Progressive Clustering with Learned Seeds: An
Event Categorization System for Power Grid

Boyi Xief, Rebecca J. Passonneaut, Haimonti Duttaf,
Jing-Yeu Miaw, Axinia Radeva, Ashish Tomar

Center for Computational Learning Systems
Columbia University
New York, USA 10027

Cynthia Rudin
MIT Sloan School of Management
Massachusetts Institute of Technology
Cambridge, USA 02139
Email: rudin@mit.edu

Email: {xie@cs,becky @cs,haimonti@ccls}.columbia.edu

Abstract—Advances in computational intelligence provide im-
proved solutions to many challenging software engineering
problems. Software has long been deployed for infrastructure
management of utilities, such as the electric power grid. System
intelligence is in increasing demand for system control and
resource allocation. We present a model for electrical event
categorization in a power grid system: Progressive Clustering
with Learned Seeds (PCLS) — a learning method that provides
stable and promising categorization results from a very small
labeled data. It benefits from supervision but maximally allows
patterns be discovered by the data itself. We find it effectively
captures the dynamics of a real world system over time.

I. INTRODUCTION

Advances in computational intelligence provide improved
solutions to many challenging software engineering problems.
Software has long been deployed for infrastructure manage-
ment of utilities, such as the electric power grid or telecommu-
nication systems. System intelligence is in increasing demand
for system control and resource allocation. Our work applies
machine learning to a problem for the low power electrical
grid that directly services customers. Over the past half dozen
years, we have worked closely with Consolidated Edison of
New York, a major utility company in New York City, on a
project to apply machine learning techniques to the secondary
electrical grid. The results have been used to maintain the
reliability of the secondary electrical grid.

The goal of our project is to develop interpretable models
on a year-by-year basis to rank secondary structures (manholes
and service boxes) with respect to their vulnerability to a
serious event, such as fire or explosion. We use a supervised
ranking algorithm, thus have a need for labeled data that
indicates which structures are vulnerable in a given year for
training our models. The main source of data for labeling the
structures consists of Con Edison’s Emergency Control System
(ECS) trouble tickets. They document electrical events, such
as interruptions of service, and engineers’ efforts to redress
any problems. The task we address in this paper is how we
apply machine learning to the trouble tickets in order to sort
them into those that document serious events on structures,
and those that document non-serious events. Serious events
result in positive labels on the implicated structures; non-
serious events are included along with serious events in the

representation of a structure’s past history. Thus the ability
to learn a good ranking model for structures depends on our
ticket classification.

In this paper, we describe our approach, Progressive Cluster-
ing with Learned Seeds (PCLS) — a learning method adapted to
this domain that provides stable and promising categorization
results from a very small labeled data set. PCLS benefits
from supervised learning but maximally allows patterns be
discovered by the data itself. We found that it effectively
captures the dynamics of a time-varied real world system.

In this context, the goal of our event categorization system
is to classify ECS tickets with respect to whether the reported
“trouble” is a) a serious event, b) a low-grade event (a minor
interruption or disruption of service), or ¢) not relevant. The
semantics of the three-way classification is somewhat subjec-
tive and contingent. Certain events are unequivocally serious,
such as manhole explosions. However, many tickets pertain
to events that can be serious or not, depending on a wide
range of factors. Further, the language in the trouble tickets
changes over time. From a small, expert-labeled sample for a
single region, we initially hand-crafted a set of classification
rules (see section III). We use these to initialize a clustering
approach for the earlier years of data. To initialize clusters for
later years, learned decision trees from the clusters help seed
the clusters.

The issue of gradual shifts in the semantics of document
classes is potentially a very general one, thus our approach
could apply to many problems where results of previous
supervised learning must be adapted to changing contexts.
Section II presents related work, followed by motivation
(section III). We describe the data sets and the general domain
in Section IV. Section V introduces a new semi-supervised
approach, Progressive Clustering with Learned Seeds (PCLS).
Section VI reviews three learning methods and our evaluation
procedure. Section VII presents results of our experiments. At
last, section VIII briefly summarizes our contribution.

