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Abstract
This study links stock prices of publicly traded com-
panies with online financial news to predict direction
of stock price change. Previous work shows this to be
an extremely challenging problem. We develop a very
high-dimensional representation for news about com-
panies that encodes lexical, syntactic and frame seman-
tic information in graphs. Use of a graph kernel to ef-
ficiently compare subgraphs for machine learning pro-
vides a uniform feature engineering framework that in-
tegrates semantic frames in document representation.
Evaluated on a news web archive against two bench-
marks, only our approach beats the majority class base-
line, and with statistically significant results.

Introduction
Graphs are a flexible and efficient data structure for prob-
lems as diverse as prediction of toxicity based on molec-
ular structure (Wale, Watson, and Karypis 2008), analysis
of virtual 3-D scenes (Fisher, Savva, and Hanrahan 2011),
and social network analysis (Ediger et al. 2010). They have
been used in many NLP tasks, such as polarity of words
(Hassan and Radev 2010), dependency parsing (McDonald
et al. 2005), an abstract meaning representation (Banarescu
et al. 2013) for PropBank-style semantic analysis. Little if
any work applies graphs to document representation. The
thesis of our study is that in a noisy domain such as fi-
nance, large-scale data analytics benefits from a linguisti-
cally rich representation that can support a range of features
based on words, syntactic relations, and frame semantics
(semantic roles and concepts). We test this thesis on seven
years of financial news to predict direction of stock price
change for over four hundred publicly traded companies.
Our graph-based document representation exhibits superior
performance over the majority class baseline and two exist-
ing benchmarks based on vector and tree representations.

Entity-driven text analytics is a recent area of active re-
search where large collections of documents are analyzed to
study entity mentions in text, often to predict real world out-
comes of the entities. For example, O’Connor, Stewart, and
Smith (2013) associate newswire with political information
to learn international relations among countries. Our work
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also relies on news articles to make predictions about a spe-
cific class of entities: publicly-traded companies. SemGraph
is a representation we propose for entity-driven text analyt-
ics. It provides a very high-dimensional feature space that
encodes lexical, syntactic, and frame semantic information
in graphs. The input to SemGraphs consists of sentences that
mention the relevant companies after they have been parsed
into dependency trees, and then into semantic frame parses
(Das et al. 2010). Semantic frames capture role relations,
and abstract concepts (Fillmore 1976). The graph kernel we
use for machine learning mines substructures of the graph
to detect predictive features. Our previous work proposed a
hybrid vector and tree space (SemTreeFWD) that also used
semantic frames as input (Xie et al. 2013). It artificially con-
strained the depth of paths in the tree, and supported a much
more limited range of features. When combined with BOW
features, it had only modest performance on the stock pre-
diction task. SemGraph, a much more general representa-
tion, outperforms both BOW and SemTreeFWD.

Related Work
Text mining in the financial domain has a growing presence
(Tetlock 2007; Engelberg and Parsons 2011). Kogan et al.
(2009) analyzed quarterly earning reports to predict stock
volatility and to predict delisting of companies. Luss and
d’Aspremont (2008) used text classification to model price
volatility. Their representation is a vector that merges bag-
of-words with equity returns features. Feldman et al. (2011)
use an information extraction approach combined with a
sentiment lexicon to model daily price movements that re-
quires extensive manual engineering. Our work leads to rich
features without the need for manual feature engineering.

Past work on the benefits of structured representations in
machine learning for NLP has focused mainly on tree kernel
learning (Collins and Duffy 2002; Moschitti 2006). Graph
kernels for machine learning can be categorized into three
classes: graph kernels based on walks (Kashima, Tsuda, and
Inokuchi 2003) and paths (Borgwardt and Kriegel 2005),
graph kernels based on limited-size subgraphs (Horváth,
Gärtner, and Wrobel 2004), and graph kernels based on
subtree-like patterns (Mahé and Vert 2009). By analogy with
tree-kernels for NLP, we select a graph kernel, Weisfeiler-
Lehman (Shervashidze et al. 2011), that measures similarity
of subtree-like patterns.



Figure 1: SemGraph for: Oracle sued Google, saying Google’s Android system infringes its patents for Java. SemGraph incor-
porates the roles of the entity, semantic frame attributes, dependency structures, and lexical items.

