
A Framework for Resource Negotiation and Pricing in the Internet

Xin Wang, Henning Schulzrinne
Dept. of Computer Science

Columbia University
1214 Amsterdam Avenue

New York, NY 10027
xwang@ctr.columbia.edu, schulzrinne@cs.columbia.edu

Abstract

Network delivery services providing “better-than-best-effort” service over the Internet are particu-
larly necessary for multimedia applications. The selection and use of a specific delivery service involves
negotiation between the user and the network; they agree upon specifications such as the type of service
user packets will receive, the constraints the user traffic must adhere to, and the price to be charged
for the service. In this paper, we describe a protocol through which the user and the network (or two
network domains) can negotiate network services. We refer to the protocol as a Resource Negotiation
and Pricing protocol (RNAP). Through RNAP, the network service provider communicates availability
of services and delivers price quotations and charging information to the user, and the user requests or
re-negotiates services with desired specifications for one or more flows. RNAP protocol mechanisms
are flexible enough to support multiple delivery service models, and allow dynamic re-negotiation of
services during a session. Two different network architectures are defined to support RNAP, a central-
ized architecture with a Network Resource Negotiator (NRN) administering each network domain, and
a distributed architecture without any centralized controlling entity. Mechanisms are proposed for local
price and charge computation, formulation of end-to-end prices and charges across multiple domains,
and communication of this information through RNAP messages. Results of a prototype implementation
are described briefly.

1 Introduction

Motivated by growth of Internet multimedia applications, a number of researchers have investigated network
delivery services that provide “better-than-best-effort” (BBE) service to the user, in the sense that they
provide some QoS guarantees to applications. Important examples of proposed network service models are
the integrated service model (int-serv) [1, 2], and the differentiated service model (diff-serv) [6, 7].

As these services are implemented in the Internet, user applications will be able to request and use the
delivery service appropriate to their requirements. We may regard the selection and use of a specific delivery
service as a negotiation process. The customer and network negotiate and agree upon specifications such as
the type of service user packets will receive, the constraints the user traffic must adhere to, and the price to be
charged for the service. The central goal of our work is to develop a protocol through which this negotiation
can take place. The protocol should be generic and flexible enough to support multiple delivery services and
environments (including int-serv, diff-serv, and best effort services), service negotiation at different levels
of granularity (flow- and aggregate-based), negotiation by both sender and receiver, and “in-band” and “out-
of-band” resource reservation mechanisms. It should allow the service provider to communicate service
availability, estimated prices for available services and charges accruing to the user, and allow the user to
request a specific service. It should also support dynamic service re-negotiation between the user and the

1

network, allowing the network to adjust pricing in response to changes in network load, and allowing the
user to respond to changes in application requirements. We refer to the proposed negotiation protocol as the
Resource Negotiation And Pricing protocol (RNAP).

Based on the policy of each domain, different algorithms can be used for computation of a local or
incremental price for a service at a given point in a network; We propose a number of alternative mechanisms
to allow the network to compute a global price on the basis of these incremental prices, and to charge
the user for the end-to-end service. The proposed protocol and architecture and pricing mechanism are
intended to co-exist with current Internet QOS schemes (e.g. those proposed within the int-serv and diff-
serv frameworks), and work in a scalable manner over a variety of network architectures. We present RNAP
as a stand-alone protocol, but it is also possible to implement some components of RNAP as a layer on top
of RSVP or other hop-by-hop reliable signaling protocols.

RNAP is intended for use by both adaptive and non-adaptive applications. Non-adaptive applications
may choose services that offer a static price, or absorb any changes in price while maintaining their sending
rate. Adaptive applications adapt their sending rate and/or choice of network services in response to changes
in network service prices. RNAP provides a framework within which an application can adapt so as to obtain
the best value from the network.

The paper is organized as follows. In the following section, we define two alternative protocol architec-
tures, a centralized architecture (RNAP-C), and a distributed architecture (RNAP-D). We consider the design
goals discussed above in greater detail in order to develop an outline of the RNAP protocol. In Section 3,
we present a detailed description of the basic RNAP protocol, including protocol messages, and message
sequences in centralized and distributed architectures. We then expand our discussion to end-to-end service
negotiation across multiple domains, and also briefly consider advance reservation mechanisms. In Section
4, we discuss pricing and charging mechanisms in RNAP. The communication of pricing and charging in-
formation in the various RNAP messages is first discussed, followed by an explanation of how end-to-end
pricing and charging can be formulated under both RNAP-C and RNAP-D architectures. We end the sec-
tion by considering a specific strategy for pricing a BBE service at a single network point, based on which a
complete pricing system may be realized using RNAP. In Section 5, we describe a prototype implementation
of the RNAP protocol and architecture in a test-bed network. In Section 6, we briefly discuss some related
work. We summarize our work in Section 7 and also point out important open issues.

2 Architecture and Design Goals

2.1 Protocol Architecture

We begin by considering a scenario in which a customer (sender or receiver) wishes to reserve network
resources for multiple flows, for example, traffic flows from a video-conference. We assume that the user
application negotiates through an agent referred to as the Host Resource Negotiator (HRN). The HRN is
responsible for obtaining information and price quotations for available services from the network. During
the negotiation, the HRN requests a particular service, specifying the type of service (guaranteed service,
control load service, premium service, assured service, best effort service, etc.), and parameters to charac-
terize the requested service. Some parameters are general to all services (immediate/advance reservation,
preemption level, partial reservation, etc.) and other parameters are specific to a service class (peak rate, av-
erage rate, burst size, lost rate, delay, jitter etc.). The HRN can negotiate simultaneously for one or multiple
flows, and request different services for each of them.

A HRN negotiates only with its access network to reserve resources, even if its flows traverse multiple
domains. If a domain could provide pricing information for services along different paths, the HRN will
choose the optimal path at beginning of the transmission. A HRN may also decide to renegotiate resources
at a later time if the network is under heavy congestion and the price is prohibitive. In addition to resource

2

������

��
��
��
��

������

���
���
���
���

�����
���
���
���
���

���
���
���
���
���

������ ��������NRN NRNNRN

B1

B2
B3

B5

B6

B7
B8

S1

Transit NetworkAccess Network Access Network

S2

B4

R1

RNAP messages

Intra-domain Messages

R2

HRN

HRN
HRN

HRN

Figure 1:RNAP-C Architecture

negotiation between the HRN and the network, the RNAP protocol is also intended for resource negotiation
between two network domains. An access domain “A” may receive requests for a service in a certain
direction passing through a neighboring transit domain “B” from one or more users, and use RNAP to
request the service for the flow or flow-aggregate from domain “B”. We discuss an end-to-end negotiation
scenario across multiple domains in Section 3.4.

For negotiation on the network side, we consider two alternative architectures, a centralized architecture,
and a distributed architecture.

2.1.1 Centralized Architecture (RNAP-C)

In a centralized architecture, the network negotiates through a Network Resource Negotiator (NRN). Each
administrative domain has at least one NRN. The NRN delivers price quotations for the different available
service levels to HRNs, answers service requests from HRNs, and is also responsible for maintaining and
communicating user charges for a particular session.

The NRN may be an individual entity, or may be a complementary functional unit that works with other
administrative entities. For example, the NRN can be part of (or function as) the Bandwidth Broker (BB)
in the diff-serv model [6] and the PDP in the COPS architecture [30]. The NRN either has a well-known
address, or is located via the service location protocol [37]. The NRN address of a neighboring domain can
be pre-configured or obtained through DNS SRV [38].

Resource reservation and admission decisions may be performed by the NRN; they may also be per-
formed by other entities, such as the BB of the diff-serv model. If they are performed by other entities, the
NRN communicates requests for services to them individually or in aggregate, and receives admission deci-
sions and possibly pricing decisions from them. The implementation of resource reservation and admission
control, and the associated communication with administrative entities, is closely related to specific BBE
services, and is outside the scope of the RNAP protocol.

2.1.2 Distributed Architecture (RNAP-D)

In this architecture, networks don’t have centralized negotiating entity. Instead, the protocol is implemented
at routers in the network, and RNAP messages propagate hop-by-hop, from the first-hop router to the egress
router, and vice-versa. We consider the messaging process in greater detail after introducing specific RNAP
messages in Section 3.3.

Evidently, the RNAP-D architecture has in-band messaging, whereas the RNAP-C architecture has out-
of-band messaging.

The RNAP message format is independent of the architecture. Therefore, the two architectures can
co-exist; for instance, a domain administered by a NRN can exchange RNAP messages with a neighboring

3

���
���
���
���

��
��
��
��

�� B1

B2
B3

B5

B6

B7
B8

S1

Transit NetworkAccess Network Access Network

B4

R1

RNAP messages

HRN HRN

Figure 2:RNAP-D Architecture

domain which employs the distributed architecture. Also, a HRN does not need to know about the RNAP
architecture of its local domain, since it receives and sends the same negotiation messages in either case.

2.2 Dynamic Re-negotiation Capability

There are a number of reasons that make it desirable for the negotiation protocol to permit services to be re-
negotiated dynamically. In general, the network would like applications to acquire network resources so that
there is high network utilization, but not at the expense of poor QoS. The real time constraints of multimedia
traffic make it difficult for these applications to estimate the bandwidth required for an application.

Also, many existing multimedia applications allow the media rate and quality to be adjusted over a wide
range, allowing them to respond to network congestion by gracefully reducing their rate [9], possibly uti-
lizing application-specific knowledge. Such applications have the incentive to re-negotiate a service with
lower QoS when network congestion results in the current service becoming more expensive, or if the net-
work provider denies the requested service because of unavailability of the amount of resources requested.

Possible re-negotiation scenarios include periodic re-negotiation, in which the service contract expires
after a period and is re-negotiated, and asynchronous re-negotiation initiated either by the customer or by the
network provider. The RNAP protocol uses both mechanisms. Each service has an associatedNegotiation
Interval, during which the negotiated price and service characteristics remain constant. The resource reser-
vation expires after the negotiation interval, so in order to maintain uninterrupted service, the HRN needs
to re-negotiate the resource reservation request periodically. To facilitate the re-negotiation process, the
network periodically sends the HRN service price and availability information. The periodic re-negotiation
mechanism is optional, and a HRN not willing to negotiate may disable the mechanism at any time. The
periodic re-negotiation mechanism allows the network provider to use network resources more efficiently,
and also convey to the users the network state through pricing information (for example, when congestion
occurs, the network tries to reduce the traffic entering the network by increasing the price). When the net-
work is congested, an user capable of dynamically adjusting its transmission is able to respond to increase in
price by adjusting its quality of transmission gracefully. Alternatively, the user can maintain a high quality
of transmission by paying a higher price. It is likely that a negotiation with longer interval carries a “risk
premium” to protect against network dynamics.