II. RELATED WORK

Early work on incremental learning [1], [2] attempted to
build learners that could distinguish between noise and change.
While they deal with concept learning, they address the same

general problem we face. Utgoff [2] presents an incremental
decision tree algorithm that restructures the tree as needed
for new instances. Training instances are retained in the tree
to facilitate restructuring, thus constituting meta-knowledge,
meaning knowledge distinct from what is learned, but which
facilitates learning.

There has been much previous work on cluster seeding to
address the limitation that iterative clustering techniques (e.g.
K-Means and Expectation Maximization (EM)) are sensitive
to the choice of initial starting points (seeds). The problem
addressed is how to select seed points in the absence of prior
knowledge. Kaufman and Rousseeuw [3] propose an elaborate
mechanism: the first seed is the instance that is most central in
the data; the rest of the representatives are selected by choosing
instances that promise to be closer to more of the remaining
instances. Pena et al. [4] empirically compare the four ini-
tialization methods for the K-Means algorithm and illustrate
that the random and Kaufman initializations outperform the
other two, since they make K-Means less dependent on the
initial choice of seeds. In K-Means++ [5], the random starting
points are chosen with specific probabilities: that is, a point
p is chosen as a seed with probability proportional to p’s
contribution to the overall potential. Bradley and Fayyad [6]
propose refining the initial seeds by taking into account the
modes of the underlying distribution. This refined initial seed
enables the iterative algorithm to converge to a better local
minimum.

CLustering through decision Tree construction (CLTrees) [7]
is related to ours in their use of decision trees (supervised
learning) for generation of clusters. They partition the data
space into data and empty regions at various levels of details.
Their method is fundamentally different from ours and do not
capture the aspect of incremental learning over time.

III. MOTIVATION

We have been working with Con Edison to develop a
machine learning approach to predict serious events in sec-
ondary structures (manholes and service boxes). Our task is
to produce for each borough, for a given year, a ranked list
of the borough’s structures with respect to their vulnerability
to a serious event in the near future. The prediction problem
is challenging. Only 0.1-5.0% of the tens of thousands of
structures per borough experience a serious event each year,
depending on borough, year and the definition of serious event.
Causes of these rare events, if they can be detected, are often
indirect (insulation breakdown), can depend on a complex of
factors (number of cables per structure), and develop slowly.
Evaluation consists of a blind test of a ranked list against the
serious events that occur in the following year, with emphasis
on the top of the ranked lists, which are used to prioritize Con
Edison repair work.

To label the structures for supervised learning, we rely on
the ticket classes described in the introduction. As described
in [8], we developed a data mining, inference and learning
framework to rank structures. It relies on a supervised bipartite
ranking algorithm that emphasizes the top of a ranked list [9].

For any given year, a structure that is identified as the location
of a problem in a serious event ticket gets a positive label; all
other structures get negative labels. The feature descriptions of
the labeled structures also depend heavily on the ticket classes:
across boroughs, years and modeling methods, at least half the
features in our ranking models represent how many serious or
low-grade events a structure has experienced in the recent or
remote past.

We had no a priori gold standard for classifying tickets.
Based on the intuitions of two domain experts, we initially
used a trouble type assigned to tickets by Con Edison dis-
patchers as the indicator of seriousness. Of the roughly two
and a half dozen trouble types we use (the constituency varies
somewhat across boroughs), two are unequivocally serious
(for explosions and fires), and some are almost never serious
(e.g., flickering lights). However, there is one category in
particular (smoking manholes) that is both very large and
can be serious or not. In previous work [10], we applied
corpus annotation methods to elicit a definition by example
of the three classes: serious event, low-grade event, and
irrelevant. Two experts labeled a carefully designed sample
of 171 tickets. That they achieved only modest interannotator
agreement on the first pass (k=0.49; [11]) indicates that the
classes are rather subjective. Based on a second pass involving
adjudication among the experts, we developed a rule-based
method to classify tickets. We produced a small fixed set rules,
along with a large fixed set of regular expressions, to capture
generalizations we observed in the hand-labeled data. To test
and refine the rules we applied them to large random samples,
modifying them based on our judgments of their accuracy. As
reported in [10] the rule-based classes improved the ranking
results, particularly at the top of the list for the most vulnerable
structures (one in every five structures was affected).

