
Optimal Partition of QoS Requirements on
Unicast Paths and Multicast Trees

Dean H. Lorenz and Ariel Orda
Department of Electrical Engineering*

Technion—Israel Institute of Technology

Abstract— We investigate the problem of optimal resource allocation for
end-to-end QoS requirements on unicast paths and multicast trees. Specif-
ically, we consider a framework in which resource allocation is based on
Iocal QoS requirements at each network link, and associated with each link
is a cost function that increases with the severity of the QoS requirement.
Accordingly, the problem that we address is how to partition an end-to-end
QoS requirement into local requirements, such that the overall cost is min-
imized. We estabtish efficient (polynomial) solutions for both unicast and
multicast connections. These results provide the required foundations for
the corresponding QoS routing schemes, which identify either paths or trees
that lead to minimal overall cost. In addition, we show that onr framework
provides better tools for coping with other fundamental multicast problems,
such m dynamic tree maintenance.

Keywmd.~- QoS, QoS-dependent costs, Multicast, Routing, Broadband
networks.

I. INTRODUCTION

Broadband integrated services networks are expected to sup-

port multiple and diverse applications, with various quality of
service (QoS) requirements. Accordingly, a key issue in the de-

sign of broadband architectures is how to provide the resources
in orcler to meet the requirements of each connection.

Supporting QoS connections requires the existence of several
network mechanisms. One is a QoS routing mechanism, which
sets the connection’s topology, i.e., a unicast path or multicast
tree. A second mechanism is one that provides QoS guarantees
given the connection requirements and its topology. Providing
these guarantees involves allocating resources, e.g., bandwidth
and buffers, on the various network elements. Such a consump-
tion clf resources has an obvious cost in terms of network per-
formance. The cost at each network element inherently depends
on the local availability of resources. For instance, consuming
all the available bandwidth of a link, considerably increases the
blocking probability of future connections. Clearly, the cost
of establishing a connection (and allocating the necessary re-
sources) should be a major consideration of the connection (call)
admission process. Hence, an important network optimization
problem is how to establish QoS connections in a way that mini-
mizes their implied costs. Addressing this problem impacts both
the routing process and the allocation of resources on the se-
lected topology. The latter translates into an end-to-end QoS
requirement partition problem, namely local allocation of QoS
requirements along the topology.

The support of QoS connections has been the subject of exten-
siveresearch in the past few years. Several studies and proposals
considered the issue of QoS routing, e.g., [2], [8], [9], [21], [24]
and references therein. Mechanisms for providing various QoS
guarantees have been also widely investigated, e.g. [7], [22].

*email.{deanh@tx, ariel@ee} .technion. ac. il

Although there are proposals for resource reservation, most no-
tably RSVP [3], they address only the signaling mechanisms and
do not provide the allocation policy. Indeed, the issue of opti-
mal resource allocation, from a network perspective, has been
scarcely addressed. Some studies, e.g. [13], consider the spe-
cific, simple, case of constant link costs, which are independent

of the QoS (delay) supported by the link. Pricing, as a network
optimization mechanism, has been the subject of recent studies,
however they either considered a basic best effort service envi-
ronment, e.g. [14], [18], or simple, single link [17] and parallel
link [20] topologies.

In this paper, we investigate the problem of optimal resource
allocation for end-to-end QoS requirements on given unicast
paths and multicast trees. Specifically, we consider a frame-
work in which resource allocation is based on the partition of
the end-to-end QoS requirement into local QoS requirements
at each network element (link). We associate with each link a

cost function that increases with the severity of the local QoS
requirement. As will be demonstrated in the next section, this
framework is consistent with the proposals for QoS support on
broadband networks. Accordingly, the problem that we address
is how to partition an end-to-end QoS requirement into local
requirements, such that the overall cost is minimized. This is
shown to be intractable even in the (simpler) case of unicast
connections. Yet, we axe able to establish efficient (polynomial)
solutions for both unicast and multicast connections, by impos-
ing some (weak) assumptions on the costs. These results pro-
vide the required foundations for the corresponding QoS routing
schemes, which identify either paths or trees that lead to mini-
mal overall cost. Moreover, we indicate how the above frame-
work provides better tools for coping with fundamental multi-
cast problems, such as the dynamic maintenance of multicast
trees.

A similar framework was investigated in [4], [19]. There too,
it was proposed that end-to-end QoS requirements should be
partitioned into local (link) requirements and the motivation for
this approach was extensively discussed. [19] discussed unicast
connections and focused on loss rate guarantees. It considered
a utility function, which is equivalent to (the minus of) our cost
function, However, rather than maximizing the overall utility,
[19] focused on the optimization of the bottleneck utility over
the connection’s path. That is, their goal was to partition the
end-to-end loss rate requirement into link requirements over a

given path, so as to maximize the minimal utility value over the
path links. Specifically, [19] investigated the performance of a
heuristic that equally partitioned the loss rate requirements over
the links. By way of simulations, it was indicated that the per-
formance of that heuristic was reasonable for paths with few (up

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

to fivIe) links and tight loss rate requirements; this finding was
further supported by analysis. However, it was indicated that

performance deteriorated when either the number of links be-
came larger or when the connection was more tolerant to packet
loss. [t was concluded that for such cases, as well as for alternate

QoS requirements (such as delay), the development of optimal

QoS partition schemes is of interest. [4] considered multicast
trees and a cost function that is a special case of ours. Each
tree link was assigned an upper bound on the cost, and the goal
was to partition the end-to-end QoS into local requirements, so
that no link cost exceeds its bound. Specifically, [4] consid-
ered two heuristics, namely equal and proportional partitions,
and investigated their performance by way of simulations. It
was clemonstrated that proportional partition offers better per-
formance than equal partition, however it is not optimal. [4]
too concluded that more complex (optimal) partition schemes
should be investigated. These two studies provide interesting
insights into our framework, and strongly motivate the optimiza-
tion problems that we investigate.

