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ABSTRACT
Consolidated Edison of New York is the utility company
that provides electrical power to New York City. As of late
2004, the Public Service Commission of the State of New
York requires Con Edison to inspect all electrical structures
in the power grid, such as manholes and service boxes, at
least once every five years. In our previous work, we im-
plemented a process to assemble a wide array of textual
and semi-structured data and from it to produce a machine
learned ranking of vulnerability of secondary structures for
a given year. For the work reported here, we were asked
to analyze the inspections data from the first five-year cy-
cle for Manhattan, to determine if a relation could be found
with our structure ranking. This paper describes the results
of causal inference using the inspections data. We tested
whether repairs carried out in response to inspections have
a positive impact on the health of structures. Results indi-
cate a highly significant effect in which repairs triggered by
inspections reduce events in the immediately following year.
We then partitioned the structures into distinct strata based
on their structure rank, and again tested for a treatment ef-
fect of repairs. This stratified analysis yields a decreasing
incidence of events for each next stratum with lower vul-
nerability. The results both confirm the empirical adequacy
of the structure ranking we produce, and demonstrate its
utility for assessment of maintenance and repair activities
carried out on the secondary grid. In turn, these results
can have a positive impact on sustainability through more
directed allocation of resources, by allowing structures that
are more vulnerable to be inspected earlier.
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1. INTRODUCTION
The term power grid typically refers to the transmission

network of high voltage power. In the United States, there
are three major transmission networks which have a com-
plex system of automated sensors and devices for monitor-
ing and managing power load and flow. Low voltage distri-
bution networks are fed by the transmission grid and pri-
mary distribution network, and provide power directly to
customers. The network consist of structures, such as man-
holes and service boxes, that provide direct access to the ca-
bles connecting structures to each other and to customers.
There are primary cables that feed power to the distribu-
tion network (feeders), the secondary main cables that dis-
tribute power throughout a region, and the service cables
that provide power directly to customers. Figure 1 (from the
Wikipedia article on Electric power distribution at http://
en.wikipedia.org/wiki/Electric_power_distribution.) il-
lustrates that high voltage transmission cables (blue) pro-
vide power to distribution substations, where transformers
step the voltage down for distribution (green) along pri-
mary distribution cables that feed power to the secondary.
In the New York City setting we investigate, below-ground
feeder cables (not shown here) distribute power to under-
ground transformers that reduce the voltage to secondary
levels (typically 120 volts) to provide power to customers.
Compared to the transmission grid, the secondary networks
are not as fully instrumented. As a consequence of this lack
of precise information, and of the redundancy in the net-
work designed to prevent service interruptions, when there
is a failure from the primary to the secondary, such as a
feeder failure, or a failure within the secondary, such as the
loss of a secondary main, there is no obvious indication that
there is a malfunction [15]. The sustainability problem we
address is how to leverage existing offline data in novel ways
to assess the health of the secondary network in part of New
York City, and how to measure the impact of resources allo-
cated towards maintaining that health. This paper reports
how we analyzed a dataset consisting of reports document-
ing inspections of structures in the secondary grid with a



Figure 1: The electrical transmission and distribu-
tion system

coombination of techniques for data mining, machine learn-
ing, and causal inference from observational data. Our long
range goal is to help determine the optimal prioritization for
inspecting structures in the secondary grid, which we are ad-
dressing in ongoing work. Here we describe results that are
a precondition for such optimization: a quantitative assess-
ment of the benefit of inspecting structures, and performing
consequent repairs.