2.3 Pricing and Charging Capability

A network service model that provides one or more “better-than-best-effort” delivery services must also
incorporate a pricing system, so that users are charged appropriately for different levels of service. Re-
searchers have also suggested usage/congestion sensitive pricing as a congestion-control mechanism [12,
13, 14, 15, 25, 17,?, 18] if applications are capable of adaptation, as discussed above.

A pricing system includes monitoring of user traffic, price formulation at one or more points within
the network, computation of a global, or end-to-end, price for a particular service, and a mechanism to
communicate pricing information from the network to the customer. We consider these issues in Section 4.
For the present, we assume the existence of mechanisms which enable the network (the NRN in RNAP-C,

4

and individual routers in RNAP-D) to compute the price for a service, and to compute charges accruing to
the user for services used. The RNAP protocol provides the means to communicate to the customer price
quotations for different services, and the charge for services provided to the customer. It also supports
different charging modes: charging the sender, or receiver, or both. The periodic re-negotiation framework
provides a natural way to communicate periodic price quotations and cumulative charges to the customer.

2.4 Scalability

RNAP messaging is scalable in the sense that message volume is independent of the hop count of a route
or the number of transit domains on the route. Scalability is therefore determined mainly by the need to
transmit, maintain and process the state information relating to each multimedia session (consisting of one
or multiple flows) established by a HRN. It is likely that individual customer flows will be progressively
aggregated to form larger granularity flows in the core of the network. The NRN (or boundary routers
of a domain in RNAP-D) may negotiate resources for such a flow, consisting of traffic belonging to more
than one customer, entering from a neighboring network. In this case, the NRN or network does not have
knowledge of individual flows belonging to the aggregate, and only maintains RNAP state information for
the aggregation. The centralized architecture has better scalability, since the state information needs only to
be maintained by the NRN and boundary routers of a domain.

2.5 Service Predictability

In general, each particular delivery service model has associated mechanisms to assure that the service
received by the user is predictable. Predictability includes the quality expected from a service type, and the
price charged for it. The periodic price quotation mechanism discussed earlier can also serve to increase the
predictability of the overall service by keeping the price constant during a negotiation period.

2.6 Transport Protocol and Reliability

RNAP messages are sent using the UDP protocol. In both RNAP-C and RNAP-D models, synchronous
RNAP messages are sent periodically and provide a natural way of protecting against loss. Since a ne-
gotiation involves charging, a HRN may want to know the current service price before sending out a new
request. RNAP allows the HRN to asynchronously solicit any service related information at any time during
the negotiation session. If a reservation request is lost in transmission, the network will continue to provide
service based on contracted rules from previous negotiation period. If one or moreReservemessages are
lost in transmission, the network continues to provide service based on the latestReservefor a specified
time-out period.

The HRN also sends messages asynchronously. To protect against asynchronous message loss (and
as an additional protection against synchronous message loss), the HRN continues to retransmit a request
with exponential back-off (for congestion control) until a response is received. The retransmission interval
starts at close to the end-to-end round trip time. The retransmission interval doubles after each packet
transmission.

Network failures, such as failure of a negotiation server or of a device storing RNAP state information,
and network partitions need also to be considered. A back-up NRN may be needed for the RNAP-C model.
If there is any possibility of resource unavailability due to element failure or route change, a re-negotiation
process is triggered from the influenced domain to the corresponding neighboring domains to allow new
resource agreements to be reached. When a device that stores customer charging information is down
for a period, the charge for the period is asynchronously retrieved after the device becomes alive. The
accumulated charge may need to be stored in a non-volatile storage.

5

The network should be able to track the liveness of an application using RNAP by tracking periodic
RNAP messages and also by monitoring the flow. This would avoid charging a terminated application and
wasting network resources.

2.7 Security

RNAP messages can be authenticated and encrypted in the same way as RSVP [39]. Alternatively, IPSEC
[40] may be used.

3 Basic Negotiation Protocol

In this section, we start with an explanation of some basic terminology used in describing protocol messages,
followed by a description of the protocol messages, and the typical negotiation sequence in which they are
used. In the discussion that follows, we assume for convenience the RNAP-C architecture, and refer to the
NRN as one of the negotiating entities. We later extend the discussion to the RNAP-D architecture, with
the routers along the delivery flow path collectively playing the role of the NRN. Also for convenience, we
assume that the other negotiating entity is a HRN, acting on behalf of the user application. As mentioned
earlier, the RNAP protocol is also applicable to resource negotiation between two network domains, in
which case, the first domain (through its NRN, in case RNAP-C is employed) plays the role of the HRN.

3.1 Terminology

Id: The Id field contains 3 sub-fields:Flow Id, Aggregation Flag, andAggregate Flow Id. TheFlow Id
defines a flow for which services are negotiated. For individual flows, theFlow Id contains the source
IP address and port, destination IP address and port, and optionally, the transport protocol. It also
contains the destination network address, determined by the HRN by a method such as RADB lookup
[44]. The purpose of theAggregation FlagandAggregate Flow Idsub-fields is explained when we
discuss message aggregation, in Section 3.5.

Service: The Serviceidentifier defines the service being negotiated. The HRN uses it to request a price
quotation or reserve resources for a particular service with a set of associated parameters. The NRN
uses it in the corresponding acknowledgment messages. A service identifier consists ofService Type,
Service Independent Parameters (SIP)andService Specific Parameters (SSP).

SIP specifies a list of parameters that are generic to all service models and used to characterize a
service. The service independent parameters includeService Type, Starting Time, Ending Time, Ne-
gotiation Capability, Negotiation Interval, Preemption Capability, andReservation Coverage.

Service Type: TheService Typeidentifies a service. Examples of services are the Guaranteed and
Controlled Load service models defined within the int-serv framework [1, 2], and the Premium
and Assured Service models defined within the diff-serv framework [6, 7].

Starting Time and Ending Time:Starting TimeandEnding Timespecify the time period over which
service is requested (when specified by HRN) or is available (when specified by NRN). The
Starting TimeandEnding Time fieldsare optional and may be used to make either immediate or
advance reservations (Section??).

Negotiation Capability: TheNegotiation Capabilityflag is used by the HRN to signal its capability
or willingness to negotiate during session initiation.

6

Negotiation Interval: TheNegotiation Intervaldefines the length of time over which the negotiated
service and price are valid. The negotiated service expires automatically at the end of the ne-
gotiation interval, and the HRN must periodically re-negotiate (by sending aReservemessage)
before the expiration to ensure uninterrupted service. Specific services may define different
actions on part of the provider regarding the treatment of user packets after the service has ex-
pired. Possible actions are: maintaining the current service at the previously negotiated price,
maintaining the current service but updating the price unilaterally as required, or transmitting
using best effort service. To reduce the signaling overhead, the negotiation interval for a service
can be set equal to or a multiple of time periods associated with an underlying protocol, for
example, the TCP round-trip time, RSVP [3] refresh time, or RTCP [36] receiver report interval.
To reduce control overhead, a minimum negotiation interval should be enforced. Multimedia
services should not renegotiate too frequently, to avoid adjusting data rate too often resulting in
poor perceived quality.
The negotiation interval affects how a service is priced. A service with a longer negotiation
interval may carry a “risk premium” to protect against network dynamics.

Preemption Capability:Preemption Capabilitydefines whether the service is pre-emptable or non-
pre-emptable. A non-pre-emptable service assures service to the user for the negotiated period.
A pre-emptable service is subject to being terminated by the NRN, either asynchronously, or
by being allowed to expire at the end of a negotiation interval. For specific services, further
refinements may be considered. For example, instead of all the reserved resources being “at
risk”, resources reserved above a certain base level, or just the cost of reservation may be “at
risk”. These particulars would be defined by theSSPfields.

Reservation Coverage:Reservation Coverageindicates the extent of reservation over the flow paths.
The reservation can be end-to-end, over contiguous sub-trees where branches may not use or
support reservations or for discontiguous segments. In the latter case, referred to aspartial
reservations, reservations may fail on a link, yet the resource reservation request will not be
automatically removed for the remaining links.

SSPconsists of a list of parameters used to characterize a service, specific to a particular service type.
Typical service parameters define the traffic profile the user traffic should adhere to, such as average
rate and peak rate, over a certain interval. and the performance promised to the user (average or
maximum drop-rate, delay, delay jitter etc.). For some services such as those belonging to diff-serv,
the performance requested from a class may be in terms of a qualitative expectation (for example
service using EF PHB may be expected to have lower average loss, delay and jitter). In this case, no
specific performance parameters are provided.

Price: ThePrice contains a number of sub-fields, including the price being quoted by the service provider
for a service, and accumulated charges corresponding to a particular customer Flow Id. More detailed
description ofPrice is given in Section 4.

3.2 Protocol Messages

We now describe the RNAP negotiation messages, with some explanation of the sequence in which they are
used. The negotiation sequence is represented schematically in Fig. 3.

3.2.1 Query

The HRN usesQuerymessages to request a price quotation from the NRN for one or more services, for each
flow or group of flows belonging to the negotiation session. If there is no RNAP session existing between

7

the HRN and the NRN, the HRN generates a random uniqueSession Id. The uniqueSession Idwill be used
to identify future RNAP messages as belonging to a negotiation session. The HRN will also inform the
NRN whether the HRN supports negotiation. The message consists of a set ofFlow Ids, and one or more
Service fields accompanying eachFlow Id. The HRN specifies a set of requirements with each service, by
setting some or all of theSIPandSSPparameters in the corresponding service identifiers.

3.2.2 Quotation

Upon receiving aQuerymessage, the NRN determines the price for each service for which quotations were
requested in theQuerymessage, and returns a list ofServiceandPrice pairs inside aQuotationmessage.
As stated earlier, we assume the existence of pricing and charging mechanisms here and in the explanation
of Commitmessages, and address the issue in Section 4. AQuerymessage with a nullServicelist for one
or moreFlow Ids is interpreted by the NRN as a request for price quotations for all available services, for
each suchFlow Id. The NRN uses default values ofSIPandSSPparameters to determine the price; it does
not return quotations for services which have one or more mandatory parameters since the price for these
services will depend on the service parameters required and must be provided with a request.

In addition to asynchronously sendingQuotationmessages, as above, the NRN also sends outQuota-
tion messages periodically, with a period defined by theSession Quotationtimer. A Quotationsent syn-
chronously message contains price quotations for all services requested.

In general, the NRN sends aQuotationmessage upon receiving aQuerymessage, and upon expiry of
the Session Quotationtimer. The timer is reset whenever aQuotationmessage is sent out synchronously,
but not when an asynchronousQuotationmessage is sent in response to aQuery.