Another sequence of studied that is related to the present one
is [9], [16]. These studies investigated QoS partitioning and
routing for unicast connections, in networks with uncertain pa-
rameters. Their goal was to select a path, and partition the QoS
requirements along it, so as to maximize the probability of meet-
ing th,e QoS requirements. As shall be shown, the link probabil-
ity distribution functions considered in [9], [16] correspond to a
speciid case of the cost functions considered in the present pa-
per. The algorithms presented in [16] solve both the routing and
the QoS partition problem for unicast connections, under certain
assumptions. The present study offers an improved, less restric-
tive, solution for unicast, and, more importantly, a generalized
solution for multicast.

The general resource allocation problem is a constraint op-
timization problem. Due to its simple structure, this problem
is encountered in a variety of applications and has been stud-
ied extensively [12]. Optimal Partition of end-to-end QoS re-
quirements over wzicast paths is a special case of that problem,
however the multicast version is not. Our main contribution
is in solving the problem for multicast connections. We also
present several algorithms for the unicast problem, emphasizing
network related aspect, such as distributed implementation.

The rest of this paper is structured as follows. Section II for-
mulates the model and problems, and relates our framework to
QoS network architectures. The optimal QoS partition problem
for unicast connections is investigated in Section III. The opti-
mal partition problem for multicast connections is discussed in
Section IV. This problem is solved using a similar approach to
that used for unicast, nonetheless the analysis and solution struc-
ture turn out to be much more complex. Section V applies these
findings to unicast and multicast QoS routing. Finally, conclud-
ing remarks are presented in Section VI. Due to space limits,
many technical details and proofs are omitted from this version
and can be found in [15].

II. MODEL AND PROBLEMS

In this section we present our framework and introduce the
QoS partition problem. We assume that the connection topology
is given, i.e., a path p for unicast, or a tree T for multicast.

The problem of finding such topologies, namely QoS routing,
is briefly discussed in Section V. For clarity, we detail here
only the framework for unicast connections. The definitions and

terminology for multicast trees are similar and are presented,
together with the corresponding solution, in Section IV.

A. QoS requirements

A QoS partition of an end-to-end QoS requirement Q, on a
path p, is a vector XP = {zz }lep of local QoS requirements,
which satisfies the end-to-end QoS requirement, Q.

There are two fundamental classes of QoS parameters: bot-

tleneck parameters, such as bandwidth, and additive parame-
ters, such as delay and jitter. Each class induces a different
form of our problem, and the complexities of the solutions are
vastly different. For bottleneck parameters, we necessarily have
xz = Q for all 1 ~ p, 1 because Q is determined by the bottle-
neck link, i.e., Q = minzcP xl, Since allocating more than Q
induces a higher cost, yet does not improve the overall QoS, the
optimal partition is x: = {Q}z6P. For additiveQoS require-
ments, a feasible partition, XP, must satisfy ~leP Z1 < Q. In

this case, the optimal QoS partition problem is intractable [16],
however we will show that, by restricting ourselves to convex

cost functions, we can achieve an efficient (tractable) solution.
Some QoS parameters, such as loss rate, are multiplicative, i.e.,

Q = IIIGp (w). For instance,for a 10SSrate QoS requirement
L, we have Q = 1 – L. This case too can be expressed as an
additive requirement, by solving for (– log Q); indeed, the end-
to-end requirement becomes (– log Q) = ~leP (– log zz), i.e.,

an additive requirement.

There are QoS provision mechanisms, in which the (additive)
delay bounds are determined by a (bottleneck) “rate”. A no-
table example is the Guaranteed Service architecture for 1P [23],
which is based on rate-based schedulers [7], [22], [25], [26].
In some cases, such mechanisms may allow to translate a de-
lay requirement on a given path into a bottleneck (rate) require-
ment, hence the partitioning is straightforward. However, such
a translation cannot be applied in general, e.g. due to complica-
tions created by topology aggregation and hierarchical routing.2
Hence, our study focuses on the generaI partition problem of
additive QoS requirements.

B. Cost functions

As mentioned, we associate with each local QoS require-
ment value xl, a cost c1 (xl), and make the natural assumption
that et (zl) is higher as X1 is tighter. For instance, when ZL
stands for delay, c1 (xl) is a non-increasing function, whereas
when xl stands for bandwidth, c1 (xl) is non-decreasing. The
overall cost of a partition is the sum of the local costs, i.e.,

C(XP) = Dep cl ($1)

The cost may reflect the resources, such as bandwidth, needed
to guarantee the QoS requirement. Alternatively, the cost may

be the price that the user is required to pay to guarantee a spe-
cific QoS. The cost may be associated with either the set-up or
the run-time phase of a connection, Also, it may be used for

1Thisis alsotree for a multicasttree T.
2Indeed,the ATMKlerarchicdQoSroutingprotocol[21],requiresIocat(Per

cluster)QoSguammtees.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

networkmanagemen tto discourage theuseof congested links,
by assigning higher costs to those links.

A particular form of cost evolves in models that consider
uncertainty in the available parameters at the connection setup

phase [9], [16], which we now briefly overview. In such mod-
els, associated with each link is a probability of failure ~1(zl),
when trying to set up a local QoS requirement of xl. The op-
timal QoS partition problem is then to find a QoS partition-
that minimizes the probability of failure; that is, it minimizes

the product ~leP ~t (w). Since we have log (HleP .f~(xL)) =

~Ler, log J ($~)> we can restate this problem back as a summa-
tion, namely we define a cost function for each link, Cz(z) =
log jl (x), and solve for these costs.

C. Problem formulation

The optimal Qos partition problem is then defined as follows.

Problem OPQ (Optimal Partition of QoS): Given a path p
and an end-to-end QoS requirement Q, find a QoS partition
x;= {Z~}l=P, such that c (x;) < c (xL) , for any (other) QoS

partition XL.

