups should be maximized.

We shall use following method: first place tuples with identical sensitive
values into a same “bucket”. Let Bi denote the ith largest bucket and B =
{B1, B2, . . . , Bm} denote the set of buckets. We have: ni = |Bi|, n1 ≥ n2 ≥
· · · ≥ nm and Σm

i=1ni = n.
(Largest-l group forming Procedure) In each iteration, one tuple is removed

from each of the l largest buckets to form a new SA-group. Note that after one
iteration, the size of some buckets will be changed. So in the beginning of every
iteration, the buckets are sorted according to their sizes, as shown in Figure 1.

Theorem 2. The Largest-l group forming procedure creates as many groups as
possible.2

Proof. We prove by induction on m = |B| and n = |T |.
Basis. m = n = l. This is the basis because when m < l or n < l, no group

can be created. In this case, there is exactly one tuple in each bucket, apparently,
the Largest-l procedure creates as many groups as possible.

Induction. When m > l, n > l. Assume the way W creates maximal number
of groups, which equals k. We denote Gi = {i1, i2, . . . , il} (i1 < i2 < · · · <
il) to be the ith group created by W and Gi contains one tuple from each of
Bi1 , Bi2 , . . . , Bil

. From W , a new way W ′ can be constructed that satisfies: (1)
W ′ creates k groups; (2) the first group created by W ′ is G

′
i = {1, 2, . . . , l}. The

construction takes two operations: swap and alter.

2 Similar procedure is also stated in [6], however [6] ignores to prove its optimality.
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– swap((Gi, a), (Gj , b))(1 ≤ a, b ≤ m,a ∈ Gi, a /∈ Gj , b ∈ Gj , b /∈ Gi) means
to exchange a in Gi with b in Gj . For example, if G1 = {1, 2}, G2 = {3, 4},
swap((G1, 1), (G2, 3)) leads to G1 = {2, 3}, G2 = {1, 4}. Since a /∈ Gj ,
b /∈ Gi, after swap, G1 and G2 still contain l distinct values, the grouping
way after this operation is always valid.

– alter(a, b) (1 ≤ a < b ≤ m) means to replace each a in every Gi with
b and replace each b with a. For the above example, alter(2, 3) leads to
G1 = {1, 3}, G2 = {2, 4}. The grouping way is valid after this operation if
and only if a’s total appearing times is no more than b’s.

The construction from W to W ′ is like this: for integer i from 1 to l, assume the
ith element in G1 is b. If i = b, we do nothing. Otherwise, b must be greater than
i. We check for other k − 1 groups G2, . . . , Gk. There are two possible cases:

– There is a group Gj such that i ∈ Gj and b /∈ Gj . In this case, we perform
swap((G1, b), (Gj , i)) to obtain a new grouping way. Since i /∈ G1, b /∈ Gj , it
is still a valid grouping way.

– Every group that contains i also contains b. Therefore, the total number
of i’s is no more than that of b’s. In this case, we perform alter(i, b), the
grouping way is still valid after this operation.

Note operation on i ensures the ith element in G1 to be i and does not change the
first i−1 elements. So when the whole process finishes, we obtain a valid grouping
way W ′ with G′1 = {1, 2, . . . , l}. Removing tuples corresponding to the elements
in G′1, we obtain a new instance of the problem with m′ ≤ m,n′ = n − l < n.
Due to induction hypopiesis, the Largest-l procedure generates as many groups
as possible for the new instance. In the meantime, the best solution to the new
instance contains at lest k−1 groups, because G′2, G

′
3, . . . , G

′
k is such a grouping

way. So for the original instance, the Largest-l procedure generates at least k
groups. That is the maximal number as assumed. The proof is completed.

Theorem 2 guarantees given the diversity parameter l, maximum groups can be
formed. We shall also investigate: (i) in which case there will be not tuples left
after the procedure; and (ii) what is the property of residual tuples, if any.

Theorem 3. When the Largest-l group forming procedure terminates, there will
be no residual tuples if and only if the buckets formed after the bucketizing step
satisfy the following properties (we term it l-Property):
(i) ni

n ≤ 1
l , i = 1, 2, . . . , m (Use the same notation: ni,m, n as in Theorem 2);

(ii) n = kl for some integer k.

Proof. First notice that ni

n ≤ 1
l is equivalent with n1 ≤ k, because n1 is the

largest among all ni’s.