Development of the hand-crafted rules (HCR) required
approximately 2,500 person hours. While they improved over
the use of the assigned trouble type, our goal in the experi-
ments reported here is to boost the improvement further, and
to adapt the rules over time and regions. In particular, we
need an approach that generalizes over time and space: the
different boroughs have different infrastructure and histories,
slightly different sublanguages (in the sense of [12]), and
we use different subsets of trouble types as data. Rather than
adapting the rules manually, which would be costly, we seek
an automated method.

While the notions of relevant or serious events have some
generality, the specific realization of the three ticket class
changes from borough to borough, and from year to year.
This can be illustrated by comparing the discriminative words
over time. If we take the ticket classes produced by our hand-
crafted rules and compare the list of words that discriminate
the classes from year to year, we find that only about half the
discriminative words overlap. For relevant versus non-relevant
tickets, a comparison of the discriminative vocabulary for each
successive pair of years from 2001 to 2005 shows that the
average overlap in vocabulary is only 56.27% (sdev=0.05).

IV. DATA SOURCES

We have been working with Con Edison Emergency Control
System (ECS) tickets from three New York city boroughs:
Manhattan, Brooklyn and Bronx. The experiments reported
here pertain to Manhattan, which is our primary focus. We use
tickets from 1996 through 2006, consisting of 61,730 tickets.
The tickets are textual reports of secondary events, such as
manbhole fires, flickering lights in a building, and so on; they
are generated when a customer or city worker calls the ECS
line. The ECS tickets in our dataset range in length from
1 to 550 lines, with a similarly wide range of information
content. ECS tickets can have multiple entries from different
individuals, some of which is free text, some of which is
automatically entered. These tickets exhibit the fragmentary
language, lack of punctuation, acronyms and special symbols
characteristic of trouble tickets from many arenas.

Structures are labeled with respect to a given year, thus
we apply automated ticket classification or clustering on a
year-by-year basis. We first classify tickets into relevant versus
irrelevant events, then classify the tickets in the relevant class
into serious versus low-grade events. The serious versus low-
grade event classes are highly skewed. Of 61,730 tickets for
ten years of Manhattan ECS (relevant trouble types only),
about 43.67% represent relevant events, and only 15.92% of
these are serious.

V. PROGRESSIVE CLUSTERING WITH LEARNED SEEDS

Progressive Clustering with Learned Seeds is a method
adopted after consideration of the tradeoffs of supervised
and unsupervised approaches. We aimed to minimize the
sensitivity of K-Means clustering to the initial seed points by
biasing the initial centroids closer to the optimal ones using
prior knowledge about the document classes.

Procedure 1 Progressive Clustering with Learned Seeds

1: Tree path extraction

: Path scoring

: Class contribution calculation

: Seed points retrieval

: K-Means clustering using retrieved seeds

[V I NS I)

ELIN<=0
| OXY<=0

| | SOLID <= 0:1(2441.0)

| | soup=>o0

|1 1 NO<=2

| 1 | | MUD<=0:1(42.0)

| SERVICEBOXNUMBER > 1: 1 (38.0/1.0)

BUSTER > 0: 0 (5.0/1.0)

[ELIN <= 0, OXY <=0, SOLID<=0] 1 2441.0
[ELIN <=0, OXY <=0, SOLID > 0, NO <=2, MUD <=0] 1 42.0

[ELIN > 0, FDNY > 1, BUSTER <= 0, SERVICEBOXNUMBER > 1] 1 38.0/1.0
[ELIN > 0, FDNY > 1, BUSTER > 0] 0 5.0/1.0

Fig. 1. Tree path extraction, which converts a decision tree model
to a collection of paths

A. Tree path extraction

We train a decision tree model on the previous year’s data,
convert it into a set of paths as illustrated in Figure 1, and
extract path attributes.

The following attributes are extracted for each path: (1)
Length - the number of terms it contains; (2) Coverage -
the number of instances addressed; (3) Accuracy - the rate of
correctly classified instances; (4) Label - the class it predicts.
We assign scores for each path using the first three attributes.