This study focuses on the solution of Problem OPQ for addi-
tive QoS parameters, which, as mentioned, is considerably more
complex than its bottleneck version. In Section III we solve the
problem for unicast paths, and in Section IV we generalize the
solution to multicast trees. For clarity, and without loss of gen-
erality, we concretize the presentation on end-to-end delay re-

quirements.

111. SOLUTION TO PROBLEM OPQ

In this section we investigate the properties of optimal soltt-
tions to Problem OPQ for additive QoS parameters and present
efficient algorithms. These results will be used in the next sec-
tion to solve Problem MOPQ, i.e., the generalization of Prob-
lem OPQ to multicast trees. As mentioned, Problem OPQ is
a specific case of the resource allocation problem. The fastest
solution to this problem, [5], requires O([pl log D/ Ipl).3 In
Section III-B we present a greedy pseudo-polynomial solution.
This solution provides appealing advantages for distributed and

dynamic implementations, as discussed in Section III-C. In
Section III-D we present a polynomial solution that, albeit of
slightly higher complexity than that of [5], provides the founda-
tions of our solution to Problem MOPQ. Finally, in Section III-E
we discuss special cases with lower complexity,

As mentioned, we assume that the QoS parameter is end-to-
end delay. We further assume that all parameters are integers,
and that the link cost functions are non-increasing with the delay
and (weakly) convex.

A. Notations

XP (D) is a feasible partition of an end-to-end delay require-

ment D on the path p if it satisfies ~l&P xl < D, We omit
the subscript p andlor the argument D when there is no ambigu-
ity. x;(D) denotes the optimal partition, namely the solution of
Problem OPQ for an end-to-end delay requirement D and a path

3Ipl log(D/lpl) is alsoa lowerboundfor solvingProblemOPQ[11],that is
no,ful~ppolynomialntgorithmsexist.

p. We denote by Ixp \ the norm ~JcP Iat 1,hence x is feasible if
1x1<D.

The average d-increment gain for a link 1 is denoted by

AZ (z, 6) ❑ (cl (Z+ d) – c1 (z)) /6. The average d-move gain
is denoted by A,+l (x,6) = Al (xl + 6) + A, (ze – d) .

B. Pseudo-polynomial solution

Problem OPQ is a special case of the general resource alloca-
tion problem which has been extensively investigated [11], [12].
With the (weak) convexity assumption on the cost functions, it
is a convex optimization problem with a simple constraint. It
can be proved [12] that a greedy approach is applicable for such
problems, namely it is possible to find an optimal solution by
performing locally optimal decisions.

GREEDY-ADD (D, 6, c(.), p):

1 x + {O}lcp
2 while [xl < D do
3 e +- arg minte P At (z1, J)
4 zei-ze+~
5 return x

Fig. 1. AlgorithmGREEDY-ADD

Algorithm GREEDY-ADD (Figure 1) employs such a greedy
approach. It starts from the zero allocation and adds the delay
bit-by-bit, each time augmenting the link where the (negative)
d-increment gain is minimal, namely where it most affects the
cost. Using an efficient data structure (e.g. a heap), each itera-

tion requires O(log Ipl), which leads to an overall complexity of

0(~ log Ipl). In [11] it is shown that the solution is d-optimal

in the following sense: if XJ is the output of the algorithm and
x* is the optimal solution, then Ix* – X6 I < lp\J.4

Algorithm GREEDY-MOVE (Figure 2) is a modification of Al-
gorithm GREEDY-ADD that, as shall be explained in Section III-
C, has important practical advantages. The algorithm starts from
any feasible allocation and modifies it until it reaches an optimal
partition. Each iteration performs a greedy move, namely the
move with minimal (negative) &move gain.

GREEDY-MOVE (x, 6,c(.),p):
1 loop

Fig.2. AlgorithmGREEDY-MOVE

Let p(x) be the distance of a given partition from the opti-
mal one, namely p(x) ❑ lx – x*1, where x* is the optimal
partition that is nearest to x. The next lemma implies that Algo-
rithm GREEDY-MOVE indeed reaches a r5-optimal solution.

Lemma 1: Each iteration of Algorithm GREEDY-MOVE de-
creases p(x) by at least 6, unless x is a d-optimal partition.

Lemma 1 implies that Line 3 can be umd as a (0-)optimality
check. It also implies that the algorithm terminates with a 6-
optimal solution and that the number of iterations is proportional
to ~(x). Theorem 1 summarizes this discussion.

4Thisalsoestablishedthe error&reto our assumptionof integerparameters.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

Theorem 1: Algorithm GREEDY-MOVE solves Problem OPC)

in O(W log \pl).
,F%of By Lemma 1, there are at most p(x)/6 iterations

and a.&-optimal solution is achieved. Each iteration can be im-
plemmted in O(log Ipl) and the result follows. ■

C. Distributed and dynamic implementation

Al,g-orithm GREEDY-MOVE can be employed in a distributed
fashion. Each iteration can be implemented by a control mes-
sage that traverses back and forth between the source and des-
tination. At each traversal e, 1 of Line 2 are identified and the
allocation change of the previous iteration is performed. This
requires O (Ipl p/@ end-to-end messages. Such a distributed
implementation also exempts us from having to advertise the

updated link cost functions.
Algorithm GREEDY-MOVE can be used as a dynamic scheme

that reacts to changes in the cost functions after an optimal par-
tition has been established. Note that the complexity is propor-
tional to the allocation modification implied by the cost changes,
meaning that small allocation changes incur a small number of
computations.

D. Polynomial solution

In this section we present an improved algorithm of polyno-
mial complexity in the input size (i. e., Ipl and log D). In Sec-

tion IV, we derive a solution to Problem MOPQ using a similar
technique.

Algorithm BINARY- OPQ (Figure 3) finds optimal solutions
for different values of 6. The algorithm consecutively considers
smaller values of 6, until the minimal possible value is reached,
at which point a (global) optimum is identified.