If the Negotiation Capabilityflag is false, the HRN and NRN could still exchange an initial pair ofQuery
andQuotationmessages, and negotiate a service with a set of parameters that remains unchanged for the
rest of the session. A HRN may re-enable negotiation capability at any time during the session by sending
aQueryor Reservemessage.

3.2.3 Reserve

The HRN sends aReservemessage to apply for services for each flow or group of flows belonging to the
negotiation session. AReservemessage is sent at the beginning of a session to request services for the first
time. Since a service request expires automatically after aNegotiation Intervaldefined for each service, the
HRN continues to periodically sendReservemessages with a small enough period that none of the requested
services expire. Through theReservemessage, the HRN applies for services for a particular flow or flow-
aggregate, specifying corresponding service identifier identifying the type of service, and a set ofSIPand
SSPparameters characterizing the user requirements from that service. In general, eachReservemessage
carries one or moreFlow Id-Service-Pricetriples. The function of thePrice structure in this context is
explained in Section 4.1.

When theReservemessage includes fewerFlow Ids than the previousReservemessage, it implies that
the Flow Ids not included in the newReservemessage will be canceled. Similarly, newFlow Ids may be
added to aReservemessage to apply for resources for new flows, and theServicefield corresponding to a
Flow Id may be changed to modify the resources requested for an existing flow.

3.2.4 Commit

The Commitmessage is generated by the NRN in response to aReservemessage. For each service re-
quest specified by aFlow Id-Service-Pricetriple, the NRN determines whether the flows identified by the
correspondingFlow Id are to be admitted or denied. The admission policy, as stated earlier, is specific to

8

the service, and need not be administered by the NRN. For instance, in a diff-serv service, the bandwidth
broker (BB) could make the admission decision, and the NRN simply communicates the admission decision
through RNAP. The NRN returns the decision in a list ofFlow Id, Service, StatusandPrice4-tuples.

ThePrice field carries pricing information for the corresponding service. If the flows are admitted, the
NRN determines the price for providing the service. If theCommitis in response to a re-negotiationReserve
request in an ongoing session, the NRN also returns the amount charged for each service in the preceding
negotiation period, and the accumulated charge since the beginning of the session.

The Statusfield indicates whether the request for the corresponding service is accepted (rejected, in-
complete, or complete). TheServiceidentifier is copied in from theReservemessage. If the request for that
service is rejected, the NRN informs the HRN its reason for denial, by appropriately re-setting parameters
in theServiceidentifier. For example, if the service has a service-specific sending rate parameter, and the re-
quested sending rate cannot be supported, the sending rate parameter is set to the maximum sending rate that
can be supported. In a way, this informs the sender about the amount of resources available when resources
are scarce. The NRN modifies the parameters in a similar manner when the status isAdmit Incomplete, to
indicate which of the requested parameters has not been granted.

The network could also choose to encourage the HRN to reduce its requirements when network resources
are scarce. The requested service from HRN is admitted by setting theStatusto Admit Complete, but the
requested service rate is modified to a smaller value and the price is also set lower than the quoted price as
a reward.

3.2.5 Preempt

If a Serviceis set as preemptable (at the benefit of lower price), the NRN may preempt resources allocated
previously to this service and make room for the other more important flows. Currently thePreemptfield in
theServiceidentifier is binary, i.e., preemptable or non-preemptable. More preemptation priorities could be
supported and allow different flows with different priority levels to be differentiated.

3.2.6 Close

A Closemessage is sent from the HRN to the NRN to tear down the negotiation session between them.

3.2.7 Release

TheReleasemessage acknowledges theClosemessage and optionally reports to HRN the cumulative charg-
ing information for the entire session. This information is for informational purposes, and may not be tied to
the actual billing and payment procedures. The NRN releases the resources it had allocated for the session,
and sends aReleasemessage.

3.3 Sequence of Messages

The messaging sequence for the RNAP-C architecture is shown in Fig. 3. The messaging sequence for
RNAP-D is as follows:

1. The HRN sends aQuerymessage to the first hop router (FHR). Local and intermediate routers forward
the message downstream to the last-hop router (LHR). The LHR determines local service availability
and a local price for each service, and initiates aQuotationmessage and sends it upstream. Each
intermediate router verifies local availability of each service, and increments the price by the local
price that it computes. The FHR returns theQuotationmessage to HRN.

9

Query
Quotation

Commit

Reserve
Quotation

Commit

Release

Close

Reserve

NRN
HRN

Figure 3:RNAP messaging sequence between HRN and NRN.

As in RNAP-C,Quotationmessages are also sent periodically to the HRN. The LHR maintains the
Session Quotationtimer, and sends periodicQuotationmessages hop-by-hop upstream, as above.

2. HRN sends aReservemessage to the FHR, and receives aCommitmessage in an identical manner to 2.
As theCommitmessage is forwarded upstream, in addition to the committed price being incremented
at each router, the incremental charge for each service at that router is added on as well. (Pricing
and charging in RNAP-D are considered in more detail in Section 4.2.1.) Subsequently, the HRN
periodically re-negotiates resources by sendingReservemessages and receivingCommitmessages in
return.QueryandReservemessages may also be sent asynchronously at any time, as in RNAP-C.

3. To terminate a session, the HRN sends aClosemessage, which is forwarded to the LHR. The LHR
sends aReleasemessage upstream, and releasesSession Idand resources. Upstream routers forward
theReleasemessage towards the HRN and release theSession Idand resources.

3.4 Negotiation across Multiple Administrative Domains

In the discussion so far, it has been assumed that the HRN negotiates resources for flows traversing a single
domain. We now consider scenarios in which the flows traverse multiple domains. For simplicity, let us first
assume that resources are to be negotiated for a session comprising a set of flows between a single source
and destination pair. We consider the following scenarios.

3.4.1 End-to-end Resource Negotiation for a Single Customer in RNAP-D

We consider how a customer reserves resources for a flow or group of flows to a particular destination
address in RNAP-D. In general, the forwarding of RNAP messages in RNAP-D is similar to RSVP forward-
ing. The router alert option is turned on in the RNAP message by the originating LRN, so that intermediate
LRNs can intercept and process the message before forwarding it to the next-hop LRN. A typical sequence
of RNAP messages is as follows.

1. The HRN sends aQuerymessage to the first hop LRN (FHL). The FHL forwards theQuerymessage
downstream to the last-hop LRN (LHL). The LHL determines local service availability and a local
price for each service, and initiates aQuotationmessage and sends it upstream. Each intermediate
LRN verifies local availability of each service, and increments the price by the local price that it

10

computes. The FHL returns theQuotationmessage to HRN. PeriodicQuotationmessages are also
sent by the LHL hop-by-hop upstream, as above.

2. The HRN periodically sends aReservemessage to the FHL, and receives aCommitmessage in an
identical manner to theQuery-Quotationpair. As theCommitmessage is forwarded upstream, in
addition to the committed price being incremented at each router, the incremental charge for each ser-
vice at that router is added on as well.QueryandReservemessages may also be sent asynchronously
at any time in a similar manner.

3.4.2 End-to-end Resource Negotiation for a Single Customer in RNAP-C

We now consider resource reservation for a customer flow traversing multiple network domains; each do-
main implements RNAP-C, with a controlling NRN. As mentioned earlier, the sequence of messages is
identical to that considered earlier for RNAP-D, if each domain is considered to be equivalent to a single
node, with the NRN corresponding to the LRN for that node.

The forwarding mechanism in RNAP-C is different from RNAP-D. To forward a RNAP message down-
stream towards the destination HRN, the NRN first uses the destination host or network address contained
in theFlow Id to select a neighboring domain border router. The NRN then looks up a local table to map the
neighboring domain border router to its associated domain NRN, and forwards the RNAP message to this
NRN. The local table is maintained using BGP information. The NRN can be configured as a BGP speaker,
or can communicate with other BGP speakers using an interior routing protocol. A neighboring domain
NRN address can be sent with BGP UPDATE messages as an optional path attribute by the neighboring
domain border routers, allowing each NRN to maintain its local table. The downstream NRN also records
the upstream neighboring NRN address as part of the RNAP session state when it receives a RNAP message
from it. It uses the upstream NRN address to forward RNAP messages (Quotationor Commit) in the reverse
direction, towards the source HRN.

Similar to RNAP-D, the NRN is responsible for collecting and communicating admission and pricing
and charging information for the domain as a whole instead of for a single node (mechanisms for doing this
are discussed in Section 3.4.1).

It is also possible that the flow traverses multiple domains some of which implement RNAP-C and others
RNAP-D. In this case, the NRN of a RNAP-C domain would talk to the corresponding boundary LRN of an
adjoining RNAP-D domain, and the message flow would be as before.

3.5 End-to-end Resource Negotiation with Aggregation of Customer Flows

If end-to-end RNAP reservation is carried out for each customer flow, RNAP agents in the core network
may potentially need to process RNAP messages for hundreds of thousands of flows, and maintain state
information for each of them. In this section, we first discuss how RNAP messages can be aggregated in
the core of the network by allowing RNAP agents to handle reservations for flow-aggregates instead of
individual flows. We then address the related issue of how RNAP would be used between two adjoining
network domains, to negotiate for resources in bulk for a flow-aggregate.

3.5.1 Aggregation and De-aggregation

We consider the aggregation by an RNAP agent of RNAP messages belonging to a number of different
senders on a sink tree, that is senders with the same destination network address (sink tree based aggregation
has also been discussed in??). The aggregating agent aggregates RNAP messages for user flows which have
the same destination network address (obtained from theFlow Id)), and also use the same or similar services
and have similar negotiation intervals. We consider aggregation first for RNAP-D, and then for RNAP-C.

11

HRN

HRN

HRN

HRN
Border Routers

HRN

HRNHRNA

C

B

Ra

Rc

Rx Rb

Aggregate RNAP Messages

X Y

Higher level aggregation

Figure 4:Example RNAP-D message aggregation.

Aggregation and De-aggregation in RNAP-D

Figure 4 illustrates how RNAP message aggregation works in a RNAP-D architecture. Consider the
aggregation ofReservemessages (this also applies forQuerymessages). At access network A, the border
routerRa creates an aggregateReservemessage, with the source address set to ‘a’, and the destination
network address set to the network address B. It also sets theAggregation Flagto 1 in the Id structure,
identifying the message as an aggregate message.Ra then forwards the aggregateReservemessage hop by
hop as in Section 3.4.1.Ra also turns off the router alert option of the incoming per flow messages and
tunnels the per-flowReservemessages up to the de-aggregation point, so that per-flow reservation can be
resumed in the destination network. In each per-flowReservemessage, the address of the aggregator will be
included in theAggregate Flow Idfield, to enable proper mapping at the de-aggregation point. A per-flow
Reservemessage is encapsulated in an UDP packet with the destination network address set as B, and the
port number set to a port reserved for RNAP, and forwarded.