B. Path scoring

The scoring process formalizes the intuition that an optimal
rule relies on fewer features, has greater coverage and higher
accuracy. To score a path, we first compute homogeneous
scores for all three attributes, in particular, to make them
uniformly distributed within the range [0,1]. Subsequently, we
use coefficients to weight each attribute and calculate a final
score, also in [0,1].

For path ¢, we calculate its ScoreLength, ScoreCoverage and
ScoreAccuracy separately using the following formulas:

lmaz — Ui
ScoreLength; = ————— 1)

lmaac - lmin

where [; is the length of the path i, and l,,,4, and l,,;, are
the lengths of the longest and shortest paths. ScoreLength; €
[0,1] is a uniform distribution.

Norm;
ScoreCoverage; = CoverageNorm @
CoverageN ormmax
CoverageNorm; = log(c; + 1) 3)

where c¢; is the coverage of the path ¢, i.e. the number of
instances related to path ¢ in the training data. Because there is
a big gap in coverage among a set of paths, e.g. from thousands
to only a few, the logarithm function is used to smooth the
data into a uniform distribution. By a further normalization,
ScoreCoverage; € [0,1].

Qg

ScoreAccuracy; = 4
Amaz

where a; is the accuracy of the path i. ScoreAccuracy; €
[0, 1].

In summary, paths that are shorter, have more coverage and
are more accurate score higher. After scoring each attribute,
we calculate the final score for path ¢

Score; = \; - ScoreLength,;
+ A¢ - ScoreCoverage;
+ Ao - ScoreAccuracy; %)

where \; + A. + Ay = 1; A\, A\c and)\, are coefficients for
the attribute length, coverage and accuracy respectively. They
are used to weight each path attribute in the scoring function.
Notice that, because each attribute score is normalized, the
final score is also a uniform distribution and Score; € [0, 1].

C. Class contribution calculation

Due to the data skew and the differential role of each class
in the structure ranking problem, we next rank paths on a per
class basis. We assign a quantity to each path representing its
relative contribution to the class it predicts. The class con-
tribution for each path exaggerates the discriminative power
by an exponential function that increase the larger scores and
decreases the smaller ones and is then normalized.

ScoreTransform; = Base % 6)

where Score; is the score for path i, Base is a base constant
of the exponential function.

ScoreTransform; can be regarded as the raw contribution
of path 4. If there are N, paths belonging to class c, the sum
of the scores vazcl ScoreT'rans form; contributes the whole
class. The ratio of ScoreTransform; and the sum can be
regarded as the contribution of path i, and is normalized to
[0,1]. Where c is the index for the class:

Scorelransform;

N
oo Scorel'rans form;

O]

Contribution;) =

Paths are ranked for each class separately by their contribution.
Seed points will be selected according to each class’s path rank
list.

D. Seed points retrieval

For seed points retrieval, we prefer to choose paths with
a higher class contribution, and selects a reasonable number
of data for each class from the decision tree model. Given
a per class ranking of paths, we use the number of decision
tree paths for each class to determine the proportion of seeds
for each class, which reflects the relative importance of the
information we have learned from the decision tree model.

count(pathi, c)

NumO fSeeds. = P - Niotal - 8)

count(path;)

where Nioiq; 18 the total number of instances in the data set
that we want to cluster, P is the percentage of data to be seed
points, count(path;, ¢) is the number of paths related to class
¢ and count(path;) is the total number of paths extracted from
the decision tree model.

When using a path from the tree trained in the prior year
to retrieve instances in the current year, there may be no
instances, or their may be more than needed. In the latter case,
we randomly select the desired number.

E. Clustering with Learned Seed points

For the initial centroids, we hope to minimize
K
0= E Hanltk - Eoptk H)
k=1

where Cjnt, is the initial centroids and C,p, is the optimal
centroids.

Since the classification precision is usually high and stable
(see Section VII), by utilizing the paths selected from the
decision tree we can select the initial centroids to be more
appropriately located in the overall space. Before the K-Means
optimization procedure, we initialize the cluster centroid using
the seed points we retrieved.

Ny =
n=1%n

N. (10)

o s
Cinit), = Uk =

where 7, is the n*" instance selected by paths that belong to
class k. N is the total number of instances that were found
related to class k.

We select initial centroids jij, to seed the clusters, then apply
K-Means.