BINARY-OPQ (D, c(.),p):

1 d + D/lpl
2 startfromthe partitionx = {D, O,. . . ,0}
3 repeat
4 x e GREEDY-MOVE(X, 0,c(.),p)
5 8 + 6/2
6 untilc1<1

Fig. 3. AlgorithmBINARY-OPQ

Obviously, the algorithm finds an optimal solution, since its
last call to GREEDY-MOVE is with d = 1. The number of it-
eratic,ns is clearly of order O (log (D/ Ip I)). We need to bound
the number of steps required to find the &optimal partition at
Line 4. Each iteration (except the first, for which D/8 = \pl)

starts from a 2&optimal partition and employs greedy moves
until it reaches a &optimal partition. This bound is the same
for all iterations, since it is a bound on the distance between a
2&optimal partition and a d-optimal partition.

Lemma 2: Let x +GREEDY-MOVE(X, 2, e(.), p). Then
y(x) < [pi.

This lemma, proven in [15], resembles the proximity theorem
presented in [1 1].

Theorem 2: Algorithm B INARY-OPQ solves Problem OPQ
in O (/pi loglpl log(D/lpl)).

jProof: By Lemma 2 and Theorem 1, each call
to GREEDY-MOVE requires O(lpl log Ipl). Since there are
O(D/ Ipl) such calls, the result follows. ■

E. Faster Solutions

The following lemma, which is a different form of the op-
timality test in Algorithm GREEDY-MOVE, provides a useful
threshold property of optimal partitions.

Lemma 3.- Let A“ - minlep Al (xl, – 1). Then, x is opti-
maliff Ae (xe, –1) > A* > –Al (xz, 1) for all e,l c p.

For all 1 c p, Al (d, – 1) is a nonincreasing function (cl is
convex) and (by definition) Az (d + 1, – 1) = –Az (d, 1). Thus,

the threshold A* relates to the optimal allocation as follows:

Wep Z~>CZ@Al(d, -l) ZA*. (1)

This implies that an optimal solution to Problem OPQ can

be found by selecting the D largest elements from the set

{Az(d, -1) I O<d<D,l ~p}.
For certain cost functions, this can be done analytically, For

instance, in [16] we provide an O(lpl) solution for cost func-
tions that correspond to delay uncertainty with uniform proba-
bility distributions.

More generally, if the cost functions are strictly convex, then,
given A*, one can use (1) to find an optimal solution in O(lpl).
In [16], a binary search is employed for finding A*. Ac-
cordingly, the resulting overall solution is of O ([p I log Am’x),
where Amax G mm{ Az(d, –l) I O < d < D,l c p}. Note
that log Amax is bounded by the complexity of representing a
cost value.

IV. SOLUTION TO MULTICAST OPQ (MOPQ)

In this section we solve Problem OPQ for multicast trees.
Specifically, given a multicast tree, we need to allocate the delay
on each link, such that the end-to-end bound is satisfied on every
path from the source to any member of the multicast group, and
the cost associated with the whole multicast tree is minimized,

We denote the source (root) of the multicast by s and the set
of destinations, i.e., the multicast group, by ill. A multicast tree
is a set of edges T ~ E such that for all v c M there exists a

path, pT (s, v), from s to v on links that belong to the tree T.

We assume there is only one outgoing link from the source S,5
and denote this link by r.

iV (1 = (u, v)) denotes all the outgoing links from v, i.e., all
of 1‘s neighbors; when N(1) is an empty set then we call 1a leaJ
T1 is the whole sub-tree originatin~ from 1 (including 1 itself).
The branches of T are denoted by T E T \ {r}. Observe that
T = UJeN(r)T1.

A feasible delay partition for a multicast tree T, is
a set of link-requirements xT (D) = {xl }16T such that

Zlep-qs,.) xl ~ D for all v E M.6
We can now define Problem OPQ for multicast trees.
Problem MOPQ (Multicast OPQ): Given a multicast tree T

and an end-to-end delay requirement D, find a feasible partition
x;(D) , such that c (x&(D)) < c (xT (D)), for every (other)
feasible partition ?@(D).

Remark 1: If there is more than one outgoing link from the
source, then we can simply solve Problem MOPQ indepen-
dently, for each tree T., corresponding to an outgoing link Ti

5SeeRemark1.
6Again, when no ambiguity exists, we omit the sub-script T and/or the argu-

ment D.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

from s. Thus, our assumption, that there is only one outgoing
link from r, does not limit the solution.

We denote by MOPQ(T, d) the set of optimal partitions on
a tree T with delay D. CT (d) denotes the tree cost function,
i.e., the cost of (optimally) allocating a delay d on the tree T. In
other words, cT (d) = c (xl(d)), where xl E MOPQ(T, d).

A. Greedy properties

The general resource allocation problem can be stated with
tree-structured constraints and solved in a greedy fashion [12].
An efficient O(ITI log IT Ilog D) algorithm is given in [1 1].
However, that “tree version” of the resource allocation prob-
lem has a different structure than Problem MOPQ. Indeed, the
simple greedy approach, namely repeated augmentation of the
link that most improves the overall cost, fails in our framework.
However, as we show below, some greedy structure is main-
tained, as follows: if at each iteration we augment the sub-tree

that most improves the overall cost, then an optimal solution is
achieved.

The main difference of our framework is that the constraints
are not on sub-trees, but rather on paths. The greedy approach
fails because of the dependencies among paths. On the other
hand, we note that the tree version of the resource allocation
problem may be applicable to other multicast resource alloca-
tion problems, in which the constraints are also on sub-trees.
For example, suppose a feasible allocation must recursively sat-
isfy, for any sub-tree Te, ~le~ al < Q(Te), where Q(Te) is

some arbitrary (sub-tree) constr~int.
We proceed to establish the greedy structure of Prob-

lem MOPQ. First, we show that if all link cost functions are
convex, then so is the tree cost function.