A border router of a domain is a potential deaggregation point for RNAP messages to that domain.
Therefore filters are set up at border routers of a domain so as to intercept aggregate RNAP messages as
well as tunneled per-flow RNAP messages. For instance, the border routerRb (Fig. 4) of domain B is set
up to intercept UDP packets with destination address set to the network address B and port number set to
the RNAP port. Once intercepted, aggregateReservemessages and tunneled per-flow messages are sent up
to the transport layer. The de-aggregation point will record the mapping between an aggregation flow and
per flow messages, by checking the aggregation Flow Id field. The router alert option will be turned on for
per-flowReservemessages arriving atRb, and the messages will be forwarded, allowing per-flow resource
reservation within domain B. The aggregateReservemessage (identified as such by itsAggregation Flag)
terminates at the de-aggregation router.

In response, aCommitmessage will be sent upstream for the aggregateReservemessage as well each per
flow Reservemessage. The de-aggregation pointRb will decide that the destination address for the per flow
Commitmessage is ‘a’, by checking the mapping between the aggregate message and the per flow messages.
Each per flowCommitmessage is then encapsulated in a UDP message with destination address ‘a’ and
tunneled back to its aggregation pointRa. The aggregateCommitmessage will be forwarded hop by hop
by upstream LRN’s until it reaches the aggregation point, and confirms the aggregateReserverequest sent
by the aggregation agent. There is a similar message flow for RNAPQuotationmessages in the upstream
direction.

The aggregation entity on the source network side is also responsible for de-aggregation of RNAP re-
sponse messages. That is, it checks the mapping between an aggregate session and per-flow RNAP re-
sponse messages, and, if it is the origination point for the corresponding aggregate session, it will map the
aggregate-level pricing and charging (returned by the aggregate sessionQuotationandCommitmessages)
to the corresponding per-flow prices and charges for individual flows based on the local policy.

Multiple levels of aggregation can occur, so that aggregate messages are aggregated in turn, resulting

12

HRN

HRNHRN

��
��
��
��

HRN

HRN

HRN

HRN
��
��
��
�� Domain NRN s

Border Routers

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

A

C

c

a x b
B

Higher Layer Aggregation

X

Aggregate RNAP Messages

Figure 5:Example RNAP-C message aggregation.

in a progressively thicker aggregate “pipe” towards the root of the sink-tree. For a level two aggregation
of several level one RNAP aggregate requests as shown in Fig. 4, nodeRx in domain X forms a level two
aggregate message with the source address in theFlow Id set to ‘x’. Node ’x’ also records the level one
requests, and terminates these messages instead of forwarding them. In response, the RNAP agent at the
de-aggregation nodeRb sends response messages for the level two aggregate towards point ‘x’. At point
Rx, the level one response messages are formed by mapping the pricing and charge data from level two
aggregate message to individual level one aggregate response massages to send towardsRa andRc. All the
per flow request messages, as before, are tunnelled forward up to nodeRb, and per-flow response messages
are tunnelled fromRb directly either toRa orRc.

Aggregation and De-aggregation in RNAP-C

In the RNAP-C architecture of Fig. 5, the agggregation and de-aggregation entity are NRNs. Once
again, we consider the aggregation ofReservemessages. At an aggregating NRN ’a’, the aggregateRe-
servemessage will be formed and sent domain by domain towards the destination domain NRN ’b’, as in
Section 3.4.2. In addition, the destination domain NRN is located through DNS SRV, and the aggregating
NRN encapsulates the per flowReservemessages in UDP packet headers and tunnels them directly to the
destination domain NRN ’b’.

The destination domain NRN sends aCommitmessages “hop by hop” (each hop is one domain) up-
stream towards ’a’ in response to an aggregateReservemessage. It will also receive the encapsulated per
flow Reservemessages from ’a’, process them to perform per-flow reservation, and determine from theAg-
gregate Flow Idfield that per-flow response messages are to be encapsulated and tunneled back to ’a’. There
is a similar message flow for RNAPQuotationmessages in the upstream direction. The mapping of pricing
and charging information from aggregate session to per flow message is similar to that in RNAPD. Multiple
level agggregation is also supported in RNAPC.

Aggregation and De-aggregation in Backbone

In the description above, we restrict the aggregation to be performed only for flows that go to the same
destination network. In this case, the de-aggregation point can only exist in the destination network, so
that per flow processing is avoided inside the core network. We now consider a more general aggregation-
deaggregation process, for aggregation of flows or flow-aggregates going to different destination networks.

The advantage of generalizing the aggregation is that a core network domain can aggregate a greater
number of flows, and reduce overhead further. The potential disadvantage is that if the de-aggregation point
of the aggregated flows is not known in advance, the RNAP agent at each node has to check if any of the
component flows diverges from the aggregate at that node, resulting in some per flow state maintaintance
and processing in the core network. If the de-aggregation point is known in advance, per flow messages do
not need to be processed at each node, but only at the de-aggregation point. However, if the de-aggregation

13

point is inside backbone, the cost may still be prohibitive.
In the discussion of generalized aggregation that follows, we assume that the de-aggregation point(s) of

the aggregated sessions is not known by the aggregating agent. However, in order to reduce the processing
and state maintainance overhead in the backbone, and avoid per flow message processing, we restrict the
first level aggregation (aggregation of individual customer (HRN) flows from an access network, such as A
and C in Fig 4) to be performed only for flows to the same destination network, as described previously.
Generalized aggregation is allowed only at the second level (aggregation of first level aggregates) and higher.

Generalized aggregation is virtually identical in both RNAPC and RNAPD, and we describe it in the
context of RNAPD. Consider an+1th level aggregation being performed (withn greater than 0) on RNAP
Reservemessages. The de-aggregation point for a potential newn + 1th level aggregation needs to be
located first, and the de-aggregator location mechanism can be similar to that proposed in [43]. Initially, the
nth RNAP message is sent towards its destination as before, but with then + 1th level aggregating point
address inserted into itsAggregating Flow Idfield by then + 1th level aggregator. A de-aggregation point
is defined where the flows forming then + 1th aggregate are diverged (are determined to have different
next-hop nodes). A router decides itself to be an+ 1th level de-agregator if it finds that different aggregate
flows with the sameAggregating Flow Idare destinated to the different next hop routers. A service-denying
Commitmessage will be triggered to be sent towards the aggregating point with the denial reason given as
a split point located. This allows the aggregation agent to learn the address of the de-aggregation point.
Thenth level RNAPreservemessage will continue to be sent downstream of the potential split point and
processed as described before. The denyingCommitmessage due to a new split point location will not affect
the reservation that has been made by thenth RNAP reservemessage. Differentnth level RNAPreserve
may carry back different split point addresses. Then+ 1th level aggregator chooses the split point with the
shortest distance (how to find it?) to itself as the de-aggregator for then+ 1th level aggregation.

Subsequently, then + 1th level aggregating point creates then + 1th level aggregate messages based
on thenth level aggregate messages and the destination of then + 1th level aggregate message is set to
the de-aggregator address. It also re-sets theAggregate Flagof thenth level messages to 0, setsAggregate
Flow Id in these messages to its own address. It will tunnel thenth level request messages directly to
the de-aggregation point by turning off the rotuer alert option, and encapsulating thenth level aggregate
messages to the de-aggregator. The de-aggregation entity terminates then + 1th level request messages,
and re-activates thenth messages (by setting the Aggregate Flag to 1) and forwards them. It also records
and maintains the mapping ofn+ 1th level flow messages to thenth level flow messages.

The de-aggregation entity serves as the aggregation point fornth level response messages (Quoation
andCommit). Since it knows the address of then+ 1th level aggregation agent (from receivedn+ 1th level
messages), it tunnels these response messages directly to the aggregation point, using UDP encapsulation as
described previously.

If a route change occurs due to a topology update, RNAP agents at the affected routers will send a
service-denyingCommitmessage for each aggregate RNAP session to the aggregation point, with the de-
nial reason given as route change. The aggregator will then sendnth level RNAP messages hop-by-hop
(unencapsulated) until a new de-aggregation point to be detected.

The aggregation in RNAPC is similar to RNAPD, and thenth flow messages will be tunneled to the
de-aggregation point directly once it is detected.

The maximum number of state entries a de-aggregation point needs to maintain is roughly proportional
to the number of neighboring domains for the aggregating domain, which is normally a small number. So
processing and state maintanance at the de-aggregation point is tractable. The RNAP processing in the
core network, which may include resource allocation, admission control, classification, policing, as well as
scheduling, is proportional to the number of nodes times the number of tree aggregate flows, a much higher
number. Hence RNAP protocol overhead can be further reduced in the backbone due to the higher level
aggregation of flows not destinated to the same desination network.

14

Overhead Reduction due to Aggregation

As a result of the aggregation of RNAP messages, the message processing overhead and the storage
of the RNAP state information are greatly reduced in the core network. Since per flow messages need
to be tunneled to the destination network, so the RNAP message transmission bandwidth is not reduced,
and actually slightly increased because of the extra aggregation messages. But since RNAP messages are
updated with a relatively long interval, this is not a major concern compared with the bandwidtht hat will be
consumed by the data flows.

3.5.2 Resource Negotiation for Flow-Aggregates and Advanced Reservation

At the aggregation point, the NRN acts as the client negotiator (or HRN) for an aggregate session in negotia-
tions with the downstream NRN (for example, referring to Fig. 5 again, the aggregating NRN ‘a’ negotiates
with NRN ‘x’). In general, the client negotiator will negotiate resources for an aggregate session correspond-
ing to the per-flow reservation requests. To avoid frequent re-negotiation, however, it is likely that the client
negotiator will increment or decrement the requested resources with some minimum granularity. When the
sum of per-flow requests approaches the resources reserved (or reach some threshold) for the aggregate, the
client negotiator will reserve an additional block of resources. Similarly, the requested reservation is decre-
mented in blocks as required. The larger the block, the less frequently the aggregate session needs to be
re-negotiated, but a higher holding cost is incurred for resources which may be under-utilized. In general,
negotiation of resources in blocks results in a fairly static service, and periodical re-negotiations, if any,
would occur with a much longer negotiation interval. Hence, priceQuotationmessages for the aggregate
session will probably only be sent asynchronously in response toQuerymessages, when an additional block
of resources needs to be reserved or removed.