(If ) We prove by induction on m = |B| and n = |T |.



8 Yang Ye, Yu Liu, Dapeng Lv, Jianhua Feng

Basis. m = n = l, this is the basis because m cannot be smaller than l. Now
there’s one tuple in each bucket. Obviously the procedure leaves none.

Induction. m > l or n > l. Resembling the proof of Theorem 2, we assume
that when the first group is created by the procedure, the remaining buckets
and tuples form a new instance of the problem with parameter (m′, n′). We
shall prove this new instance also satisfy l-Property.

Apparently m′ ≤ m,n′ = n − l = (k − 1)l. To prove n′1
n′ ≤ 1

l . We need only
to prove n′1 ≤ k − 1.

Otherwise, n′1 = k. However, it is required that in iteration 1, each of the
largest l buckets contributes one tuple to G1. After iteration 1, the largest bucket
contains k tuples, so it didn’t contribute to G1. This means their are at least
k + 1 buckets before iteration 1 that contains k tuples and their are totally at
least (k + 1)l > n tuples. This leads to contradiction.

Therefore the new instance satisfies l-Property. With the very same idea as
used in the proof of Theorem 2, the outcome of the remaining execution of the
procedure equals to what we obtain by running the procedure individually on
the new instance. Due to induction hypopiesis, Largest-l procedure leaves no
residual tuples for the new instance. So for the original instance, the conclusion
also holds. The proof of if-part is completed.

(Only-if ) It is easy to verify that n must be multiple of l to guarantee that no
tuple will be left. So there exists some integer k such that n = kl.

Since there’s no residual tuples, for the requirement of l-diversity, each group
contains at most one tuple from the first bucket. The mapping from the tuples
in B1 to the groups is one-to-one, but not necessarily onto. Therefore, we have:
n1 ≤ k = n

l or n1
n ≤ 1

l . The proof of only-if part is completed.

For the second problem about residual tuples, when the buckets formed
through bucketization satisfy the first condition while do not satisfy the sec-
ond condition of l-Property, we have following conclusion:

Corollary 1. If the buckets satisfy: ni

n ≤ 1
l , then when the Largest-l group

forming terminates, each non-empty bucket contains just one tuple.3

Proof. Assume n = kl + r, 0 ≤ r < l, hypothetically change the group forming
procedure like this: first subtract one tuple from each of B1, B2, . . . Br, then
operate the Largest-l group forming procedure on this new instance. It’s easy
to verify the new instance satisfies l-Property (i) and (ii), so k groups will be
formed. Therefore on the original instance, the Largest-l procedure creates no
less than k groups. In the meantime it creates no more than k groups because
n = kl + r.

Now we already know there are k iterations of group forming procedures in
total, denote them to be I1, I2 . . . Ik. Assume one bucket (denoted Bbad) contains
at least 2 tuples after Ik. Note before Ik, there are at most l − 1 buckets with

3 Similar conclusion is stated in [6], however we find its proof incomplete because of
the unproved assumption that the number of iterations equals k.
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size at least 2, otherwise there will be at least l non-empty buckets after Ik.
So a tuple from Bbad is selected during Ik and |Bbad| ≥ 3 before Ik. Similarly,
before Ik−1, there are at most l− 1 buckets with size at most 3. So a tuple from
Bbad is selected during Ik−1 and |Bbad| ≥ 4 before Ik−1. Recursively, we obtain
|Bbad| ≥ k + 2 before I1, this contradicts the condition. The proof is completed.

The above result is of great merits. When the assignment of diversity parameter l
is smaller than or equal to b n

n1
c, the number of residual tuples are nicely bounded.

However, when l grows greater than b n
n1
c, the number of residual tuples may

grow dramatically. It’s difficult to guarantee privacy for these tuples. Thereby,
the assignment of l should not exceed b n

n1
c. To sum up, we have:

Corollary 2. The largest permissable assignment to the diversity parameter l
is lper = b n

n1
c

We can consider Corollary 2 from another angle. By just observing the overall
distribution of S, the adversary can deduce with confidence n1

n that any target o
has the most frequent value. This gives the limit of privacy preservation power.
If some privacy preserving technique reduces the adversary’s deduction confi-
dence to lower than n1

n , s/he can obtain more information just by the overall
distribution. To sum up, we have:

(The Limit of Privacy Preservation Power) The limit of privacy preservation
power for all techniques is the distribution of original values. One cannot achieve
protection better than n1

n for all tuples if the original distribution is published.
If n is not a multiple of l, according to Corollary 1, there will be no more

than l− 1 tuples left. For each t of them, we choose a proper group to merge it.