As of late 2004, the Public Service Commission (PSC)
of the State of New York requires at least once in every
five years that Consolidated Edison inspect all structures,
including manholes and service boxes, in the electrical net-
works that provide power to New York City customers. The
first five year inspection program was completed in 2009.
In our previous work we implemented a process to assemble
a wide array of textual and semi-structured data from nu-
merous sources, and from it to produce a machine learned
ranking of structure vulnerability for a given year [22]. Each
learned model assigns a score and rank order to the thou-
sands of structures in a city region (borough) in order of
their vulnerability to serious events. We were asked to an-
alyze the inspections data for Manhattan to determine if a
relation could be found with our structure ranking. This
paper describes how we applied causal inference to analyze
the inspections data, in order to test whether repairs car-
ried out in response to inspections had a positive impact.
It represents the first application of our structure ranking
work to assessment of the impact of actions, such as repairs,
carried out on the grid. We relied on the structure vulner-
ability ranking to identify distinct strata of structures with
similar vulnerability. As reported here, we found a statisti-
cally significant treatment effect, meaning that repairs have
a positive impact on structure health. First, we found that
repairs carried out immediately in response to inspections
reduce events in the immediately following year. Second, we
found a decreasing incidence of events for strata with lower
vulnerability, as given by our structure ranking. These re-
sults both confirm the empirical adequacy of the structure
ranking we produce, and demonstrate its utility for assess-
ment of activities carried out on the secondary grid. This
can have a positive impact on sustainability through more
directed allocation of resources, by allowing structures that
are more vulnerable to be inspected earlier, a problem we
address in our ongoing work.

In the next section, we discuss related work on the elec-
trical grid and ranking methods. This is followed by an
overview of our project, and our structure ranking model.
Then we describe the data on the first five-year cycle of the
inspection program mandated by the PSC, our method for

performing causal analysis on this observational data, and
our results. We conclude with a recapitulation of our results
and contribution.

2. RELATED WORK
Our colleagues at the Center for Computational Learning

Systems, as far as we know, are the first to use machine
learning ranking techniques for applications to the electrical
grid [12, 2, 22], though there is much precedent for other
maintenance techniques and statistics for use in power en-
gineering (e.g., monitoring the health of power transform-
ers [24, 14]). Our colleagues are concerned with the problem
of ranking electrical components in the primary distribu-
tion system, specifically electrical feeders, cables and joints,
according to their susceptibility to failure. This applica-
tion differs dramatically from ours in that primary feeders
have electrical monitors that provide numerical information
in real time; for instance, features are based on electrical
load simulations and real-time telemetry data. In contrast,
our data consists mostly of historical records written mainly
in free-text. It is clear when a feeder fails since an outage
of that feeder occurs, whereas it is not always clear when a
serious manhole event has occurred. This is a matter of hu-
man judgement, and as discussed below, the domain experts
do not have complete agreement on serious events.

The problem of feeder susceptibility ranking requires at-
tention especially to the short-term timescale before the
feeder fails. Thus the problem is an online ranking prob-
lem with a short-term crucial timeframe over which warning
signs lead to an event. Many other problems dealing with
prediction of rare events in continuous time also rely on a
shorter time scale, including seizure prediction for epileptic
patients [16], or prediction of compiler failures in hard drives
(see [17]). In contrast, our task is an offline processing prob-
lem that uses a long-term history to predict events that may
happen several months later.

There are other works that adopt machine learning tech-
niques for offline prioritization problems, for instance includ-
ing the prioritization of mutations that cause disease [13],
and the prioritization of geographic regions for conserva-
tion [4] and species modeling [7]. Those works implement
algorithms for density modeling, and prioritization can be
done according to the density. In our case, prioritization is
the main goal, and thus is addressed as a bipartite ranking
problem. Bipartite ranking techniques allow us to charac-
terize the relationships between structures without first es-
timating the density. There has been a surge of theoretical
work on bipartite ranking recently (see, for instance, [10, 1]).
One advantage of RankBoost [10] is that there is a theoret-
ical equivalence between RankBoost and AdaBoost [9], its
counterpart for classification, meaning that one could obtain
a useful classifier from RankBoost [21].

3. SECONDARY MACHINE LEARNING
PROJECT

The Consolidated Edison Company of New York City pro-
vides electric power through a large transmission and distri-
bution network consisting of a primary grid of high voltage
power (transmission) and a secondary network (distribution)
that directly serves its 3.3 million customers. The 94,000
miles of primary and secondary cable are connected through
264,000 manholes and service boxes (structures). A struc-



ture is a below-ground room that houses cables mounted
on racks, with ducts feeding the cables into the structure.
Smoldering material resulting from damaged insulation can
release gases within the manhole and cause events of smaller
or greater magnitude, such as flickering lights in the service
area, or an explosion. Our work focuses on the secondary
grid, and in particular, on secondary events that affect ser-
vice reliability (flickering lights) and safety (explosions).