SemGraph Construction
SemGraph aims at a concise representation of lexical, syn-
tactic and semantic information. Our design criteria were to
1) focus on entities of interest, 2) facilitate feature engineer-
ing for diverse features, 3) capture relational information,
and 4) avoid topological limitations (e.g., path length; dis-
tinction between terminal and non-terminal nodes). For the
sentence in Figure 1, for example, our goal is to capture the
distinctive words (e.g., sue), and the relation between Oracle
and Google in a way that distinguishes their semantic roles
(e.g., complainant, plaintiff).

Figure 1 shows an example SemGraph for a sentence
with two semantic frames (Judgment Communication and
Statement). The nodes are frame names (boxes), frame
elements–roles (diamonds), frame targets–lexical items that
trigger frames (rounded boxes), company entities (el-
lipses), and lexical items (dashed rounded boxes). An
edge connects a pair of nodes in the following three
cases: (1) a frame target and the frame it evokes (e.g.
〈sue, Judgment communication〉); (2) a frame element
and the frame it belongs to (e.g. 〈Communicator, Judg-
ment communication〉); and (3) a designated entity (DE), or
other entity (OE), and the frame element (or semantic role)
it fills (e.g. 〈DE, Communicator〉).
Features Beyond Semantic Frames As shown in Figure 1,
SemGraph consists of nodes of designated entities (DE),
frames (F), frame targets (FT) and frame elements (FE), plus
orange edges for relations of 〈DE, FE〉, blue edges for 〈FT,
F〉, and green edges for 〈FE, F〉. Notice that vanilla Sem-
Graph contains isolated subgraphs if the frames don’t have
common entity mentions. Interestingly, we can model re-
lations among frames through dependency parsing. Depen-
dencies among frames (red edges - both solid and dotted)
can be incorporated, denoted by SemGraphDep. To reduce
the size of the graph, subgraphs of frames that are along the
dependency path from the ROOT of the dependency parse
up to the frames that have a DE mention are retained, others
(i.e. nodes along the dotted red edges) are excluded. Further-
more, lexical items can be attached to the frame elements
that they belong to (i.e. the dashed nodes and edges). We
denoted it SemGraphDepW, which forms a unified repre-
sentation to model the roles of designated entities, semantic

frames, dependency relations and lexical items.
Directed SemGraphs exist for all the SemGraph variations
listed above, where all edges become directed. The direc-
tion of an edge is determined by syntactic dependency as
follows: 1) the frame in a subordinate clause depends on a
frame in its superordinate clause; 2) frame elements depend
on their frames; 3) words that fill a frame element depend on
the frame element; 4) designated entity nodes depend on the
frame element where they are the role filler.

Graph Kernel Learning for SemGraphs
Among a variety of graph kernels as described in the Related
Work Section, we selected the Weisfeiler-Lehman (WL)
graph kernel (Shervashidze et al. 2011) for SVM learning
and feature exploration. It can measure similarity between
graphs with respect to different neighborhood sizes specified
by the user. This allows us to test many classes of SemGraph
features for minimal engineering costs. It also has a lower
computational complexity compared to other graph kernels.

The WL kernel computation is based on the Weisfeiler-
Lehman test of isomorphism (Weisfeiler and Lehman 1968),
which iteratively augments the node labels by the sorted set
of their neighboring node labels, and compress them into
new short labels, called multiset-labels. WL graph kernel ap-
plies the idea of neighbor augmentation to iteratively mea-
sure the similarity between graphs using dynamic program-
ming. The kernel computation takes into account different
levels of the node-labelings, from the original labelings to
increasingly large h-degree neighborhoods (stepsizes). The
full kernel for a given h is then the sum of the kernel com-
putations for each stepsize from 0 to h.

Experiments
Reuters news data from 2007 to 2013 that covers eight
GICS1 sectors are used in our experiments.2 A data instance
is all the news associated to a company on a day, for com-
panies whose price changed above a threshold between the

1Global Industry Classification Standard.
2Two sectors are not included in this study. The Financial sector

is usually excluded from financial analytics. Telecommunicatons
has insufficient data due to few companies that remain in the S&P
500 in our time frame.