5 Extending Decomposition to the MSA case

The extension of Decomposition to the MSA case is intuitive. First, as discussed
in Section 2, the sensitive table TS is published. Next, one sensitive attribute
(denoted Spri), is chosen as the “primary sensitive attribute” and largest-l pro-
cedure is exerted on Spri to form SA-groups.

Definition 2. (Primary Sensitive Attribute) In the MSA case, the primary
sensitive attribute is the sensitive attribute chosen by the publisher, according to
which SA-groups are formed.

Third, for each SA-group and each non-primary sensitive attribute, the origi-
nal values are united up, as depicted in Table 5. Reduplicated values are counted
once because multiple counts just increase the privacy disclosure risk.

As discussed in Section 4, the limit of privacy preservation for each Si is
bounded by the most frequent Si value’s percentage. So, we should not assign a
uniform l for all Si. Instead, each Si should have its own li. We may set lper(Si)
to be default. In this way, we introduce a new MSA diversity principle:

Definition 3. ((l1, l2, . . . , ld)-diversity) A decomposed table is said to satisfy
(l1, l2, . . . , ld)-diversity, if for each of its SA-group G and each i ∈ {1, 2, . . . , d},
G.Si contains at least li distinct sensitive values.
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Table 6. The Final Publishing of Decomposition

The Sensitive The Decomposed Table
Table after Adding Noise

Occupation Salary Group# Gender ZipCode Birthday Occupation Salary
nurse 1 F 10078 1988/04/17 police 1
nurse 4 F 10085 1962/10/03 nurse 2
police 8 1 M 20086 1958/06/06 actor 4
cook 9 M 10076 1985/03/01 clerk 8
actor 2 F 10077 1984/03/21 nurse 2
actor 7 M 10085 1988/11/04 actor 4
clerk 8 2 F 10075 1983/02/14 cook 7
clerk 2 F 20087 1960/07/11 clerk 9

As for some non-primary sensitive attribute Si, there may be groups with
less than li distinct Si values. Like in Group 1 of Table 5, lper(Salary) = 8

2 = 4,
because the most frequent salary value 2 and 8 both appear twice. However,
Group 1 contains just 3 distinct values for Salary. To satisfy the privacy goal,
some “noise” should be added. These noise values cannot be arbitrarily chosen.
For example of Group 1, either 4 or 7 can be chosen while 9 cannot, we shall
present the choosing method and its rationale in following subsections. In sum,
the final publishing of decomposition is shown in Table 6

5.1 The Choice of Primary Sensitive Attribute

The primary sensitive attribute Spri is publisher-predefined. Its introduction is
not only necessary for group forming, but also of utility merits. Generally, Si is
retained to the maximum extent, because no noise is added on it. So publisher
can choose the attribute whose data quality is specially required as Spri.

In the meantime, since different Si have different li and the size of each SA-
group equals lpri. If the attribute with largest li is not chosen as the primary
sensitive attribute, for attributes with li larger than lpri, the procedure of adding
noise is inevitable. This is undesired. Therefore, we have:

(Suggestion on Choice of Primary Sensitive Attribute) Without exceptional
requirement on data quality of some sensitive attribute, the Si with largest li
can be chosen as the primary sensitive attribute.

5.2 Adding Noise

The procedure of adding noise is conducted to compensate for SA-groups G
that does not satisfy li-diversity for non-primary sensitive attribute Si. This
“not satisfying” may arise from two cases: (i) lpri is not the largest of all li’s.
(ii) For G.Si, reduplicated values are counted just once. However, noise values
cannot be arbitrarily chosen, because the sensitive table TS is also published.
The adversaries can link G.Spri with TS to detect which values are allowable for
G.Si, we term them linkable sensitive values. If a non-linkable sensitive value is
chosen as noise, the adversary can perform link operation to eliminate it.
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Definition 4. (Linkable Sensitive Values) For non-primary sensitive attribute
Si and SA-group G, their linkable sensitive values, LSV (Si, G) are the set of Si

values resulted from natural link of G.Spri and TS.