The NRN at an aggregation point may also forecast a certain demand to a particular destination network,
and could negotiate a large block of resources in advance, using the advance reservation mechanism. The
HRN or client NRN indicates an advance reservation using theStarting TimeandEnding Timefields in the
Service description. The server NRN initializes session state at the conclusion of the advance negotiations,
and maintains the state until the actual transmission has been completed.

If the client negotiator chooses to cancel part or all of a reservation made in advance, it can re-negotiate
with the server negotiator to try to ‘sell back’ previously reserved resources at an agreed price. The price
eventually agreed upon would probably reflect any cancellation or holding cost fee the server negotiator
wishes to charge. The server negotiator may also offer to buy back resources reserved in advance, for more
important usage.

3.6 Negotiation for a Multicast Session

RNAP request messages for a multicast session will negotiate services for flows to multiple destinations.
In this case, theFlow Id field carries the IP multicast address. On receiving such a message, the NRN (or
LRN) communicates with a multicast routing protocol to determine if the multicast tree diverges into two
or more branches within the NRN-administered domain (or at the LRN-router). If so, multiple copies of the
message are formed and forwarded to different directions.

The NRN or LRN maintains session state allowing it to aggregate RNAP response messages traveling
upstream at divergence points on the multicast tree. As response messages are aggregated, the pricing and
charging information from individual response messages are summed to obtain the corresponding informa-
tion for the aggregate message.

15

4 Pricing and Charging

The main RNAP messages,Query, Reserve, QuotationandCommit, all contain a commonPrice structure,
used to convey pricing and charging information. We first briefly discuss the purpose of the variousPrice
fields, and how they are used in RNAP messaging. We then consider the issues of formulating end-to-end
prices and charging customer flows accordingly. We address these issues within both the RNAP-D and
RNAP-C architectures, and also discuss pricing and charging across multiple network domains. We also
briefly consider the scenario in which sender and receiver HRNs share the charges for services used, and
consider charging in a multicast session.

We end this section with a proposal for a specific strategy for pricing a BBE service at a single network
point. This lies outside the scope of the RNAP protocol and architecture, but taken together with the global
pricing and charging mechanisms, it would constitute a complete and viable pricing system.

4.1 Pricing Structure and its Use in RNAP Messages

ThePricestructure carried by RNAP messages consists of the following fields:New Price, Current Charge,
Accumulated Charge, andHRN Data. There is aPrice structure corresponding to eachServicestructure
carried in a RNAP message. TheNew Pricefield contains the price quoted by the network provider to
the negotiating HRN for the next negotiation period. The units of the quoted price are service-specific. A
reasonable unit could be “currency/Mb”, so that the charge is computed according to the volume of the data
transmitted. Alternatively, the unit could be “currency/time”, so that the charge is computed according to
the time of usage at a specific data transmission rate. In this case, the HRN can expect to be charged an
amount equal to theNew Pricemultiplied by the length of the negotiation period.

TheCurrent Chargefield contains the amount charged by the network provider for the preceding nego-
tiation period. This field should have an unit of currency, for example, dollars, but the specific unit is service
specific. TheAccumulated Chargefield contains the total amount charged by the network provider since
the beginning of the negotiation session. The accumulated charge is carried to protect against the loss of
Commitmessages.

TheHRN Datafields in a message pertain to the HRN from which the message originates (usually the
negotiating HRN, but we will shortly discuss a situation in which the partner or peer HRN originates the
message). TheHRN Accountfield identifies the account to which charges are to be debited. The corre-
spondingCharging Fractionfield indicates the fraction of the total charge to be borne by the HRN. If for
example, the negotiating HRN wishes to be responsible for half of the charges, (in the understanding that
the peer HRN will be responsible for the other half), it sets theCharging Fractionto 0.5. We return to this
issue in more detail in Section 4.3. The minimum and maximum data rate fields are included to allow the
sender and receiver HRNs to reach a basic agreement about the desired transmission rate. With respect to
the sender HRN, the data rates represent the minimum and maximum sending rates the sender is willing and
able to transmit. With respect to the receiver HRN, these rates indicate the minimum and maximum data
rates the receiver is willing and able to receive. Theother optionsfield is intended to carry other information
that could be used to facilitate negotiation.

In general, thePrice structure accompanies a correspondingServicestructure in protocol messages.
QueryandQuotationmessages carry a set ofService-Pricepairs corresponding to all the services for which
price quotations are requested, andReserveand Commitmessages each carry a set ofFlow Id-Service-
Price triples corresponding to the services being provided for the flows or flow aggregates belonging to the
negotiation session. Pricing and charging information follows the following basic flow: after a session has
been opened, the negotiating HRN sends aQuerymessage carryingService-Pricepairs. The HRN indicates
how much of the charge for each service it is willing to bear by setting theHRN Data.HRN Charge Fraction
field accordingly, and may also indicate its budget for a particular service by setting theNew Pricefield. If

16

theQuerymessage has a nullServicelist, the HRN may still wish to indicate how much of the total charge
it is willing to bear by including a singlePrice structure by itself in theQuery message, with theHRN
Charge Fractionset. The network responds to theQuerymessage with aQuotationmessage in which the
New Pricefields are set to the price quoted for each service, if it is possible to determine it on the basis of
the receivedQuery. The HRN then requests one or more services through aReservemessage. As with the
Querymessage, it can use thePrice structures in theReservemessage to indicate the fraction of the charge
it is willing to bear for each service. The network responds with aCommitmessage, committing or denying
the requests, and setting thePrice:New Pricefield for eachFlow Id-Servicepair to the committed price.

Subsequently, the network sends periodicQuotationmessages to quote the updated price for available
services, and the HRN and network re-negotiate services by exchangingReserveandCommitmessages.
ThePricestructures in these messages are used as before. In addition, thePrice :Current Chargefield in the
Commitmessage is used to carry the charges for the correspondingFlow Id-Servicepairs in the preceding
negotiation interval.

4.2 Price and Charge Formulation

In the previous section, we discussed how price and charge information are communicated to the HRN
through RNAP messages. We now consider the issue of arriving at the contracted price to be quoted for a
flow receiving a particular service in a given negotiation period, and computing the charge for the service at
the end of the period. Let us first define the data structure to be used by the network to maintain the price
and charge information. We call this theSession Charge State:

Session Charge State = Session Id
: Flow Charge State 1
: Flow Charge State 2
: .
: .
: Flow Charge State n

Flow Charge State = Flow Id
: New Price
: Current Charge
: Accumulated Charge

In general, prices are re-calculated periodically, based on network traffic characteristics, and this pe-
riod is independent of the RNAP negotiation interval. TheNew Pricestructure maintains the current price
structure to be applied for the service received by a particular flow. TheNew Pricestructure may consist
of several fields in order to reflect a complex pricing strategy such as that presented in Section 4.5, and is
hence more complicated than the singleNew Pricefield carried in RNAP messages, which simply quote the
estimated price to the HRN. TheNew Pricefields remain unchanged during a negotiation interval, and are
updated at the end of a negotiation period if prices have changed at some time during the interval. At the
end of each negotiation period, theCurrent Chargefield is re-computed using theNew Pricestructure for
that period. TheAccumulated Chargeholds the accumulated charge since the beginning of the session, and
is incremented by theCurrent Chargeat the end of a negotiation period.

The Session Charge Stateinformation is maintained by different entities, and used in different ways,
depending on the RNAP architecture. We consider the centralized and distributed architectures separately.

17

Dest Next Hop

Domain Routing Table

R1

B2

Next Hop

R2

Next Hop

B1 R1 R2

B2

R2

(C, BW, Q, P) (C, BW, Q, P)

R1

Resource Table

R1

B1

R2

(C, BW, Q, P)

B2

1, 3, 30, 2

1, 2, 30, 1

1, 3, 30, 1

NRN

B1
R1

R2

B2

B3

B4

BW: average bandwidth (Mb)

Table 1 Table 2

COPS messages

Step2: accumulate price along

Step1: determine a path (Table 1)

the path (Table 2)

Step 3: send total price ($4/Mb)

C: Service class

Q:average queue length
P: price ($/Mb)

B3

B4

Figure 6:Price formulation in RNAP-C

4.2.1 Price and Charge Formulation in RNAP-D

In the RNAP-D (distributed) architecture, each router-LRN maintains charging state information for the
flows passing through it, based on prices computed at the router. At the beginning of a negotiation period
(and also in response to aQuerymessage), the last hop LRN originates aQuotation message. TheQuotation
message is sent hop-by-hop back towards the first-hop LRN. At each LRN, thePrice:New Pricefields in
the message are incremented according to the currentNew Pricecomputed for the corresponding service at
the LRN. In Section 4.5, we discuss a specific local pricing strategy in which a set of prices is computed
for each service. In this case, some mapping behavior may have to be defined to obtain a single increment
for the quotedNew Price. When theQuotationmessage arrives at the negotiating HRN, it carries the total
quoted price for each service.

Similarly, Commitmessages originate at the last-hop LRN, and are sent hop-by-hop back to the first-hop
LRN. In this case, theNew Price, Current Charge, andAccumulated Chargefields are all incremented at
each router-LRN on the way.

4.2.2 Price Formulation in RNAP-C

When the centralized negotiation architecture is used, the local charging state information for a domain
is maintained by the NRN. The price formulation strategy is a much more open-ended problem. Various
alternatives may be considered, and different domains may apply different local policies. The NRN may
compute a price based on the service specifications alone. The price could be fixed, or modified based on
the time of day, etc. In general, if the price charged to a flow needs to depend on the network state and the
flow path, we consider the following three approaches:

1. The NRN makes the admission decision and decides the price for a service, based on the network
topology, routing and configuration policies, and network load. In this case, the NRN sits at a router
that belongs to a link-state routing domain (for example an OSPF area) and has an identical link
state database as other routers in the domain. This allows it to calculate all the routing tables of all
other routers in the domain using Dijkstra’s algorithm. A similar idea has been explored in [41] in a
different context.

The NRN maintains a domain routing table which finds any flow route that either ends in its own
domain, or uses its domain as a transmit domain (Fig. 6). The domain routing table will be updated

18

whenever the link state database is changed. A NRN also maintains a resource table, which allows it to
keep track of the availability and dynamic usage of the resources (bandwidth, buffer space). In general,
the resource table stores resource information for each service provided at a router. The resource table
allows the NRN to compute a local price at each router (for instance, using the usage-based pricing
strategy described in Section 4.5). For a particular service request, the NRN first looks up the path
on which resources are requested using the domain routing table, and then uses the per-router prices
to compute the accumulated price along this path. The resource table also facilitates monitoring and
provisioning of resources at the routers. To enable the NRN to collect resource information, routers
in the domain periodically report local state information (for instance, average buffer occupancy and
bandwidth utilization) to the NRN. A protocol such as COPS [30] can be used for this purpose.