Ticker Baseline
Vanilla SemGraph SemGraphDep SemGraphW SemGraphDepW

h=0 h=1 h=2 h=3 h=0 h=1 h=2 h=3 h=0 h=1 h=2 h=3 h=0 h=1 h=2 h=3

BHI 53.01 48.93 55.25 56.28 55.77 48.93 50.58 50.41 50.58 50.91 51.90 52.56 52.23 50.91 52.23 52.23 51.07
COP 53.20 53.31 55.99 56.16 56.98 53.31 56.31 56.62 57.10 51.58 54.73 54.73 55.05 51.58 54.73 55.05 56.62
CVX 50.22 52.92 54.61 57.24 57.68 52.92 54.86 53.78 54.64 51.19 52.48 51.84 51.40 51.19 50.97 50.76 50.54
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
OXY 55.52 53.48 53.63 48.90 49.21 53.48 54.04 54.04 55.99 54.87 53.76 55.15 55.15 54.87 54.32 56.82 56.82
VLO 53.99 51.14 53.32 49.67 48.51 51.14 55.08 55.54 54.93 50.99 54.32 53.57 53.26 50.99 54.32 54.02 53.57

Table 1: A breakdown of performance by stepsizes (h) using WL graph kernels for 4 variants of SemGraph. It shows the
leave-one-out accuracies for some sample companies in the Energy sector.

Sector Baseline
Benchmarks SemGraphs

BOW SemTreeFWD directed Vanilla SemGraph SemGraphDep SemGraphW SemGraphDepW

Energy 53.95±3.36 52.56±3.97 53.53±4.84
n 54.94±5.71 55.93±5.60∗ 55.71±6.16∗ 55.80±5.89∗

y 54.69±5.09 55.61±5.50 55.10±5.80 55.11±6.30

Materials 55.00±2.88 53.18±5.23 52.73±5.60
n 56.20±4.07 55.08±4.47 55.34±5.66 55.28±5.69

y 57.07±4.30∗ 55.29±4.09 55.10±6.42 55.11±6.30

Industrials 54.25±3.85 52.89±5.91 52.90±5.21
n 55.24±6.21 54.96±5.54 54.35±5.15 54.41±5.36

y 54.94±6.17 55.32±5.41 53.94±5.36 54.58±5.18

Consumer Discretionary 54.32±4.18 53.91±4.73 54.09±5.86
n 54.52±5.96 55.66±7.19 55.56±4.28∗ 55.67±4.41∗

y 54.27±6.26 55.46±5.66 55.36±4.58∗ 55.40±4.77∗

Consumer Staples 54.85±3.24 52.82±4.07 53.78±3.76
n 55.74±4.98 53.97±3.88 53.14±6.06 53.21±5.71

y 56.13±4.95 54.35±3.39 52.67±5.54 52.83±5.63

Health Care 56.44±4.51 52.75±3.86 54.31±6.46
n 55.61±6.62 57.89±5.39 55.32±5.31 55.29±5.39

y 55.51±6.70 57.55±5.54 55.33±5.49 55.48±5.38

Information Technology 53.95±4.07 52.42±3.64 52.79±6.84
n 56.18±4.50∗ 54.07±5.03 53.81±6.06 53.76±6.15

y 55.59±4.16∗ 54.10±3.98 53.55±6.20 53.77±5.91

Utilities 53.82±2.75 51.66±4.24 51.75±5.23
n 54.87±6.28 54.03±4.53 55.16±5.62 55.00±5.48

y 54.10±5.47 54.59±5.08 55.01±5.51 54.68±5.33

Table 2: The means and standard deviations of the leave-one-out accuracy over the companies in each of the eight GICS
sectors. The performance of all variations of SemGraph are shown. Boldface values are the best performance across different
SemGraphs. ∗ indicates a p-value<.05 compared to baseline.

closing price on the day of the news and the closing price
on the following day. In this experiment, we use a threshold
of 2% that corresponds to a moderate fluctuation. A binary
class label {-1, +1} indicates the direction of price change
on the next day after the news associated to the data in-
stance. Two benchmarks are compared: BOW - a bag-of-
words model that consists of unigrams, bigrams, and tri-
grams trained with linear SVM, and SemTreeFWD (Xie et
al. 2013) - a vector/tree space hybrid that contains semantic
frames, lexical items, and psycholinguistic dictionary-based
features trained with Tree Kernel SVM (Moschitti 2006).