Lemma 4: If {et }leT are convex then so is CT (d).
By Lemma 4, we can replace T by an equivalent convex link.
Any sub-tree TZ, can also be replaced with an equivalent con-
vex link, hence so can T. However, these results apply only if
the allocation on every sub-tree is optimal for the sub-tree. This
property is sometimes referred to as the “optimal sub-structure”
property [1], and is the hallmark of the applicability of both
dynamic-programming and greedy methods.

Lemma 5: Let x% E MOPQ(T, D). Let e E N(r) and
let the sub-partition x& (De) = {z~ = z; }leT~, where De =
D – z;. Then x& c MOPQ(T., De).

Lemma 5 implies that, for any optimally partitioned trees, we
can apply the greedy properties of Section III. That is, the parti-
tion cm r and $ is a solution to Problem OPQ on the 2-link path
(r-,T). This suggests that employing greedy moves between r
and T will solve Problem MOPQ, and this method can be ap-
plied recursively for the sub-trees of T. Indeed, this scheme is
used by the algorithms presented in the next sections.

B. Pseudo-polynomial solution

We employ greedy moves between r and T. The major
difficulty of this method is the fact that CT(d) is unavailable.

Computing CT(d) for a specific d requires some x!(d) c
MOPQ(T, d). Fortunately, we can easily compute cT(d + 6),
given x& (d). Since the greedy approach is applicable, we may
simply perform a greedy augmentation and recompute the cost.
Note that adding 6 to T requires adding d to all {Tl }16~(~,. In

the worst case, this must be done recursively for all the sub-trees
and 0(IT [) links are augmented.

Procedure TREE-ADD (Figure 4) performs a J-augmentation
on a tree T. We assume that for each sub-tree T1 the value of
AT, (DT’, @ for the current allocation is stored in the variable

AT, (6). At Line 1 it is decided if r or T would be augmented.
AT(d) is either Afi (DT’) or A. (ZT, 6), therefore this decision

can be made by a simple comparison. If T should be augmented
then Procedure TREE-ADD is called recursively on its compo-
nents. Finally, AT (3x3) is updated at Lines 6–7:

TREE-ADD (X, 8,T):
1 if A. (zr, 6) = AT (J) then

2 X,+X.+6
3 else
4 for each 1 c N(r) do

5 TREE-ADD(x, J, Tl)

6 AT(J) - min{A~(~,, J), ~16N(r) ATI ($)}a

7 AT(–J) +- min{A~(z~, –J), ~leN(r) ATl(–0} 6

aIf r is a leafwe define the sum to be M.

Fig.4. ProcedureTREE-ADD

Algorithm BALANCE (Figure 5) is a dynamic algorithm that
solves Problem MOPQ. It starts from any feasible tree partition
and performs greedy moves between r and T. The while loop
at Line 7 computes Ar+Y (x, 6). If it is negative then moving

J from r to T reduces the overall cost. The augmentation of T
is done by calling TREE-ADD on each of its ~omponents. The
while loop at at Line 11 performs moves from T to r in a similar
way.

To be able to check the while condition and for calling TREE-
ADD, we must have AT, (+6) for all 1 c T, This requires
an optimal partition on each sub-tree. Algorithm BALANCE
makes sure that this is indeed the c~se by recursively calling
itself (Line 5) on the components of T. Since any allocation to
a leaf is an optimal partition on it, the recursion is stopped once
we reach a leaf. After the tree is balanced the algorithm updates
AT (+6), which is used by the calling iteration.- -

BALANCE (x, 6,T):
1 if T is a leaf then
2 AT(J) +- A, (z,, 6)
3 A~(–J) +- A.(z,, –d)

4 return
5 (else)for each1c N(r) do
6 BALANCE(x,d,T1)

7 while~leN(r) AT,(J) + Ar(x,, –J) <0
8 xr. i-x~-a
9 foreachLc N(r) do

10 TREE-ADD(x,d,Tt)

11 whileAT(xr, @ + ~~~N(,l AT1 (+ <0

12 zr+mr+6
13 foreach16 N(r) do
14 TREE-ADD(x, -6, Tl)
15 AT(J) - min{A,(*~,J)~ZteNc,J A-r, (J)}

16 AT(–@ i- min{A~(~~, ‘~, ~t=N(r) ATl(–@}

Fig. 5. Algorithm BALANCE

We proceed to analyze the complexity of BALANCE. We first

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

define a distance VT(x) which is the tree version of the path
distance defined in Section III-B. Let p. (XT) ❑ Is. – z; 1,
where x! is the optimal partition nearest to T. Let x~[=

{x: ,= z“}
e ecT~” We define ~(XT) ❑ ~Z@T % (x~l).

Theorem 3: Algorithm BALANCE finds a &optimal solution
to Problem MOPQ in O(lTl(yI(x)/C$) + ITI)

lProof: p(x) /6 bounds the number of calls to Proce-
dure TREE-ADD. At the worst case, TREE-ADD requires

O(\Tl) for each call. The recursive calls to BALANCE also re-
quire O(ITI), ■

Remark 2: We can apply Algorithm BALANCE on the fea-
sible partition xT = {XT = D; xl = O vi # r}. C1early,
yJ(x) < D in this case. Thus, Problem MOPQ can be solved in
O(lTID/6).

C. Distributed and dynamic implementation

Algorithm BALANCE can be readily applied in a distributed
fashion. Each augmentation in Procedure TREE-ADD is propa-
gated from the root to the leafs. A straightforward implemen-
tation requires O(t) time,7 where t is the depth of the tree.
At most O(t) recursive calls to BALANCE are performed se-
quentially. Finally, the number of calls to TREE-ADD after
the sub-trees are balanced, is bounded by @?ax (x)/J, where

p~ax (x) = maXl~T ~. (x~,). The overall complexity is, there-

fore, O (t2p:ax (x)/6). Note that for balanced trees t =
O(log ITI).