LSV (Si, G) = ΠSi(TS ./ G.Spri) (1)

In Table 5, LSV (Salary, G1) = {1, 2, 4, 7, 8} and 4 is chosen as noise value.
Since adding noise is a great data distortion, it should be reduced as much

as possible. We revisit the process of group forming and introduce a greedy
approach to reduce noise.

Definition 5. (Diversity Penalty) The diversity penalty for a tuple t to be
merged into group G, or P(t, G) is defined as:

P(t, G) =
∑

non-primarySi

p(t, G, Si) (2)

Where p(t, G, Si) = li − |G.Si| If t.Si ∈ G.Si and G.Si does not satisfies li-
diversity. |G.Si| is the number of distinct G.Si values. p(t, G, Si) = 0If t.Si /∈
G.Si or G.Si already satisfies li-diversity.

Namely, the diversity penalty penalize t which attempts to be merged into
G, if it fails to contribute to achieving li-diversity for G.Si. Revisit the Largest-l
group forming procedure, in each iteration, one tuple is randomly selected from
the largest bucket B1 and forms the original group G, subsequently, from B2

through Bl, one tuple that minimize P(t, G) is chosen and merged into G. As
for the residual tuples when Largest-l procedure terminates, the choice of G to
merge them it also based on minimizing P(t, G).

5.3 Algorithm

Summing up previous discussions, we formally present the algorithm of decom-
position in this section. As shown in Figure 1, line 1 through line 8 depicts the
Largest-l group forming procedure. The diversity penalty is used to reduce pos-
sible noise. The diversity penalty is also used in merging the residual tuples. Line
11 through line 15 shows the adding noise procedure.

6 Experiments

In this section, we experimentally evaluate the performance of decomposition.
We utilize the “Adult” database from the UCI Machine Learning Repository4. It
leaves 30162 tuples after removing tuples with missing value. All algorithms are
built in JDK 5.0 and run on a dual-processor Intel Pentium D 2.8 GHz machine
with 2GB RAM and Microsoft Windows Server 2003.
4 http://www.ics.uci.edu/mlearn/mlrepository.html.
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Algorithm 1: The Algorithm for Decomposition

Input: Original table T with sensitive attributes S1, S2, . . . , Sd, one of them is
primary: Spri. Diversity Parameters l1, l2, . . . , ld.

Data: The set of buckets formed by primary sensitive attribute B = {Bi};
G = ∅, G is the set of SA-groups.

Output: Decomposed table T ∗ which satisfies (l1, l2, . . . , ld)-diversity.
begin1

/* The Largest-l group forming procedure */
while |B| ≥ lpri do2

sort Bi in B by their sizes in descent order;3

Randomly remove one tuple t1 from B1;4

G = {t1};5

for i ← 2 to lpri do6

Remove one tuple ti from Bi that minimize P(ti, G);7

G = G
S

ti;8

endfor9

G = GSG;10

endwhile11

/* Dealing with residual tuples */
foreach residual tuple t do12

Find SA-group G that minimize P(t, G);13

G = G
S

t;14

endforeach15

/* The adding noise procedure */

foreach non-primary sensitive attribute Si and each SA-group G do16

if G.Si does not satisfy li-diversity then17

LSV (G, Si) = ΠSi(T S ./ G.Spri);18

Merge values from LSV (G, Si)−G.Si into G.Si
19

until G.Si satisfies li-diversity;20

end21

endforeach22

end23

Fig. 1. The Decomposition Algorithm

Table 7. Description of Attributes

Attribute Number of Largest permissible
distinct values diversity parameter

Age 73 N/A

Final-Weight 100 N/A

Martial Status 7 N/A

Race 5 N/A

Gender 2 N/A

Work-class 14 7

Education 16 3

Hours per Week 99 2

Relationship 6 3
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There are 14 attributes in Adult. We retain 9 of them: Age, Final-Weight,
Martial Status, Race, Gender, Work-class, Education, Hours per Week and
Relationship. The descriptions of the attributes are in Table 7.

We adopt the KL-divergence metric which is widely used in the literals to
measure the data utility. Concretely, given a probability distribution F̂1 associ-
ated with the original data, and a probability distribution F̂2 associated with the
released anonymized data. Let x1, . . . , xN be the points in the muti-dimensional
domain of the data. Let p

(1)
i be the probability of xi according to F̂1 and p

(2)
i be

the probability according to F̂2. The Kullback-Leibler (KL)-divergence between

F̂1 and F̂2 is defined as
∑

i p
(1)
i log p

(1)
i

p
(2)
i

. It equals 0 only when F̂1 = F̂2.