Two phases of experiments apply SemGraph to large-
scale semantic analysis. The accuracy of leave-one-out
cross-validation is reported. An advantage of the WL kernel
is that it facilitates exploration of user-specified neighbor-
hood sizes in a graph. Therefore, Phase I tests the efficacy
of different stepsizes for each of the eight SemGraph vari-
ants. Stepsizes from 0 to 3 are used here to provide a more
direct comparison to the SemTree representation of Xie et al.

(2013). Paths from the root node of SemTree loosely corre-
spond to paths of up to stepsize 3 from the designated entity
nodes in vanilla SemGraph. The WL kernel, however, con-
siders the neighborhood three steps from all nodes, not just
the designated entity nodes.

Table 1 presents the Phase I results on impact of step-
size. The undirected versions of the 4 variants of SemGraph
are shown here for a few companies from the Energy sector.
Numbers in boldface identify the best performing stepsize
for each SemGraph variant; the underlined values are the
best performance across all variants for a given company. No
single stepsize consistently performs best across companies,
or across SemGraph variants. In a majority of cases there
is improvement after including at least 1-degree neighbors,
and sometimes the best performance is at h=2 or h=3. For
example, the best performance for ConocoPhillips (COP)
for each variant uses h=3, and SemGraphDep performs best
among the 4 variants of SemGraph. In a statistical test for all
companies in this sector, including at least 1-degree neigh-



bors performs significantly better than using only 0-degree
neighbors.

The Phase II experiments assess average performance
across all companies in a sector, using the best stepsize iden-
tified for each pairing of a SemGraph with a given company
from Phase I. Here the goal is to identify which configura-
tions of SemGraph perform best across an entire sector. Ta-
ble 2 presents Phase II results. Numbers in boldface identify
which of the 8 variants has the best mean accuracy for the
sector. T-tests that compare the means of each SemGraph
to the baseline indicate that in 4 out of 8 sectors, one or
more SemGraph variants have significantly better accuracy
than the baseline. The benchmarks, BOW and SemTreeFWD,
never beat the baseline. With a higher accuracy in the major-
ity of cases, no single variation of SemGraph consistently
significantly outperforms the baseline.

More expressive representation does not always lead to
higher accuracy. Including syntactic dependency informa-
tion alone (SemGraphDep) helps more often than includ-
ing lexical information alone (SemGraphW): SemGraphDep
leads to higher mean accuracy in 3 of the 8 sectors, while
SemGraphW accuracy is superior in only 1 of the sectors. T-
tests to compare mean accuracy of SemGraphDep and Sem-
GraphW indicate that SemGraphDep is significantly better
in 4 of the 16 cases (8 sectors, directed versus undirected
graphs), and SemGraphW is never significantly better than
SemGraphDep. The directed versions of SemGraph achieve
the best mean accuracy in 3 of 8 sectors (Materials, Industri-
als, and Consumer Staples), and in one of these cases (Ma-
terials), the difference is statistically significant. One advan-
tage to the directed versions is efficiency. They reduce the
kernel computation asymptotically by a half, since they only
allow the flow of information to pass edges through one di-
rection.

Conclusion

In this study, we link S&P 500 companies with the Reuters
news archive to mine the impact of financial news on stock
price prediction. We presented a novel graph-structured se-
mantic representation (SemGraph) with WL graph kernel
learning. The advantages of SemGraph stem from the use
of semantic frame features to generalize word meanings in a
flexible and extensible graph structure, where atomic and re-
lational linguistic information can be modeled and learned.
In the financial industry, each sector is viewed as a dis-
tinct semantic domain. Feature analysis also demonstrates
the contribution of graph-structured relations that encom-
pass a variety of linguistic features: lexical items, syntactic
dependencies, and frame semantics. The patterns discovered
are well beyond the expressiveness of conventional methods.
A direction for future research is to investigate a weighting
scheme to distinguish node and edge feature types in Sem-
Graphs, and additional enrichments of the representation,
for example, with sentiment lexicons or vocabulary distri-
butions learned through latent Dirichlet allocation. Another
possibility includes domain adaptation to facilitate predic-
tion across companies and sectors.
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