Two key factors pertaining to specification of the time
frame we address are that structures evolve relatively slowly
over time, and structures degrade relatively slowly over time.
Given that a single structure can contain anywhere from just
a few secondary cables or none, to hundreds of secondary ca-
bles, the large structures will contain cables that have been
installed at different points in time. For example, the oldest
cable in our databases (described below) was installed in the
1880s, the most recent in the current year. Events involv-
ing secondary structures ranging from minor interruptions
in service to explosions or fires can result from a slow break-
down in the materials that insulate cables, due to corrosion
from weather and salt in the structures. As described in [20],
our analyses of events led us to formulate our modeling task
on a year-by-year basis.

Beginning in 2006, the Secondary Machine Learning Project
has worked with Con Edison to develop methods to model
the vulnerability of secondary structures. We have applied
these methods to three New York City boroughs1: Man-
hattan (2007, 2010), Brooklyn (2008) and Bronx (2009).
Each borough has a distinct network configuration (e.g., ra-
dial versus fully connected mesh) and different constituency
(e.g., proportion of underground versus overhead structures),
thus we model each borough independently. It is a testament
to the generality of our approach that the ranking models
for different boroughs are distinct (rely on distinct features,
and coefficients of these features; see below), thus captur-
ing the distinct properties of individual boroughs, yet have
similar performance with respect to blind evaluations. The
blind evaluations assess how many structures that experi-
ence serious events in a new year are highly ranked [22].

In the work presented here, we tested how rank in our
model interacted with the incidence of future events. During
the late summer and fall of 2010, we investigated the relation
between the Manhattan structure ranking model and data
from the first five-year inspections program. Our findings
demonstrate the utility of the structure ranking for assess-
ing the impact of inspection-triggered repairs made in 2008
on the incidence of events in the following year. We did not
investigate repairs made earlier than 2008 on the recommen-
dation of our collaborators at Con Edison, due to the fact
that procedures for carrying out inspections continued to
be refined throughout the program, and were insufficiently
stable until 2008.

3.1 Raw Data Sources
To investigate structure vulnerability, we worked with Con

Edison engineers to identify sources of raw data from dis-
parate sources within Con Edison, so that we could assem-
ble a single relational database for comprehensive data min-
ing. Our efforts to define and assemble our Consolidated
databases have been documented in earlier work [20, 18].

1New York City consists of five boroughs, or administrative
districts: Brooklyn, The Bronx, Manhattan, Queens and
Staten Island.

Three major classes of information were found to be relevant
for modeling structure vulnerability: structure information
(structure type, location and identifier), cable information
(including function–meaning main, service or street light,
phase or neutral; amount of cable; insulation material; size;
year of installation), and history of events. Other features
investigated include structure cover type (vented or solid),
and inspections data. At the time our project began, some
of the data sources were too new to prove useful.2

We clean and preprocess tables of structured data. In ad-
dition, we utilize a significant source of very noisy textual
data known as Emergency Control System (ECS) tickets.
These are trouble tickets recorded by Con Edison dispatch-
ers in response to problems in the grid, such as calls from
customers about interruptions in service. ECS was insti-
tuted in the 1970s, and was expanded in 1986, after Hurri-
cane Gloria. It contains well over 1 million tickets from all
boroughs for the period from 1996 through the present. The
structured fields contain information such as the ticket date,
location, job number, completion time and trouble type; we
discuss the trouble type further below. There is also a free
text field referred to as the remarks. The remarks consist
of interleaved lines of free text and structured data, mini-
mally consisting of one or two lines documenting a call from
a customer, structured lines indicating who was dispatched
to investigate the structure, and actions carried out, such
as installation of a temporary shunt (a provisional cable run
along the ground) to restore service. Remarks contain many
misspellings, acronyms, abbreviations and technical termi-
nology (e.g., CFR for [cables] cut for replacement).

Figure 2 illustrates an ECS remarks field. The first line
of the ticket explicitly names the category for this ticket,
which is SMH (smoking manhole).

An ECS ticket can reference one or more structures, at
least one of which will be identified as the source of the
trouble. Information Extraction (IE) is the process of filling
in structured tables or templates with information extracted
from textual documents [5]. Through pattern matching by
means of the IE functionality of GATE [6], a text engineering
tool, we extract fifteen additional attributes. These include
structure type (manhole or service box), structure number,
metadata indicating whether the event was serious (see next
section), terms indicating work was performed on the struc-
ture, whether cables were cut for replacement, and similar
types of information.