Algorithm BALANCE (as is the case for Algorithm GREEDY-
MOVE) can be used as a dynamic scheme that reacts to changes
in the cost functions after an optimal partition is established.
The complexity of Algorithm BALANCE is proportional to the
distance from the new optimal allocation. Again, small changes
(i. e., small p(x)) incur a small number of computations.

D. Polynomial solution

We can now present a polynomial solution. Algo-
rithm B INARY-MOPQ uses an approach that is identical to the
one used for the solution of Problem OPQ. The algorithm con-
secutively calls BALANCE for smaller values of J, until the min-
imal possible value is reached, at which point an optimal parti-
tion is identified.

BIINARY-MOPQ (D, c(.),T):
1 xr+D

2 zz~O WCT\r

3 d + D/lTl
4 repeat
5 x +BALANCE(X) 6,T)

6 6 i- 6/2
7 until J <1

Fig. 6. Algorithm BINARY-IvIOI?Q

We will show that, at each iteration of the algorithm, p~ax (x)
is bounded by t~. Therefore, p(x) /S ~ tlTl and the over-
all cc,mplexity of this algorithm is 0(lT12t log(D/ IT I)). The
Lemma 6 is the equivalent of Lemma 2 for multicast.

Lemma 6: Let x +-BALANCE(X, 2, T). Then, pr(x) < t.

7assumingthat travelinza linkreauiresonetimeunit.

Let AT (d, 6) denote the value of AT (8) at the termination of
BALANCE (X(d), d, T). Note that AT (d, d) assumes a &optimal
partition on the tree, hence it is different from (cT (o!+ 6) –
CT(d + 6))/6, which assumes the optimal partition.

Theorem 4 states the complexity of Algorithm BINARY-

MOPQ.
Theorem 4: Algorithm BINARY-MOPQ finds a solution to

Problem MOPQ in 0(lT12tlog(D/lTl)).
Comparing this result to the 0(lTID/6) complexity of

Algorithm BALANCE (see Remark 2), indicates that Algo-
rithm BALANCE is preferable when D/d < lT\t log(D//Tl).

Again, note that, for balanced trees t = O (log IT I). Also,
we can implement Algorithm B INARY-MOPQ in a distributed
fashion (as in Section IV-C), with an overall complexity of
0(t3 log(D/lTl).

Remark 3: Algorithm B INARY-MOPQ starts from a coarse

partition and improves the result by refining the partition at each
iteration; this means that one may halt the computation once the
result is good enough, albeit not optimal.

Remark 4: It is possible to modify the algorithm to cope
with heterogeneity in the QoS requirements of the multicast
group members. In the worst case, the complexity of the so-
lution grows by a factor of O (lM!I), while the complexity of the
pseudo-polynomial solution remains unchanged, The details of
this extension are omitted here.

V. ROUTING ISSUES

In the previous sections, we addressed and solved optimal

QoS partition problems for given topologies. These solutions
have an obvious impact on the route selection process, as the
quality of a route is determined by the cost of the eventual (opti-
mal) QoS partition over it, Hence, the unicast partition problem
OPQ induces a unicast routing problem, OPQ-R, which seeks a
path on which the cost of the solution to Problem OPQ is min-
imal. Similarly, Problem MOPQ induces a multicast routing
problem MOPQ-R. In this section we briefly discuss some cur-
rent and future work in the context of these routing problems.

A. OPQ-R

As was the case with Problem OPQ, with OPQ-R too there
is a significant difference between bottleneck QoS requirements
and additive ones. As explained in Section II, for a bottleneck
QoS requirement, the end-to-end requirement determines Qi =
Q for all links in the path (or tree), and a corresponding link
cost, Ct (Q). Therefore, the routing problem OPQ-R boils down
to a “standard” shortest-path problem with link length c1 (Q).

As noted, in the context of Problem OPQ, providing delay re-

quirements through rate-based schedulers [7], [22], [25], [26],
translates the additive requirement into a (simpler) bottleneck
requirement. However, in the context of Problem OPQ-R, such
a translation is not possible anymore, since paths differ also in
terms of constant (rate-independent) link delay components. Ef-
ficient solutions for Problem OPQ-R, under delay requirements
and rate-based schedulers, have been presented in [9],

The general OPQ-R problem, under additive QoS require-

ments, is much more complex, and has been found to be in-
tractable [16]. Note that, even in a simpler, constant-cost frame-
work, where each link is characterized by a delay-cost pair

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

(rather than a complete delay-cost function), routing is an in-
tractable problem [6]. In the latter case, optimal routing can be

achieved through a pseudo-polynomial dynamic-programming

scheme, while ~-optimal solutions can be achieved in polyno-
mial time [IO].

The general OPQ-R problem, under the framework of the
present study, was solved in [16]. The solution is based on
dynamic-programming and assumes that the link cost functions
are convex. An exact pseudo-polynomial solution, as well as an
c-opt imal polynomial solution, have been presented. We note
that a. single execution of those algorithms finds a unicast route
from the source to every destination and for eve~ end-to-end
delay requirement.

B. LIOPQ-R

As could be expected, finding optimal multicast trees under
our framework is much more difficult than finding unicast paths.
Even with bottleneck QoS requirements, MOPQ-R boils down
to finding a Steiner tree, which is known to be an intractable
problem [6].

We are currently working on solving MOPQ-R for additive

QoS requirements. We established an efficient scheme for the
fundamental problem of adding a new member to an existing
multiczist tree. This provides a useful building block for con-
structing multicast trees. Another important building block is
the optimal sub-structure property (established in Section IV),
which is an essential requirement for the application of greedy
and dynamic programming solution approaches.