6.1 Decomposition V.S. Generalization in the SSA Case

We treat Work-class as the sensitive attribute and develop 4 tables from Adult:
q-QI-Adult (5 ≤ q ≤ 8). q-QI-Adult takes the first d of other attributes as QI.

We compare decomposition against the widely-adopted multi-dimensional
generalization algorithm Mondrian[8] when achieving l-diversity. Figure 2 through
Figure 5 depicts the KL-divergence of the anonymized datasets created by two
algorithms. We could observe, for a fixed l, the KL-divergence of decomposed
table almost does not grow with the number of QI attributes while the KL-
divergence of generalized table grows significantly with QI attributes number.
For any q-QI-Adult and any l, decomposition largely outperforms generalization.

For lack of space, we just plot the execution time of both algorithms on 8-
QI-Adult in Figure 6. Again, decomposition greatly outperforms generalization.
The execution time of decomposition almost have no growth with l while that
of Mondrian generalization decreases a little, from 90.0 seconds to 75.7 seconds.
In fact, we can theoretically prove that the time complexity of decomposition is
O(n2), irrelevant with l. While larger l imposes more strict condition on contin-
uing recursion for Mondrian, thereby reduces its execution time.

6.2 Decomposition in the MSA Case

To measure the effectiveness and efficiency of decomposition in the MSA case. We
develop 4 tables: d-SA-Adult (1 ≤ d ≤ 4). d-SA-Adult uses the first 5 attributes
as QI attributes and the subsequent d attributes as sensitive attributes. Work-
Class is treated as primary sensitive attribute because it has largest lper.

Figure 7 depicts the KL-divergence of decompositiond d-SA-Adult tables
where lpri is set from 3 to lper(work-class) = 7. For each non-primary sensitive
attribute Si, li is set to lper(Si). In Figure 7, each curve grows moderately with
the increase in sensitive attribute numbers. In fact, the experimental result is
quite close to the theoretical estimation of log (

∏
i li).

Figure 8 depicts the execution time of decomposition on d-SA-Adult tables.
Again, each non-primary sensitive attribute is set to its largest permissible di-
versity parameter while lpri varies from 3 to 7. When d = 1, decomposition is
degenerated to the SSA case, the executions on different l cost almost the same
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amount of time. This accords with Figure 6. When there are multiple sensi-
tive attributes, larger lpri leads to less execution time, because it reduces the
necessity of adding noise.

We conduct a separate experiment to measure the number of noises in the
MSA case. This experiment is on 2-SA-Adult, which takes Work-Class as the
primary sensitive attribute and Education as the non-primary sensitive attribute.
Figure 9 depicts the number of noises as the function of lpri and lEducation. The
largest number appears when lpri = 5 and lEducation = 5, which equals 4733. In
fact, this case will not appear in practise, because lper for Education is 3 and
we’ve reasoned that the assignment of l should not exceed lper. When lEducation is
within the permissible range, the largest number of noises equals 675, a relatively
quite small number comparing to the table size.

7 Related Work

Ever since Sweeney and Samarati introduce the idea of anonymization[1, 2],
subsequent studies generally follow three directions: (1)developing new privacy-
preservation models in face of new observed risks; (2)designing algorithms for
certain privacy model; (3)and other related works.

Subsequent models include l-diversity[5], t-closeness[9], m-invariance[10], per-
sonalization[11], dynamic anonymization [12, 13] and so on.. Specially, anatomy[6]
resort to non-generalization on QI attributes, which is extended in this paper.

Early algorithms for anonymization are hierarchy-based [1, 2, 4, 3], they as-
sume a pre-defined generalization hierarchy for each QI attribute. [8] and [14]
represent the partition-based and clustering-based algorithms respectively. The
idea of largest-l procedure is also borrowed from [14].

There are still other related works, including privacy preservation on graphs[15],
social networks[16], location information[17] and etc.
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8 Conclusions

Although anonymization has received intensive studying interest in recent year,
the privacy risk in the multiple sensitive attribute case has not been paid enough
attention. We observe this new privacy threat and propose decomposition and
the (l1, l2, . . . , ld)-diversity principle to tackle it.

This paper lays down a foundation for future works towards privacy preser-
vation in the MSA case. Interesting directions include combining categorical and
numerical sensitive attributes, working on dynamic dataset and etc..
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