VI. METHODS

We seek an automated or semi-automated approach that can
classify tickets for the structure ranking task, with adaptation
to each borough and time frame. To reiterate, our goal is to
improve upon the Hand-Crafted Rule (HCR), thus we use their
output as a baseline. Then we compare three learning methods:
(1) C4.5 Decision Tree (DT), (2) K-Means Clustering (KM),
(3) Progressive Clustering with Learned Seeds (PCLS). In this
section, we first introduce our data representation and feature
selection method. Next we briefly contrast the strengths and
weaknesses of DT and KM; PCLS was described in section V.
Then we describe our evaluation method.

A. Data preprocessing

We use bag-of-words document representation, with feature
selection to reduce dimensionality. There are an estimated
7,500 distinct unigrams in each year’s data, not counting mis-
spellings and word fragments; we use about 10% (750 terms)
as features. Previous experiments with spelling normalization
reduced the vocabulary by 40%, but had an inconsistent and
modest impact. In the experiments reported here, we filter out
line separators and other lines with little or no text.

Feature selection was the same for all three classification
approaches and was always performed on data from prior
year(s). We compared the performance of Bi-Normal Sepa-
ration, Chi-Square, F-Measure and Information Gain [13] for
feature selection. Information Gain exhibited the most stable
and consistent performance across different boroughs, years
and data representation formats (Boolean, TFIDF, TF). The
results reported here all rely on Information Gain for feature
selection, and absolute term frequency (TF) as the bag-of-
words vector values.'

B. Baseline: Hand Crafted Rules

The hand-crafted rules rely on three types of information:
other Con Edison databases indicating the voltage; global
properties of the ticket such as length and ticket trouble type;

IAbsolute TF performs better than normalized TF, presumably because
it indirectly represents the length of the ticket, a factor in determining
seriousness.

meta-data we assign to indicate signs of seriousness or type
of work performed, based on pattern-matching for terms in
the ticket. There is only one set of hand-crafted rules that was
bootstrapped from a small labeled dataset and it is used for
all year’s data.

C. Decision Trees and Clustering

We used the Weka [14] implementation of the C4.5 decision
tree [15] for an interpretable, supervised approach to our clas-
sification tasks. In general, the decision tree models exhibited
good precision, but with poor recall on serious events, which
had a negative effect on structure ranking in that too few
structures were labeled as serious. Decision trees are relatively
interpretable in comparison to other learning methods because
the paths in the tree can be converted to rules for each class
being learned. In contrast, the strengths of K-means clustering
are speed, a lack of dependence on labeled training data, and
high recall. The weaknesses are poor precision, and lack of
robust performance due to the sensitivity to initial centroids.

D. Evaluation

To evaluate the performance of DT, KM and PCLS, we
performed intrinsic and extrinsic evaluations [16]. The intrinsic
evaluation is to compare the predicted event labels with labels
generated by HCR, as measured by recall, precision and F-
measure. In the context of our project, the event labeling is in
the service of the structure ranking problem and has a crucial
impact. We are therefore able to perform an extrinsic evalua-
tion on the structure ranking task. To reiterate, events classified
as serious in the year for training the ranking model determine
which structures are labeled as vulnerable. Consequently, the
extrinsic evaluation provides the most compelling evidence for
the merit of the event categorization. Our extrinsic evaluation
consists in generating a distinct set of structure labels and
features for each event classification method, and comparing
the ranked lists that the ranking model yields when relying on
each event categorization method.

VII. EXPERIMENTAL FRAMEWORK AND RESULTS

Our goal is to bootstrap from the rule-based method at some
point in the past, then to rely solely on the automated methods
from that point forward. We use PCLS, where we cluster the
current year Y; of tickets, seeding the clusters with seed points
selected using the learned trees from the prior year Y;_;, then
in the subsequent year Y, 1, apply the decision tree of Y; for
seeding clusters for year Y; 1.