Interestingly, the above problem, of adding members to mul-
ticast trees, may serve to illustrate the power of our framework

over the simpler, constant-cost framework. In the latter, there
is a single delay-cost pair for each link (rather than a complete
delay-cost function), and the goal is to find a minimal cost tree
that satisfies an end-to-end delay constraints Under that frame-
work, it is often impossible to connect a new member to the
“tree top”, i.e., the leaves and their neighborhood. This is a con-
sequence of cost minimization considerations, which usually re-
sult with the consumption of all (or most of) the available delay
at the leaves. For example, consider the network of Figure 7.
The source is S and the multicast group is {A, B}; the end-to-
end delay bound is 10 and the link delay-cost pairs are specified.
Suppose we start with a tree for node A, i.e., the link (S, A).

Since A exhausts all the available end-to-end delay, we cannot
add B to the tree by extending A’s branch with the (cheap) link
(A, B); rather, we have to use the (expensive) link (S, B). Note
that we would get the same result even if there were an addi-
tional link from S to A with shorter delay, say 9, and slightly
higher cost, say 11.

Our framework allows a better solution, as it lets the link
(S, A) advertise several delays and costs. For instance, it could
advertise a delay of 10 with a cost of 10 and a delay of 9 with a
cost clf 11. When adding B to the tree, we can change the delay

allocation on (S, A) from 10 to 9 (thus paying 11 instead of 10),
which allows us to use the link (A, B) for adding B. The cost
of the resulting tree is 12, as opposed to 20 in the previous solu-

D=lo, c=lo

&=:=x”o

Fig, 7. Example: extending a multicast tree

consider the “residual” cost for each link, i.e., the cost of tight-
ening the delay bound on existing allocations. In our example,
the residual cost function of link (S, A) is O for a delay of 10
(i.e., the current allocation) and 1 for a delay of 9 (i.e., the added
cost for tightening the requirement). The last observation im-
plies that adding a new member to an existing tree boils down to
finding an optimal unicast path, with respect to the residual cost

functions, from the new member to the source; i.e., an instance
of Problem OPQ-R, for which efficient solutions have been es-
tablished in [16].

VI. CONCLUSIONS

We investigated a framework for allocating QoS resources on
unicast paths and multicast trees, which is based on ptutitioning
QoS requirements among the network components. The quality
of a partition is quantified by link cost functions, which increase
with the severity of the QoS requirement. We indicated that this
framework is consistent with the major proposals for provision-
ing QoS on networks. Indeed, the problem of how to efficiently
partition QoS requirements among path or tree links has been
considered in previous studies, however till now only heuristic

approaches have been addressed. The present study is the first

to provide a general optimal solution, both for unicast paths and
multicast trees.

We demonstrated how the various classes of QoS require-
ments can be accommodated in within our framework. We
showed that the partitioning problems are simple when dealing
with bottleneck requirements, such as bandwidth, however they
become intractable for additive (or multiplicative) requirements,
such as delay, jitter and loss rate. Yet we established that, by
introducing a mild assumption of weak convexity on the cost
functions, efficient solutions can be derived.

We note that weak convexity essentially means that, as the
QoS requirement weakens, the rate of decrease of the cost func-
tion diminishes. This is a reasonable property, as cost functions
are lower-bounded, e.g. by zero. Moreover, it indeed makes
sense for a cost function to strongly discourage severe QoS
requirements, yet gradually become indifferent to weak (and,
eventually, practically null) requirements. Hence, the scope of
our solutions is broad and general.

Specifically, we presented several greedy algorithms for
the unicast problem (OPQ). Algorithm GREEDY-MOVE, is
a pseudo-polynomial solution, which can be implemented in
a distributed fashion. The complexity of this solution is

O(p(x) log lpi), where p(x) s D is the distance between the
initial allocation, x, and the optimal one. It can also be ap-
plied as a dynamic scheme to modify an existing allocation.

tion (,;.e., using link (S, B)). Note that, when adding B, one can This is useful in dynamic environments where the cost of re-

8That framework was the subject of numerous studies on constrained muki-
sources changes from time to time. Note that the complexity is

casttrees. proportional to p(x), meaning that small cost changes require

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

a small number of computations to regain optimality. Algo-
rithm BINARY- OPQ is a polynomial solution from which we
later build our solution to the multicast problem (MOPQ). The

complexity of this solution is O (Ipl log Ipl log(D/lpl)).

Next, we addressed the multicast problem MOPQ. We be-

gan by showing that the fundamental properties of convexity
and optimal sub-structure generalize to multicast trees. Then,
we established that Problem MOPQ also bears a greedy struc-
ture, although much more complex than its OPQ counterpart.
Again, the greedy structure, together with the other estab-
lished properties, provided the foundations for an efficient solu-
tions. Algorithm BALANCE is a pseudo-polynomial algorithm
which can be applied as a dynamic scheme. Its complexity
is O(\Tlp(x) + IT I), where p(x) is, again, the distance be-
tween the initial allocation and the optimal one. A distributed
implementation requires O (t2 @W (x)), where t is the depth
of the tree and @?ax(x) is the maximal distance of any link’s

allocation from it optimal one. Note that for balanced trees

t = O(log IT I). Algorithm BINARY-MOPQ is a polynomial so-
lution with a complexity of 0(lT12t log(D/ IT I)). A distributed
implementation of this algorithm requires O(t3 log(.D/ IT I). We
note that our solutions are applicable to heterogeneous multicast
members, each with a different delay requirement.

Lastly, we discussed the related routing problems, OPQ-R
and MOPQ-R. Here, the goal is to select either a unicast path
or multicast tree, so that, after the QoS requirements are opti-
mally partitioned over it, the resulting cost would be minimized.
Again, unicast proves to be much easier than multicast. In par-
ticular, for bottleneck QoS requirements, OPQ-R boils down to a
simple shortest-path problem. For additive requirements, OPQ-
R is intractable, yet an efficient, e-optimal solution has been
established in [16]. For multicast, all the various versions of
MOPQ-R are intractable. We are currently investigating Prob-
lem MOPQ-R under additive requirements, and have obtained
an efficient scheme for adding new members to a multicast tree.