3.2 ECS Events
Each ECS trouble ticket is assigned a trouble type (iden-

tified by a three-character mnemonic), out of 288 of possi-
bilities. We worked with our collaborators at Con Edison
to select a subset of trouble types relevant to our model-
ing task. For the problems we investigate in Manhattan, we
relied initially on 22 trouble types, and recently expanded
this to include 33 trouble types. Two pertain to very se-
rious events: MHX for manhole explosions, and MHF for
manhole fires. One pertains to a moderately serious event:
SMH for smoking manhole. Of the remainder, 9 are referred

2In our current project, we are re-examining existing infor-
mation and investigating new sources of information, such
as construction and repair records, contact voltage detection
reports, structure dimensions, weather patterns over time,
and yearly volume of salt distributed by New York City De-
partment of Transportation for melting ice and snow.



1 01/21/YR 18:45 FDNY-190 REPORTS A SMH STREET 1 & STREET 2
2 01/21/YR 19:35 PERSON REPORTS THE TROUBLE HOLE IS SB-00001
3 N/W/C STREET 1 & STREET 2......FOUND ON ....SMOKING LIGHTY
4 01/21/YR 21:55 PERSON REPORTS IN SB-00001 HE FOUND 1 LEG
5 ON THE 5 WIRE NORTH BURNING IN THE STRUCTURE......CUT/CLEAR
6 ED & RETIED SAME .......................COMPLETE.............SS
7 ELIN REPT ADDED FOR INCIDENT:SMH 01/21/YR 22:02 BY PERSON ID
8 REPORTED BY: FIRE DEPT
9 STRUC MSPLATE TYPE NUMBER COND COVTYP COVFOUND DISTANCE

10 (1) MSPLATE ID SB 00001 WA S Y 00
11 TYPE OF CURRENT: ALTERNATING CURRENT
12 VOLTAGE: 120/208V
13 APPROPRIATE SIZE: 500 MCM
14 CONDUCTOR CODE: COPPER
15 POSSIBLE CAUSE OF THE INCIDENT: INSULATION BREAKDOWN
16 WEATHER CONDITIONS DURING THE INCIDENT: CLEAR

Figure 2: Sample ECS Ticket (anonymized): Serious Smoking Manhole

Name Description Coefficient
Name Value

Mention The number of past events where the structure α1 0.00170256
was mentioned in distinct ECS remarks, all years

RecentMention Same as Mention, within the past 3 years α2 0.00491505
TroubleHole The number of past events where the structure α3 0.00170256

was the source of the event, all years
RecentTrHole Same as TroubleHole, within the past 3 years α4 0.00733388
MainPhase The number of main phase cables in the structure α5 0.00114553
ServPhase The number of service phase cables in the structure α6 -0.00019783
Serv 1960 1969 The number of service phase cables installed α7 0.00388190

between 1960 and 1969

Table 1: Features and coefficients in the ranking model
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Figure 3: Distribution of ECS tickets across years

to as burnouts, and consist of minor interruptions of service
such as SO (side off), WBR (wire burn out), FLT (flickering
lights), NL (no lights), NLA (no lights in the area) and so
on. Burnouts play a role in our structure ranking model,
whereas other trouble types do not.

Identifying the subset of ECS tickets that refer to a dis-
tinct event is a critical task in both the structure ranking and
the inspections analysis. The mapping between ECS tickets
and events is many-to-one. When there is an interruption of
service that affects a large building or neighborhood, mul-
tiple customers might call in about the same event. Often,
a single ECS ticket is identified as the lead ticket, and the
other tickets associated with the lead ticket are called re-
ferred tickets, or dups. When we created the 2007 structure
ranking, we filtered out all the referred tickets in order to
identify a subset corresponding to distinct ECS events.

Figure 3 depicts the distribution of three classes of ECS

tickets identified as the lead ticket of an event, manhole
events (MHX, MHF), smoking manholes (SMH), the nine
burnout ticket types (burnouts), followed by the class of
duplicate tickets (any trouble type) and inspection tickets.
As shown, manhole events (first bar, in red) are relatively
rare, and have been decreasing, smoking manholes (second
bar, in orange) have remained relatively constant, and since
1999, burnouts have been decreasing (third bar, in green).
Duplicate tickets show a fair amount of variance, but have
remained constant on average. The SIP type indicates an
inspection ticket; one must be completed for each inspection
report. SIPs do not appear until 2005, the first full year of
the inspection program.

As described in [18], in an experiment where we concealed
the trouble type of ECS tickets, we found that engineers
agree only moderately well on a task of assigning a trouble
type to ECS remarks. Based on a second pass over the prob-
lematic tickets for this task, we developed a high-precision
rule-based procedure to classify tickets into three categories
for the purpose of labeling structures for supervised ranking.
The three categories consist of tickets for serious events, tick-
ets for burnout events, and tickets that do not correspond
to distinct events (e.g., referred tickets).

For the inspections analysis reported here, we refined our
definition of referred tickets, which reduced the set of lead
tickets (the distinct event in a set of referred tickets) by
6.4%. In addition, we identified a new class of tickets whose
trouble type should have been SIP, which is the trouble type
used for an ECS ticket that is associated with a concur-
rent inspection report. In some cases, the personnel that



should issue an SIP ticket are not able to, and a different
unit of Con Edison produces a substitute ticket, using the
ACB trouble type. We use two criteria to reclassify certain
ACBs as SIPs. When the first lines of the ticket mention a
structure type and number, it cannot be a customer call, as
customers have no access to these identifiers. If in addition,
the same structure has a concurrent inspection report, then
we reclassify the ACB ticket as an SIP. Following this pro-
cedure to distinguish genuine ACB event tickets from ACB
inspection follow-up tickets (pseudo-SIPs), 10.12% of ACB
tickets between 2004 and 2009 are reclassified SIPs.

4. STRUCTURE RANKING
Each year, serious events occur on a relatively small pro-

portion of structures; in Manhattan in 2010, there were 60
serious events for over fifty thousand structures. Because of
this, we cast our problem within the framework of rare event
prediction. The goal was to predict whether an event will
happen within a given period of time (in our case, a given
year), based on what happened before that period. To de-
sign each ranking model, we train it to predict events that
happened the year before, using data prior to that time.
For instance, in order to predict events in 2009, we train the
model to predict events in 2008 (knowing what events actu-
ally happened that year), using data from 2007 and before.

The ranked list is constructed from a scoring function that
gives each structure a real-valued score, where the score in-
dicates its predicted vulnerability. The scoring function is a
linear combination of features (covariates) that are derived
with respect to the time period for prediction. For instance,
one of the features is the number of events that the structure
had been involved in within the three years prior to the pre-
diction period. We hand-derived approximated 120 features,
all based on our Manhattan secondary grid database. The
features came in three major categories: past events, cables,
and inspections. The past event features encode the num-
ber and types of past events that the structure was involved
in over different time periods. The cable features encode
the number and types of cables and their installation dates.
The inspection features encode the number and results of
past inspections, but at this point, have not been powerful
enough to use effectively for machine learning; this study is
the first indication we have found that the inspections can
be useful for prediction, and we are in the process of develop-
ing more specialized inspection features based on this study.
The label (dependent variable) for a structure is whether
the structure was the trouble hole (source structure) for a
serious event during the prediction period. We used several
different feature selection methods (largest AUC values, in-
formation gain, backwards elimination) to choose a small set
of features for the model; since serious events are so rare, it
is very easy to overfit by including too many features, so the
feature selection enables prediction.

We use machine learning techniques for supervised bipar-
tite ranking to choose the coefficients for the scoring func-
tion, and the structures are then rank-ordered by their score.
This algorithm, in combination with the data, determines
how important each feature is for prediction. The term su-
pervised means simply that there is labeled data to learn
from, where the label indicates what the learning model
is intended to predict: here, a positive label indicates the
structure had a serious event in a given year (was vulner-
able), and a negative label indicates the opposite. A brief

Number Number Percentage
of inspections of structures of structures

1 28,842 56.3111
2 10,226 19.9652
3 4,860 9.4887
4 2,661 5.1953
5 1,639 3.2000

. . . . . . . . .
30 8 0.0156

. . . . . . . . .
186 1 0.0020

Table 2: Singleton versus multiple inspections

overview of supervised ranking methods in this context is
provided by [22]. The coefficients are chosen (using the
training data) to minimize a chosen objective. The objective
encodes all positive-negative pairs of examples, and lower
values of the objective are achieved when positive examples
are ranked above negative examples. The objective is essen-
tially a weighted version of the area under the ROC curve
(AUC) [3] that favors the top of the ranked list. The re-
sulting algorithm, which is described in earlier work [19],
performs better than others we have tested on the features
and labels discussed below, including support vector ma-
chine classifiers and pruned decision trees.

For our first blind prediction test, we aimed to predict
serious events in Manhattan during 2007. The seven features
shown in Table 1 were selected, and the scoring function is
given in Figure 4.

5. INSPECTIONS DATA
The raw data we received from Consolidated Edison in-

cludes 126,478 inspection reports in digital format from late
2004 through 2009. From a single raw table of inspection
reports containing free text and structured data, we cre-
ated a normalized relational database model consisting of
five inspections tables. As noted earlier, we focus here on
the 78,073 inspections that occurred in 2008 and 2009. Of
these, 71,890 are on structures with secondary cable (Table
3).3 During the first years of the program, the inspection
procedures were still being refined, and had become rela-
tively stabilized by 2008. The total number of structures
in our 2007 Consolidated structures table is 51,219. For
just over half the structures (55.31% of structures, 23.19%
of inspections), the structure has a single inspection within
the 2004-2009 dataset we received. Often, a structure is in-
spected multiple times, with the maximum being over 100
times. Most of the repeat inspections on a structure are due
to the requirement that every time a crew enters a struc-
ture, a new inspection report must be completed; mainte-
nance work to reconfigure (re-rack) the cables in a structure
can require weeks, or sometimes months, to complete. Ta-
ble 2 shows for values from one to five, for thirty, and for
the maximum of 186, the percentage of structures that had
exactly that number of inspections. As shown, just over half
the structures had a single inspection, another 37.85% had
between 2 and 5 inspections.

The first row of Table 3 indicates that for 2008-2009,
34.8% of all inspections on structures with secondary cable

3Our dataset includes manholes that have only primary ca-
ble.



score(structure) = α1 ×Mentions+ α2 ×RecentMentions+ α3) × TroubleHole+ α4 × RecentTrHole+
α5 × MainPhase+ α6 × ServPhase+ α7 × Serv 1960 1969

Figure 4: Formula for the ranking model

Result Count Percentage
of inspections (2008-2009)

Clean inspection 25,041 34.83
Level 1 only 17,928 24.94
Level 2 only 1,101 1.53
Level 3 only 18 0.03
Level 4 only 13,234 18.41
Level 1+2 1,417 1.97
Level 1+3 6 0.01
Level 1+4 9,127 12.70
Level 2+3 1 0.00
Level 2+4 1,652 2.30
Level 3+4 33 0.05
Level 1+2+3 2 0.00
Level 1+2+4 2,296 3.19
Level 1+3+4 17 0.02
Level 2+3+4 10 0.01
Level 1+2+3+4 7 0.01
Total 71,890 100.00

Table 3: Inspections outcomes in the 2008-2009 data
on structures with secondary cable

resulted in no defects found. The specifications for carry-
ing out inspections sort the remaining types of inspections
outcomes into four categories, based on their priority; these
are referred to as Levels 1 through 4. The table partitions
all inspections into all possible combinations of outcomes.
As shown, the largest category after clean inspections (no
defects found) consists of structures which had only Level
1 findings. Here we address Level 1 inspection outcomes,
where by definition the repair must be completed before
leaving the location–except in the event of an emergency,
such as a storm, when Level 1 repairs must be carried out
within seven days of discovery. Level 2 and 3 inspection
outcomes identify issues that can be remediated over two
to three years; Level 4 outcomes are for record-keeping pur-
poses only. Because we carried out our analysis before we
had access to 2010 data on events, our causal analysis is re-
stricted to the one pair of years for which we had inspections
in one year (2008) followed by a year in which we had event
data (2009).

6. METHODS

6.1 Causal Inference
The question of whether Level 1 repairs result in a re-

duced incidence of events involves causal inference. Here,
causal inference takes the form of a comparison between
structures in a control group that have not received Level
1 repairs, and structures in a treatment group that have.
Causal inference requires careful consideration of potentially
confounding variables [11]. The outcome of interest here is
whether structures that receive treatment (Level 1 repairs)
have a lower incidence of events. If the control and treat-
ment structures have distinct outcomes, to infer that it is the
treatment that causes the difference in outcomes requires the

treatment and control individuals to have an equal likelihood
of receiving treatment, all other things being equal (such as
confounding variables). If all structures were equally likely
to have a Level 1 repair, then it should be possible to iden-
tify matched pairs of structures such that for every treated
structure, there is at least one similar structure that did not
receive the treatment. If treatment structures cannot be
matched to control structures, it is not possible to general-
ize from the treatment to the control.

In an observational study, the process of dividing the data
into distinct groups (strata) is called post-stratification [23].
Here we use the ranked list to bin structures into groups
that have similar rank, where each group is a single stra-
tum. The motivation for relying on structure rank for post-
stratification is that a structure will be inspected in one
of two ways, one of which we assume to be random, while
the other depends on factors closely related to the structure
ranking task. Structures are targeted for inspection if they
have not had an ad hoc inspection. The latter occur when-
ever a crew enters a structure, which is often due to an event
involving the structure. This means that the likelihood of
an ad hoc inspection is related to the likelihood of an event,
which in turn is related to our ranked list.

We show in the next section that the treatment and con-
trol structures we identify have a high degree of overlap,
meaning a similar range of values, and similar distribution
of structures across the range of values. We examine over-
lap of the treatment and control groups with respect to rank,
and with respect to the individual features that contribute
to the ranking model. The high overlap justifies the infer-
ence that the difference in outcomes we find is due to the
Level 1 treatment. As we show below, the distributions of
treatment and control are similar, but for every treatment
structure, there are many matched control structures (i.e.,
the matching is one-to-many).

6.2 Control versus Treatment
The first PSC-mandated inspections program extended

from late 2004 through 2009. During that period, the in-
spection procedures evolved, were standardized in 2008, and
fully implemented by 2009. At the time we carried out our
analysis (the fall of 2010), the last year for which we had
a complete record of events was 2009. Given the evolving
inspections procedures, and the short time frame for look-
ing into the future, our observational analysis of a treatment
effect focuses on 2009 events relative to 2008 inspections.

We binned the treatment and control structures into eight
categories, based on feedback from our collaborators at Con
Edison about the desired granularity of the analysis. The
most vulnerable category consisted of the top 5,000 struc-
tures in the ranked list. Due to a mix of opinions from Con
Edison as to whether we should rely directly on the ranked
list, we defined the next seven categories in terms of fea-
tures that contributed to the ranking model, rather than
by the ranking itself. The average number of structures in
each category was approximately 7,000. For this paper, we
defined all eight categories directly in terms of the ranking.
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Figure 5: Treatment and control groups have good
overlap: structures in both groups for the full range
of values, and with similar proportions

Category 1 is again the top 5,000 structures, and each next
category is the next 7,000 structures in the ranked list, with
somewhat less than 5,000 structures in the final eighth cat-
egory.

For each bin, the control group is a group of structures
that has had no inspections through 2008. The treatment
group has had no inspections before 2008, and in 2008, all
inspections on the structures in this group have Level 1 find-
ings, no findings for Levels other than Level 1, and no clean
inspections. In thsi manner, the control group is ensured
to have no inspection-triggered repairs, and no clean inspec-
tion reports through 2008. The treatment group is ensured
to have no clean inspection reports through 2008, and no
inspection-triggered repairs until 2008. In 2008, the treat-
ment group had Level 1 repairs only, and no other types of
inspection findings. In sum, the only difference between the
two groups is that the treatment group had a Level 1 repair
in 2008.

After defining the treatment and control groups, we then
look at the incidence of events on these structures in 2009.
In this way, we can test whether the treatment group (Level
1 repairs) has a lower incidence of 2009 events.

To determine whether the use of structure rank to match
control and treatment structures is well-motivated, we assess
their overlap, meaning whether the control and treatment
structures have similar balance and distribution. The two
groups are balanced if they have the same range of values,
and they have equivalent distributions if the same propor-
tion of control group and treatment group occur at each
value (or interval of values). Figure 5 shows the overlap
(similarity in balance and distribution) for total number of
cables, which is one of the features that contributes to the
ranking model (see Section 4). The same overlap holds true
for the remaining features in the ranking model.

7. RESULTS
To test for a treatment effect within each of the eight vul-

nerability categories, we generate 2 × 2 contingency tables
for each category of Treatment vs. Control by Structures
with 2009 Events (+Events) vs. Structures with no 2009
Events (-Events). We use Fisher’s Exact Test [8] to test for

Row
+ Events − Events Marginals

Treatment 52 377 429
Control 114 592 706
Column Marginals 166 969 1135

p=0.0370

Table 4: Contingency table for Category 1 struc-
tures

significance. Table 4 shows the contingency table for Cate-
gory 1 structures. The results for the full data, and for each
category, are summarized in Table 5, which gives the cell
values for each contingency table, along with the p-values
for Fisher’s Exact Test.

Figure 6 summarizes the findings. The x-axis shows the
eight categories, in order of decreasing vulnerability. The y-
axis indicates the proportion of treatment (solid line) or con-
trol (dashed line) structures in that category that were as-
sociated with events, either as the trouble hole of the event,
or mentioned in the ticket along with the trouble hole. Fig-
ure 6 shows that for all categories apart from the one with
the lowest vulnerability, the treatment group that received
Level 1 repairs has a lower incidence of 2009 events compared
with the control group. The p-values shown in Table 5 in-
dicate that the differences are highly significant for the case
comparing all treatment structures to all control structures
(N=19,151), and for Categories 1, and 4 through 7.4 Sec-
ond, each next vulnerability category has a lower incidence
of events in both the treatment and control groups. Both
findings demonstrate the benefit of applying the Secondary
structure ranking model for Manhattan to the analysis of
the inspections data.

8. CONCLUSION
Prior to the task of applying the ranked list to the analysis

of inspections, the ranked list of structures we could produce
for each borough had been considered a component in prior-
itizing repairs and upgrades, such as replacement of service

4An analysis we delivered to Con Edison used the ranked list
only for Category 1, and features from the ranking model for
all subsequent categories. In that analysis, the differences
between treatment and control were statistically significant
for Categories 1-6, and not for Categories 7 and 8.
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Figure 6: Incidence of 2009 events for 8 categories
of treatment vs. control structures



T C T C
Cat + Evt + Evt − Evt − Evt p-value

All 532 1152 6486 10981 3.055 × 10−6

1 52 114 377 592 0.0370
2 88 181 690 1184 0.1067
3 105 191 841 1350 0.1830
4 92 210 969 1537 0.0030
5 72 172 1071 1752 0.0050
6 67 158 1161 1749 0.0036
7 53 114 1168 1847 0.0407
8 3 12 254 970 0.6203

Table 5: Contingency table cell values for the full
dataset, and for each category, with p-values

box covers. Here it was applied in a retrospective analysis
of data collected during application of a program to inspect
all structures. In a real sense, all data mining applications
address sustainability by leveraging a resource, namely exist-
ing data, in novel ways. Our work applied causal inference
to an existing set of inspections reports in a fashion that
demonstrated a new utility for our structure ranking work.
By showing that more vulnerable structures are indeed more
susceptible to future events, we also inspired Consolidated
Edison to consider a new approach to optimizing the order
in which secondary structures are inspected, a problem our
future work will address.

Because the eight categories of structures in Figure 6 are
defined solely with respect to the ranking model, the smooth
downward slope of the plots provides confirmation that the
ranked list represents vulnerability of structures to events.
Each next category has a lower proportion of its structures
that experiences an event of any type in 2009. This in turn
demonstrates that it is possible to apply data mining and
machine learning methods to real world data that were never
intended to support predictive or causal inference.

For Con Edison, the benefit of the work described here is
the ability to quantify the impact of its programs. The in-
spections program is only one of several programs designed
to improve the safety and reliability of the distribution net-
work. While it had been observed that the incidence of
secondary events had decreased, the work presented here
isolates the contribution of a specific component of the in-
spections (the high priority Level 1 repairs), quantifies the
reduction in events relative to the vulnerability of sets of
structures, and points to which sets of structures have a
reduced incidence that, given the statistical evidence, is a
result of Level 1 repairs.
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