We report intrinsic and extrinsic evaluation results to com-
pare ticket classes produced by HCR, C4.5 decision trees, KM
and PCLS. Figure 2 schematically represents the experimental
setup: bootstrap automated classification from HCR in 2001,
then evaluate automated methods for ticket classification for
2002-2006. Intrinsic evaluation applies to each year. We report
extrinsic results for two ranked lists, for the years 2006 and
2007: the ranked list trained on 2005 data is given a blind
evaluation against 2006 data, and the ranked list trained on
2006 is evaluated against 2007 data. The ranking models are

trained using ticket classes to label structures for the training
year, and features based on ticket classes for all prior years.

. Expert labeling (N=171) ‘

year

2001

2002 \Hand-craﬁedmles | | C4j DT \ rts | . \
2003 | Hand-craiedrules | | C4.5DT pcis | [K-Means |
2004 ‘Hand—cra%ﬁedrules | | 04% DT Q PC“LS | | K-M:eam |
2005 [Hand-craftedrules | [C4.5DT pcLs | [K-Means |
2006 \I—Iand-craﬁedmes | | C4.\5L DT \1 PeLs |] K Mears \

Fig. 2. Experiment setup. We compare Progressive Clustering with Learned
Seeds with hand-crafted rules, C.45 decision tree, and K-Means methods.

A. Intrinsic results

For PCLS, results shown here use 50% of total instances
as seed points to generate initial centroids, the weights of
attributes are\; = 0.1, A, = 0.2 and A\, = 0.7 for path
scoring, and Base = 2110 for class contribution. The results
in Table I show that PCLS dramatically improves over K-
means with random seeding for the serious versus low-grade
event classification task; average F-measure for both classes
is always larger for PCLS (significantly better for 4 out of 5
years). Compared with the C4.5 decision tree, PCLS exhibits a
better recall and F-measure on the serious class (each is better
for 4 out of 5 years, and far better for 2005 and 2006) while
maintaining a competitive overall performance (in particular,
better F-measure for 2004-2006). For the classification of
relevant versus irrelevant events, we achieve similar results but
do not present them here due to space limitations. Naive Bayes
(NB) and SVM classifiers are also experimented. NB has
worse performance. SVM achieves similar results but provides
less human interpretable model than DT, such as the criterion
of tree node. Thus, NB and SVM results are not reported here.

B. Extrinsic results

To rank structures, we use a bipartite ranking algorithm that
focuses on the top of a ranked list [9]. For evaluation, we report
AUC, DCG (Discounted Cumulative Gain, a weighted version
of AUC that favors the top of the list) and PNorm scores, as
recommended in [9]. A blind evaluation assesses how well
the ranked list predicts structures that had particularly serious
events in the year following the training year, where we have
no access to the ECS tickets.

Measure HCR DT KM PCLS
AUC 0.524 0.516 0.540 0.560
DCG 30.789 30.625 31.447 31.834

PNorm | 1.24E+09 | 1.29E+09 | 1.15E+09 | 1.06E+09
TABLE 11

EXTRINSIC EVALUATION BY AUC, DCG AND PNORM MEASURES.
HIGHER SCORE IS PREFERRED FOR AUC AND DCG, AND LOWER SCORE
IS PREFERRED FOR PNORM.

C4.5 Decision Tree (DT) K-Means Clustering (KM) PCLS
year class Pre | Rec F Avg. F Pre | Rec F Avg. F Pre | Rec F Avg. F
2002 | jou e event | 835 | 85> | 843 | 70 || 757 | 634 | 600 | 5 | 79 | ‘eon | 778 | 18
2003 | jou g event | 815 | 725 | 767 | 65 || oon | 1ra | 29n | M9 | 00 | 514 | 23 | 47
2004 | jougrade event | 706 | 745 | 725 | 5% || a1 | aos | 508 | 4 | 600 | 01 | ‘o5 | 908
s | et | TS e | 2 D | o e
S R R AP
TABLE I

INTRINSIC EVALUATION OF SERIOUS VERSUS LOW-GRADE EVENT CATEGORIZATION. THE RESULTS FOR C4.5 DECISION TREE, K-MEANS CLUSTERING
AND PCLS ARE COMPARED WITH THE LABELS FROM HAND-CRAFTED RULES.

rankings
5000
4000

3000 ot -
! —Hand-crafted rules
2000
---C4.5 Decision Tree

1000 --K-Means Clustering

—-PCLS
count of structures

1 6 11 16 21, 26 31 36 41 46 51

Fig. 3. Visualized results of extrinsic evaluation. It shows how the structures
that actually have events are captured at the top 5,000 rank list. The vertical
axis is the ranking, and the horizontal axis is a count of the number of
structures. A lower curve is preferred, and the one more stretched to the
right is preferred.

Table II summarizes the results of blind evaluation for
Manhattan; larger scores for AUC and DCG, and lower for
PNorm, correspond to superior performance. PCLS excels
the other methods in all three measures. Figure 3 plots the
vulnerable structures from the blind evaluation year (horizontal
axis) against the top 5000 structures in the ranked lists from
the four methods (vertical axis). As shown, PCLS outperforms
the other methods in terms of all three measures (AUC, DCG,
PNorm). Since the actual performance and scores are not linear
correlated, even though PCLS is literally only 3.7% higher in
AUC and 1.2% higher in DCG, the improvement is actually
quite substantial. From Figure 3, in the top 5000 of the rank
list, PCLS retrieves 51 vulnerable structures and C4.5 DT is
31, which is 64.5% improvement. When compared to KM,
PCLS captures 3 more structures and the positions of these
structures in the list are significantly ranked higher. Moreover,
KM labels many more tickets as serious, as indicated by the
very low precision and relatively high recall for this class
(Table I), leading to much higher computational complexity
of the structure ranking task for KM in contrast to PCLS.

VIII. CONCLUSION

We have presented an electrical event categorization task
on a power grid application system. The characteristics of
the categorization problem require an approach that can adapt
existing knowledge about the data model over time.

We developed a semi-supervised learning method, Progres-
sive Clustering with Learned Seeds, that suited the problem.
Intrinsic evaluation displays the stability and consistency of
knowledge preservation in accordance with a set of very
limited labeled data. Extrinsic evaluation shows the superior
actual performance on a blind test. Our problem engineering
method can also be implemented and adapted to other domains
providing an exemplary approach that uses computational
intelligence technology for industrial applications.

REFERENCES
[1]

J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Machine Learning, vol. 1, no. 3, pp. 317-354, 1986.

P. E. Utgoff, “Incremental induction of decision trees,” Machine Learn-
ing, vol. 4, no. 2, pp. 161-186, 1989.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, Canada, 1990.

J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical comparison
of four initialization methods for the K-means algorithm,” Pattern
Recognition Letters, vol. 20, pp. 1027 — 1040, 1999.

D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, June 2007, pp. 1027 — 1035.

P. S. Bradley and U. M. Fayyad, “Refining initial points for K-means
clustering,” in Proceedings of the 15th International Conference on
Machine Learning (ICML), 1998, pp. 91 — 99.

B. Liu, Y. Xia, and P. S. Yu, “Clustering through decision tree construc-
tion,” in Proceedings of the 9th International Conference on Information
and Knowledge Management (CIKM), McLean, VA, 2000.

C. Rudin, R. J. Passonneau, A. Radeva, H. Dutta, S. Ierome, and
D. Isaac, “A process for predicting manhole events in manhattan,” Mach.
Learn., vol. 80, no. 1, pp. 1-31, Jul. 2010.

C. Rudin, “The P-Norm Push: A simple convex ranking algorithm
that concentrates at the top of the list,” Journal of Machine Learning
Research, vol. 10, pp. 2233-2271, Oct 2009.

R. J. Passonneau, C. Rudin, A. Radeva, and Z. A. Liu, “Reducing noise
in labels and features for a real world dataset: Application of nlp corpus
annotation methods,” in Proceedings of the 10th International Confer-
ence on Computational Linguistics and Intelligent Text Processing, 2009.
J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, pp. 37-46, 1960.

R. Kittredge, “Sublanguages,” American Journal of Computational Lin-
guistics, pp. 79-84, 1982.

G. Forman, “An extensive empirical study of feature selection metrics for
text classification,” Machine Learning Research, pp. 1289-1305, 2003.
1. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. San Francisco, CA: Morgan Kaufmann, 2005.
J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

J. R. Galliers and K. Sparck Jones, “Evaluating natural language
processing systems,” Computer Laboratory, University of Cambridge,
Tech. Rep. Technical Report 291, 1993.

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