To compute the charge for a flow, ingress routers maintain per-flow (or aggregated flow from neigh-
boring domains) state information about the data volume transmitted during a negotiation period. This
information is periodically transmitted to the NRN, allowing the NRN to compute the charge for the
period. The NRN uses the computed price and charge to maintain charging state information for each
RNAP session.

2. Prices are computed at the network boundary, and communicated to the NRN. For price calculation,
there are two alternatives.

One alternative is that the ingress router periodically computes a price for each service class and
ingress-egress pair. The calculation is based on service specifications and local per-service demand at
the ingress router; internal router states along the flow path are not taken into account.

The other alternative allows internal router load to be taken into account. Probe messages are sent
periodically from an egress router to all ingress routers. A probe message carries per-servicePrice
structures which accumulate prices hop-by-hop at each router in a similar manner to Section 4.2.1.

In both of the above cases, the ingress router maintains per-flow state information that includes the
per-flow price (the price charged to the service class the flow belongs to), as well as the per-flow data
volume entering the domain. This information is transmitted every negotiation period to the NRN,
which computes the charge and is responsible for the messaging.

3. Price formulation takes place through a intra-domain signaling protocol. If resource reservation for a
particular service in a domain is performed through a dynamic resource reservation protocol, such as
RSVP or YESSIR[4], the price information is collected through the periodic messages of the reserva-
tion protocol, and stored at the ingress router. For example, the RSVP PATH message and RTCP [36]
messages in YESSIR can collect pricing information. If the ingress router is responsible for sending
the price information to the NRN, the price accumulated from a domain will be send back to ingress
router along with the RSVP RESV message. Such an implementation, utilizing RSVP, is described in
5. Communication between the ingress router and NRN occurs as discussed in the first scenario.

In the above schemes, we assume that a domain has one NRN. A domain could also have multiple NRNs,
each NRN residing at an ingress router. In this case, the ingress router does not need to send periodic per-
session reports to a centralized NRN, and pricing, charging, and RNAP messaging are done directly from
the ingress router. Reliability concerns make a more distributed architecture (multiple NRNs, or RNAP-D)
preferable. But some management goals (for instance, all NRNs in one domain need to have coherent view
of the resource at internal routers to allow them to make correct admission decisions) may make a centralized
policy more attractive.

19

4.2.3 Charge Formulation for Multiple Domains and Flow Aggregates

When a customer flow spans more than one administrative domain, each domain computes incremental
prices and charges for the flow using its own pricing strategy and architecture, and the total end-to-end price
and charge are obtained in a hop-by-hop manner (with each domain representing a single hop) as in Section
4.2.1.

When a set of flows enter a domain as a flow-aggregate, the NRN (or network domain as a whole in
RNAP-D) carries out messaging and charging as if the aggregate belonged to a single customer. The NRN
in the aggregating domain (or LRN at the aggregation point) is responsible for mapping the total charge into
charges for individual customer flows or flow-aggregates.

4.3 Shared Charging

Let us assume that the sender HRN negotiates services, but the receiver pays part of the bill. We consider
end-to-end services across multiple domains, and assume for convenience the centralized architecture in
each domain - the equivalent situation in a distributed architecture can be understood by replacing the NRN
with a router.

The sender HRN sets thePrice:HRN Data.HRN Charge Fractionfields in the service identifier inQuery
andReservemessages according to the fraction of total charges it is willing to bear. AnyQueryor Reserve
message withPrice:HRN Data.HRN Charge Fractionless than 1 is forwarded automatically by the last hop
NRN to the receiver. The receiver HRN copies theQueryor Reservemessage into a modifiedQueryor
Reservemessage and indicates its willingness to pay by setting thePrice:HRN Data.HRN Charge Fraction
field to (1-negotiatingHRN Charge Fraction). It may indicate its unwillingness to be responsible for the
entire amount by settingPrice:HRN Data.HRN Charge Fractionto a smaller value. It could also agree to
bear the entire charge, but indicate an upper limit on the price it is willing to pay by setting thePrice:New
Price field. [A service is established only if the total williness to pay from the sender and receiver is greater
than one.].

The receiver HRN sends its modifiedQueryor Reservemessage to the last hop NRN. A modifiedQuery
message is read by the last hop NRN to generate aQuotationmessage which is forwarded by intermediate
NRNs back to the sender, where it serves as feedback to the sender HRN about the willingness to pay of
the receiver. A modifiedReservemessage is similarly read by the last hop NRN and used to generate a
Commitmessage either accepting or denying the service requested by theReservemessage. If the respective
Price:HRN Data.HRN Charge Fractionfields in theQuery(or Reserve) messages received from the sender
and receiver HRNs add up to less than 1, the service request is denied, and theStatus:Reasonsfield is set
accordingly. TheCommitmessage is forwarded upstream through intermediate NRNs, updatingStatusand
Price fields along the way.

In receiver negotiation with sender bearing part of the charges, a similar sequence of messages is used,
except that the flow of information is in the reverse direction.

If receiver participates in negotiation, other than indicating its willingness to pay, the receiver could also
set thePrice:HRN Data.Maximum Data RateandPrice:HRN Data.Minimum Data Ratefields to convey
to the sender the minimum sending rate it requires and the maximum rate that it can handle. This allows
the receiver, for example, to indicate to the sender that it cannot handle a rate offered by the sender, and in
general, provide the sender guidelines for the negotiation process.

4.4 Multicast Charging

In a multicast session, either sender or the receivers could negotiate separately, or they could both participate
in negotiation.

20

If the sender is solely responsible for negotiation and payment, the messaging sequence is similar to
the simple scenario considered for unicast. The sender HRN determines a service request based on price
quotations from the NRN, and on feedback about received quality from the receivers. A similar messaging
sequence is also followed when the receiver negotiates and is responsible for payments. The receiver’s
Reservemessage is based on its knowledge of sender traffic formats. In both the above case, the sender
and receiver can learn about each other’s capabilities and requirements by end-to-endQueryandQuotation
messages contained in theHRN Datafields.

In receiver negotiation with partial or full sender payment, the receiver HRN learns about the sender’s
willingness to pay through end-to-endQueryandQuotationmessages, as in Section 4.3. The sender may
specify a maximum expenditure through thePrice:New Price. An example of this kind of negotiation may
be when a company multicasts a commercial advertisement. The receiver adjusts its received transmission
according to the sender budget and network conditions.

If the sender negotiates, with partial or full receiver payment, the sender receives feedback about each
receiver’s willingness to pay, as discussed in Section 4.3. The sender negotiates resources based on the
overall demand willingness to pay, and may request partial reservation on some paths on which receivers
have a low willingness to pay.

4.5 Pricing Strategy

In the previous sections, we discussed the mechanisms for pricing in RNAP, including the pricing structure
used by RNAP messages, and the formulation of end-to-end prices and charges in the RNAP architecture.
We assumed the existence of specific pricing strategies or rules for the negotiated service. As discussed
earlier, specific pricing strategies are outside the scope of the RNAP protocol itself. However, for complete-
ness, we briefly describe a pricing strategy that could work with the RNAP protocol presented in more detail
in [10].

The pricing strategy used in the network is based on the competitive market model [24]. The competitive
market model defines two kinds of agents: consumers and producers. Consumers seek resources from
producers, and producers create or own the resources. The exchange rate of a resource is called its price.
Prices are set where the amount of resource demanded equals the amount of resources supplied. The routers
are considered as the producers and own the link bandwidth and buffer space for each output port. The flows
(individual flows or aggregate of flows) are considered as consumers who consume resources. Prices are
computed locally at routers, and collated to form an end-to-end price using the RNAP protocol.

The price computation is performed periodically, with a price updating intervalτ , and the price within
each interval is kept constant to provide some degree of predictability to users. The router has multiple
output ports and supports multiple levels of service. A price is computed separately for the buffer space and
link bandwidth associated with each output port. We also assume that the router is partitioned to provide
separate link bandwidth and buffer space for each class of service. The total demand for link bandwidth
is based on the aggregate bandwidth reserved on the link for a price computation interval, and the total
demand for the buffer space at an output port is the average buffer occupancy during the interval. The
supply bandwidth and buffer space need not be equal to the installed capacity; instead, they are the targeted
bandwidth and buffer space utilization.

We decompose the total charge computed at a router into three components:holding charge, usage
charge, andcongestion charge. The usage charge is determined by the actual resources consumed, the level
of service guaranteed to the user. The usage price is set such that it allows a retail network to recover the
cost of the purchase from the wholesale market, and various static costs associated with the service.

The holding charge is imposed if some resources (buffer space or bandwidth) are set aside for a user,
even when the user traffic does not utilize the resources. It reflects the potential revenue lost by the provider
because it can only sell the allotted resources at the usage charge of a lower service level (e.g., scheduling

21

packets from lower level service classes).
A congestion charge is imposed if congestion is deduced, that is, the demand (in terms of buffer space

or bandwidth) exceeds supply (the targeted buffer space or bandwidth).
The detailed form of each of the component charges is presented in [10]. Based on the above price

formulation strategy, a router arrives at a price structure for a particular session (flow or flow-aggregate), at
the end of each price updating interval. The total charge for a session can be represented as:

session charge =
N∑
n=1

(holding charge(n) + usage charge(n) + congestion charge(n))

wheren represents a negotiation period during a session, andN is total number of intervals spanned by a
session.

5 Implementation

5.1 Overview

In this section, we describe an implementation of the RNAP protocol and architecture in a test-bed net-
work. Our purpose was to provide a preliminary demonstration of the protocol, and in the future work we
will implement the RNAP functionality completely and in detail. For simplicity, the distributed (RNAPD)
architecture was assumed, and the RSVP signaling protocol was extended to provide the important RNAP
mechanisms of periodic re-negotiation, price quotation, and charging. An RNAP agent (LRN) was imple-
mented at each node. Two types of service were implemented : the traditional best-effort service, and the
Controlled Load (CL) service proposed within the int-serv model. RSVP is a receiver-driven protocol, and
accordingly, the HRN at the receiver side acts as the resource negotiator.

Although our implementation was highly simplified, it allowed us to demonstrate several features: the
periodic RNAP negotiation process including resource negotiation and pricing and charging; the stability of
the usage-sensitive pricing algorithm and its effectiveness in controlling congestion; the adaptation of user
applications in response to changes in network conditions and hence in the service price.

5.2 Protocol Implementation

The RNAPQuotation, ReserveandCommitinformation are embedded in RSVPPath, ResvandResvErr
messages. The implementation does not incorporate the RNAPQuerymessage at present; this is not critical,
particularly since only one service type is being offered to the user. The functionality of theQuotationand
Commitmessages is somewhat different from the functionality described earlier. SinceCommitmessages
cannot easily be sent periodically in this implementation framework, and since RSVP reservation is based
on flows, theQuotationmessage carries periodic charging information (in thePrice:Current Chargeand
Price:Accumulated Chargefields) instead of theCommitmessage. Currently the RNAP negotiation period
is set to be the same as the RSVP refresh period. The default refresh interval is 30 seconds.

The sequence of messages is as follows:

1. RSVPPath messages, with embedded RNAPQuotation information are sent periodically from the
sender-LRN towards the receiver-LRN. At present, theQuotationmessage only contains thePrice
structure, with quoted price and accumulated charge information. In general, it would contain various
SSPandSIPfields. As aPathmessage passes each node, thePrice field is updated to add the price
computed at the local node and the incremental charge for the previous period.

22

Ra Rb

R3

R2

R1

S3

S2

S1

Figure 7:Testbed setup

2. The HRN at the receiver receives thePathmessage and sends a RSVPResvrequest, with embedded
RNAPReservationinformation. ThePrice received fromPath is copied into thePrice field that will
be sent with the RSVPResvmessage to sender direction, with thePrice:HRN Datafield updated to
indicate receiver information.

3. When a RSVPResvrequest is rejected, an RSVPResvErrmessage is sent to the receiver HRN, with
embeddedCommitinformation. This information includes “bandwidth available” information in the
Price:HRN Data.Maximum Ratefield.

In the present implementation, user traffic is served either best-effort, or using the Controlled Load
service model. Resource reservation on each hop is performed using Class-Based Queueing (CBQ) [34].
CBQ partitions and shares link bandwidth using hierarchically structured classes. Each class has its own
queue and is assigned a share of the link bandwidth. A child class can borrow bandwidth from its parent
class as long as excess bandwidth is available. Weighted-round robin (WRR) scheduling is used to serve
packets from classes with the same priority.

One or more flows may request CL service at the router. When the corresponding RNAP session is
established at the router, a corresponding new CBQ class is created under the parent class that is configured
for CL service. All CBQ classes for CL service are served with same high priority, using WRR scheduling.

A Policy Element, called thePrice Element, is defined to holdPrice structure 4. As with otherPolicy
Elements, thePrice Elementis opaque to RSVP and is only understood by policy peers. ThePrice Element
is embedded within thePOLICYDATA objects [32, 31] ofPath messages,Resvmessages andResvErr
messages.

Each node has a resident RNAP agent, which was implemented in our experiment with the Local Policy
Decision Point (LPDP) proposed in the COPS architecture [30, 31]. The RNAP agent periodically computes
a set of prices (for the single CL service class) based on traffic through the node. The RNAP agent also
maintains theSession Charge Statefor each session, and updates it whenever aPathmessage passes through
the node.

Since per flow queuing is used, we do not enforce congestion charging when per-flow queues individu-
ally overflow. Users are simply penalized by dropping packets. However, the total link usage relative to the
total link bandwidth is monitored, and congestion charge is levied when necessary.

5.3 Experimental Setup

In order to demonstrate some important functionality of the RNAP protocol at a router, as well as to evaluate
the effectiveness of the pricing algorithm presented in Section 4.5, the above implementation was tested over
a very simple topology, consisting of 2 nodes connected by a 10 Mb/s link, schematically represented in
Fig. 7. Thersvpd version 4 from ISI [33] was extended to support RNAP, as discussed above. The ALTQ
package [35] has been used for scheduling and queue management. In particular, CBQ is used together with
rsvpd , and CBQ states are monitored for pricing and charge purpose.

23

a)
0 100 200 300 400 500 600 700 800 900 1000

0

1000

2000

3000

Time (second)

T
ot

al
 b

an
dw

id
th

 r
es

er
va

tio
n

re
qu

es
t (

kb
/s

)

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

P
ric

e
(c

en
ts

/M
b)

b)
0 100 200 300 400 500 600 700 800 900 1000

0

200

400

600

800

1000

1200

Time (second)

T
hr

ou
gh

pu
t (

kb
/s

)

Figure 8:a) The system price and total reservation requests and b) the throughput of each session shown as a function of the time

Three RSVP sessions were established end to end, and shared the same output interface of the link. To
create different levels of network load, a simple source model was used in each session to continuously send
UDP packets. The packet generation rate was tunable to allow a session to adapt to any data rate it intended
to send. At any sending rate, the packets were generated periodically. Background traffic was sent using
best effort service.

Out of the interface capacity of 10 Mb/s of each interface of Ra and Rb, 4 Mb/s was configured to
support the high priority CL service, and the remaining bandwidth was configured as default class and used
for best effort service. To look closely at the congestion control, pricing and charging functions of RNAP,
the CBQ states were monitored at node Ra.

During the experiment, each of the three application HRNs individually tried to optimize its own utility.
Since our main purpose was to test the performance of RNAP at a router, all the HRNs were given the
same budget, and each HRN asked for the maximum bandwidth it could afford during each negotiation
period. Price formulation at a node was in terms of the holding, usage and congestion prices, as discussed
previously. The HRN was quoted the current total price, as representing an upper bound on the charge for
the ensuing negotiation period in the absence of congestion. The targeted utilization of the link was set at
70% (2.8 Mb/s); if the total demand on the link exceeded this threshold, congestion pricing was enforced as
described previously.

We assumed a service roughly as expensive (per unit bandwidth) as a telephone cable. Assuming a
charge of10 c/min, and a capacity of 64 kb/s, the usage price is set as2.6 c/Mb. Assuming that the next
lower level of service is charged at5 c/min, or1.3 c/Mb, the holding price is set at1.3 c/Mb (can be any
price proportional to this). The congestion price will not be updated when the difference between demand
and supply is within 5% of the supply.

We assume that the budget available to each application is such that it can request a sending rate of 1Mb/s
at the initial quoted price. The application will reduce the requested bandwidth when the price increases.
The performance metrics considered are: the price dynamics and its influence on the total QoS requirement
from applications, the charge (network revenue) and the throughput of a flow during each negotiation period.

5.4 Analysis of Results

Fig. 8a shows the total price charged at node Ra at different network loads, and the total bandwidth request
in response to changes in price. When the total bandwidth request is less than the supply bandwidth, 2.8
Mb/s, the price is set at the minimum level of3.9 c/Mb (ph = 1.3 c/Mb, pu = 2.6 c/Mb). At around
t = 130 seconds, the total reservation exceeds the supply bandwidth and the congestion price is enforced
for bandwidth reservation. After three negotiation periods, the total reservation recovers to close to the

24

a)
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (second)

P
ric

e
(c

en
ts

/M
b)

system price
session1 price
session2 price
session3 price

b)
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

Time (second)

R
es

er
va

tio
n

ch
ar

ge
 (

do
lla

rs
)

session1 charge per negotiation interval
session2 charge per negotiation interval
session3 charge per negotiation interval

Figure 9: a) The price for each session and b) the session charge (system revenue) for each negotiation interval shown as a
function of the time

supply level, and the new, stabilized price is about 20% greater than the minimum price. Att = 700
seconds, one of the sessions is terminated, and the total reservation is now much smaller than the supply.
The price starts to reduce and after two negotiation periods the price stabilizes at3.9 c/Mb again.

Fig. 8b shows the change in per-session throughput with time. It is seen that all the sessions share
bandwidth fairly if all the sessions have the same traffic format, price sensitivity and budget. If some session
can afford a higher price, it could reserve more bandwidth and gain higher throughput. Since CBQ is
allowed to borrow bandwidth from the parent class, the throughput of each session is slightly higher than
the requested reservation, around978 kb/s against938 kb/s at timet = 860 seconds. We see that the
stabilized reservation rate is only 6.2% lower than the maximum requested rate.

Fig. 9a shows the computed price at the beginning of each period. The price for each period is set as the
system price at the beginning of the period, and will be kept constant during a negotiation interval.

Fig. 9b shows the charge for each negotiation period. Since in RSVP new intervals are initiated ran-
domly from 15 s to 45 s, the charge for each period varies randomly. Since all the sessions have equal
budgets and similar initial sending rates, they all have approximately the same charge within a similar
length of negotiation period.

6 Related Work

In this section we briefly discuss related research work in three main areas: resource reservation and alloca-
tion mechanisms; adaptive applications; billing and pricing in the network.

6.1 Resource Reservation and Allocation

Current research in providing QoS support in the Internet is mainly based on two architectures defined by
IETF: Per-flow basedintegrated services(int-serv) [5], and class-baseddifferentiated service(diff-serv) [7].
In both architectures, implementations should include a mechanism by which the user can request specific
network services, and thus acquire network resources. Per-flow resource reservation in int-serv is generally
implemented through the RSVP reservation protocol [3]. Implementation of resource reservation for diff-
serv is a subject of ongoing research, and various approaches have been proposed [11]. In general, RSVP
and the implementations of diff-serv lack integrated mechanisms by which the user can select one out of
a spectrum of services, and re-negotiate resource reservations dynamically. They also do not integrate the
pricing and billing mechanisms which must accompany such services.

25

6.2 Adaptive Applications

There has been a lot of recent research on adaptation of the sending rates of multimedia applications in
response to available network resources [9], which relies on signaling mechanisms such as packet loss rates
for feedback. The orientation of these methods is different from ours, since they assume no QoS support
and no usage sensitive pricing of network services. The frequent and passive rate adjustment can severely
degrade the multimedia quality, and sometimes an application is even not able to maintain its minimum QoS
requirement.

6.3 Pricing and Billing in the Network

Microeconomic principles has been applied to various network traffic management problems. The studies
in [13][17][19][20][27] are based on a maximization process to determine the optimal resource allocation
such that the utility (a function that maps a resource amount to a satisfaction level) of a group of users is
maximized. These approaches normally rely on a centralized optimization process, which does not scale.
Also, some of the algorithms assume some knowledge of the user’s utility curves and truthful revelation by
users of their utility curves, which may not be practical.

In [12][16][21][22][25], the resources are priced to reflect demand and supply. The pricing model
in these approaches is usage-sensitive - it has been shown that usage-sensitive pricing results in higher
utilization than traditional flat rate pricing [12]. Some of these methods are limited by their reliance on a
well-defined statistical model of source traffic, and are generally not intended to adapt to changing traffic
demands.

The scheme presented in [22] is more similar to our work in that it takes into account the network dy-
namics (session join or leave) and source traffic characteristics (VBR). It also allows different equilibrium
price over a different time period, depending on the different user resource demand. However, congestion
is only considered during admission control. Our pricing algorithm has two congestion-dependent compo-
nents, namely congestion due to excessive resource reservation (holding cost) and congestion due to network
usage (usage cost).

In general, the work cited above differs from ours in that it does not enter into detail about the negotiation
process and the network architecture, and mechanisms for collecting and communicating locally computed
prices. Our work is more concerned with developing a flexible and general framework for resource nego-
tiation and pricing and billing, decoupled from specific network service protocols and pricing and resource
allocation algorithms. Our work can therefore be regarded as complementary with some of the cited work.

Karsten et al [26] introduce a charging and payment scheme for RSVP-based QoS reservations. A
significant difference from our work is the absence of an explicit price quotation mechanism - instead,
the user accepts or rejects the estimated charge for a reservation request. Also, the scheme is coupled to a
particular service environment (int-serv), whereas our goal is to develop a more flexible negotiation protocol
usable with different service models.

7 Summary and Future Work

The overall objective of this paper has been to develop a protocol and architecture which enables network
service negotiation for multiple delivery services and environments. The RNAP protocol enables service ne-
gotiation between user applications and the access network, as well as between adjoining network domains.
The protocol permits negotiation and communication of QoS specifications, user traffic profiles, admission
of service requests, and pricing and charging information for requested services. The periodic (as well as
asynchronous) re-negotiation framework of the protocol enables dynamic, usage sensitive adaptation of ser-
vice parameters and pricing by the network, if required, and also enables the user application to respond to

26

changes in application requirements. At the same time, the framework provides sufficient flexibility to sup-
port users with limited negotiation capability, or with a requirement for very static and predictable service
specifications.

A pair of alternate protocol architectures has been described. The RNAP-D architecture is based on a
distributed, per-node model, while the RNAP-C architecture concentrates the negotiation functionality at a
centralized entity, the NRN. The first architecture is tailored to delivery services with relatively strict flow
control and “hard”, or quantitative QoS specifications. The second architecture may be better suited for
delivery service models dealing with service negotiations with a coarser granularity (multiple flows or flow-
aggregates) and providing statistical or qualitative specifications. In either case, the architecture is scalable
because it does not assume service reservation with a particular granularity, and incorporates mechanisms
for flow aggregation. The two architectures use the same set of RNAP messages, and can co-exist and
inter-operate across multiple administrative domains.

The protocol and architectures provide mechanisms for local or incremental price computation at a single
point in the network, collation of local prices in order to compute end-to-end prices along different routes,
and communication of prices and charges to the client. Several price and charge collation mechanisms
have been described for the distributed and centralized architectures, and end-to-end pricing and charging
across several administrative domains has also been discussed. An algorithm for local pricing at a router
has been discussed in detail, but the pricing and charging mechanisms in the protocol are independent of the
specific pricing algorithm used. A protype implementation of the important RNAP functionalities has been
described, along with some preliminary measurement results.

The important directions for future development of this work include a more detailed study of mecha-
nisms associated with resource aggregation, development of more sophisticated pricing strategies, deploy-
ment of the full functionality of RNAP in a large scale network, and more extensive tests for the performance
of RNAP signalling.

References

[1] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,” RFC 2212, Sept. 1997.

[2] J. Wroclawski, “Specification of the controlled load quality of service,” RFC 2211, Sept. 1997.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation protocol (RSVP) - version 1
functional specification,” RFC 2205, Sept. 1997.

[4] P. Pan and H. Schulzrinne, “YESSIR: A simple reservation mechanism for the Internet”, InInternational Work-
shop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’98), Cambridge,
England, July 1998.

[5] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture: an overview,” Request for
Comments (Informational) 1633, Internet Engineering Task Force, June 1994.

[6] K. Nichols, V. Jacobson, and L. Zhang, “A Two-bit Differentiated Services Architecture for the Internet,” Inter-
net Draft, Internet Engineering Task Force, Nov., 1997

[7] K. Nichols and S. Blake, “Differentiated services operational model and definitions,” Internet Draft, Internet
Engineering Task Force, Feb. 1998. Work in progress.

[8] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, K. Nichols, M. Speer, and B. Braden, “Interoperation of
RSVP/Int-Serv and diff-serv networks,” Internet Draft, Internet Engineering Task Force, Mar. 1999. Work in
progress.

[9] X. Wang, H. Schulzrinne, “Comparison of adaptive Internet multimedia applications,” inIEICE Transactions
on Communications, June, 1999.

27

[10] X. Wang and H. Schulzrinne, “Incentive-Compatible Adaptation of Internet Real-Time Mult imedia,” Technical
Report, Columbia University, Dec. 1999.

[11] Internet 2 Bandwidth Broker Information, http://www.merit.edu/working.groups/i2-qbone-bb.

[12] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer networks: Motivation, formulation, and
example,”IEEE/ACM Transactions on Networking, vol. 1, pp 614-27, Dec. 1993.

[13] J. F. MacKie-Mason and H. Varian, “Pricing Congestible Network Resources,”IEEE J. Select. Areas Commun.,,
vol. 13, no. 7, pp 1141-9, Sept. 1995.

[14] J. F. MacKie-Mason, L. Murphy, and J. Murphy, “The role of responsive pricing in the Internet,”Internet
Economics, J. Bailey and L. McKnight eds., MIT Press, 1997, pp 279-303.

[15] A. Gupta, D. O. Stal, and A. B. Whinston, “A priority pricing approach to manage multiple-service class
networks in real-Time,”Internet Economics, J. Bailey and L. McKnight eds., MIT Press, 1997, pp 323-52.

[16] N. Anerousis and A. A. Lazar, “A framework for pricing virtual circuit and virtual path services in atm net-
works”, ITC-15, pp. 791 - 802, 1997.

[17] A. Hafid, G. V. Bochmann and B. Kerherve,“A quality of service negotiation procedure for distributed multi-
media presentational applications,” InProceedings of the Fifth IEEE International Symposium On High Perfor-
mance Distributed Computing (HPDC-5), Syracuse, New York, 1996.

[18] T. F. Abdelzaher, E. M. Atkins, and K. Shin, “QoS negotiation in real-time systems and its application to
automated flight control,” To appear inIEEE Transactions on Software Engineering, 1999.

[19] H. Jiang and S. Jordan, “A pricing model for high speed networks with guaranteed quality of service,” in
Proceedings of the Conference on Computer Communications (IEEE Infocom), (San Fransisco, California),
Mar. 1996.

[20] S. Low and P. Varaiya, “An algorithm for optimal service provisioning using resource pricing,” inProceedings
of the Conference on Computer Communications (IEEE Infocom), (Toronto, Canada), June 1994.

[21] D. F. Ferguson, C. Nikolaou, and Y. Yemini, “An economy for flow control in computer networks,” in Proceed-
ings of theConference on Computer Communications (IEEE Infocom), (Ottawa, Canada), pp. 110-118, IEEE,
Apr. 1989.

[22] E. W. Fulp, D. S. Reeves, “Distributed network flow control based on dynamic competive markets,”InProceed-
ings International Conference on Network Protocol (ICNP’98), Austin Texas, Oct. 13-16, 1998.

[23] D. Reininger, D. Raychaudhuri and M. Ott, “Market based bandwidth allocation policies for QoS control in
broadband networks,” InProceedings of the First International Conference on Information and Computation
Economies (ICE-98), pages 101-110, Qct., 1998.

[24] H. Varian, “Microeconomic Analysis,” Third Edition, 1993. W.W. Norton & pany.

[25] J. Sairamesh, “Economic paradigms for information systems and networks”, PhD thesis, Columbia University,
New York 1997.

[26] M. Karsten, J. Schmitt, L. Wolf, and R. Steinmetz, “An embedded charging approach for RSVP,”The Sixth
International Workshop on Quality of Service (IWQoS’98), pp 91-100, Napa, California, USA.

[27] F. P. Kelly, A.K. Maulloo and D.K.H. Tan, “Rate control in communication networks: shadow prices, propor-
tional fairness and stability,”Journal of the Operational Research Society49 (1998), 237-252.

[28] C. Lee, J. Lehoczky, R. Rajkumar and D. Siewiorek, “On Quality of Service Optimization with Discrete QoS
Options,”Proceedings of the IEEE Real-time Technology and Applications Symposium, June 1999.

[29] G. Bianchi, A.T. Campbell, and R.R.-F. Liao, “On utility-fair adaptive services in wireless networks, ”6th
International Workshop on Quality of Service (IEEE/IFIP IWQOS’98), Napa Valley, CA, May 1998.

[30] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, A. Sastry, “The COPS (Common Open Policy Service)
Protocol,” Internet Draft, Internet Engineering Task Force, Feb. 24, 1999. Work in progress.

28

[31] R. Yavatkar, D. Pendarakis, and R. Guerin, “A framework for policy-based admission control,” Internet Draft,
Internet Engineering Task Force, Nov. 1998. Work in progress.

[32] S. Herzog, “RSVP extensions for policy control,” Internet Draft, Internet Engineering Task Force, Mar. 1999.
Work in progress.

[33] RSVP software release, ftp://ftp.isi.edu/rsvp/release.

[34] Floyd, S., and Jacobson, V., “Link-sharing and Resource Management Models for Packet Networks”,
IEEE/ACM Transactions on Networking, Vol. 3, No. 4, pp. 365-386, August 1995.

[35] K. Cho, ALTQ: Alternate Queueing for FreeBSD.

[36] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time applications,”
RFC 1889, Jan. 1996.

[37] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan, “Service location protocol,” Request for Comments (Pro-
posed Standard) 2165, Internet Engineering Task Force, June 1997.

[38] A. Gulbrandsen, P. Vixie, “A DNS RR for specifying the location of services (DNS SRV),” RFC 2052 , Oct.
1996.

[39] F. Baker, B. Lindell, and M. Talwar, “RSVP cryptographic authentication,” Internet Draft, Internet Engineering
Task Force, Mar. 1999. Work in progress.

[40] R. Atkinson and S. Kent, “Security architecture for the Internet protocol,” Request for Comments (Proposed
Standard) 2401, Internet Engineering Task Force, Nov. 1998.

[41] O. Schelen, S. Pink, “Resource reservation agents in the Internet,” inProc. International Workshop on Network
and Operating System Support for Digital Audio and Video (NOSSDAV), pp 153-156, July, 1998.

[42] P. Pan, E. Hahne, H. Schulzrinne, “BGRP: A Tree-Based Aggregation Protocol for Inter-Domain Reservations”.
submitted.

[43] F. Baker, et al, “ Aggregation of RSVP for IPv4 and IPv6 Reservations”, Internet Engineering Task Force, June
1999.

[44] RADB, A Distributed Database for Internet Routing Registry. http://www.radb.net/docs/.

[45] R. Vaccaro, “Digital control, a state space approach”, McGraw Hill, New York, 1995

29