Several important issues are left for future work. One is
multicast routing, i.e., Problem MOPQ-R, for which just ini-

tial (yet encouraging) results have been obtained thus far. An-
other important aspect is the actual implementation of our solu-
tions in within practical network architectures. In this respect, it
is important to note that a compromise with optimality might
be called for. Indeed, while our solutions are of reasonable
complexity, a sub-optimal solution that runs substantially faster
might be preferable in practice. Relatedly, one should consider
the impact of the chosen solution for QoS partitioning on the
routing process. The latter has to consider the quality of a se-
lection (i.e., path or tree) in terms of the eventual QoS parti-
tion. This means that simpler partitions should result in simpler
routing decisions, which provides further motivation for com-
promising optimality for the sake of simplicity. The optimal
solutions established in this study provide the required starting
point in the search of such compromises.

Lastly, we believe that the framework investigated in this
study, where QoS provisioning at network elements k charac-
terized through cost functions, provides a powerful paradigm for
dealing with QoS networking. We illustrated the potential ben-
efits through an example of dynamic tree maintenance. Further
study should consider the implications and potential advantages

of our framework, when applied to the vaxious problems and
facets of QoS networking.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

T. H. Cormen,C. E. Leiserson,and R. L. Rivest. Mrodacdon @Algo-
rithms. MIT Press, Cambridge, MA, 1990.
E. Crawley, R. Nair, B. Rajagopalan, and H. Srmdick. A framework for
QoS-based routing in the internet - RFC no. 2386. Internet RFC, April
1998.
R. Braden @d.), L. Zhang, S. Berson, S. Herzog, nud S. Janrin. Resource
reservation Protocol (RSVP) version 1, functionnt specification – RFC
no. 2205. Intemet RFC, September 1997.
V. Firoiu and D. Towsley. Call admission and resonrce reservation for mul-
ticust sessions. In Proceedings of the IEEE INFOCOM’96, Srm Francisco.
CA, APril 1996.
Greg N. Fredrickson and Donafd B. Johnson. The complexity of selection
and ranking in X + Y and matrices with sofied columns. Journal @
Computer and System Sciences, 24:197-208, 1982.
M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman,
SanFrancisco,1979.
L.Georgiadis,R. Gta%in, V. Peris, and K. N. Sivarajnn. Efficient network
QoS provisioning based on per node traffic shaping. IEEE/ACM Transac-
tion~ on Networking, 4(4):482–501, August 1996.
R. Gra%n, S. Kamat, A. Orda, T. Przygienda, and D. Williams. QoS rout-
ing mechanisms and OSPF extensions. Intemet Draft, January 1998.
R. Gu&in and A. Orda. QoS-based routing m networks with inaccurate
reformation: Theory and algorithms. In Proceedings of the IEEE INFO-
COM’97, pages75-83, Kobe, Japan, April 1997.
R. Hassin. Approximation schemes for the restricted shortest path prob-
lem. Mathematics of Operations Research, 17(1):36-42, February 1992.
Dorit S. Hochbaum. Lower and upper bonnds for the alloction problem
and other nonlinear optimization problems. A4athematicx qf Operations
Research, 19(2):390-409, 1994.
Toshihide fbamki and Naoki Katoh. Resource Allocation Problems. the
foundations of computing. MIT Press, Cambridge, MA, 1988.
V. P. Kompella, J. C. Pasqusde, and G. C. Polyzos. Multlcast routing
for multimedia communication. IEEE/ACM Transactions on Networking,
1:286-292, 1993.
Y. A. Korifis, T. A. Varvarigou, and S. R. Ahuja, Incentive-compatible
pricing strategies in noncooperative networks. In Proceedings qf the IEEE
INFOCOM’98, San Francisco, CA, April 1998.
D. H. Lorenz and A. Orda. Optimat partition of QoS requirements on nni-
cast paths and muhicast trees. Research Report EE Pub. No. 1167, Depart-
ment of Electrical Engineering, Technion, Haifa, Israel, July 1998. Avail-
able ftp: fip://@.technion. ac.il/pub/suppotied/ee~etworMor,mopq98.ps.
D. H. Lorenz and A. Orda. QoS routing in networks with uncertain pa-
rameters. IEEE/ACM Transactions on Networking, 6(6), December 1998.
to appear.
S, H. Low and P. P. Varaiya. A new approach to service provisioning in
ATM networks. IEEE/ACM Transactions on Networking, 1(3):547-553,
1993.
J. K. MacKie-Mason and H. R. Varian. Pricing Contestable Network Re-
sources. IEEE Journal on Selected Areas in Communications, 13(7): 1141–
1149, September 1995.
R. Nagin’ajan, J.F. Kurose, and D. Towsley. Allocation of local qurdity of
service constraints to meet end-to-end reqmrements. In IFIP Workshop on
the Performance Anulysls ofATM Systems, Martinique, January 1993.
A. Orda and N. Shknkin. Incentive pricing in multi-class communication
networks. In Proceedings of the IEEE INFOCOM’97, Kobe, Japan, April
1997.
Private network-network interface specification v 1.0 (PNNI). ATM Forum
Technicat Committee, March 1996.
A. K. Parekh and R,G. Gallager. A generntized processor sharing approach
to flow control in integrated services networks: the multlple node case.
lEEE/ACM Transactions on Networking, 2:137–150, 1994.
S. Shenker, C. Partridge, and R. Guerin. Specification of guaranteed qual-
ity of service – RFC no. 2212. Internet RFC, November 1997.
Z. Wang and J. Crowcroft. Quatity-of-service routing for supporting mul-
timedia applications. IEEE JSAC, 14(7):1288–1234, September 1996.
H. Zhang. Service dkciplines for guaranteed performnuce service in
packet-switchhg networks. Proceedings of the IEEE. 83(10):13741399,
October 1995.
H. Zhang and D. Fermri. Rate-controlled service disciplines. Journal of
Hzgh Speed Networks, 3:389-412, 1994.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE

