
INTRODUCTION TO
PROGRAMMING LANGUAGES
COMS W1001
Introduction to Information Science

Boyi Xie

1

Today’s Topics
• Why We Need Programming Languages

•  Low-level Programming Language
•  High-level Programming Language

• How a Program Works
•  Compiler
•  Interpreters

2

Why We Need Programming Languages
•  A computer’s CPU can only understand instructions that are written in

machine language.
•  Assembly language was created in the early days of computing a an

alternative to machine languages.
•  Instead of using binary numbers for instructions, assembly language

uses short words that are know as mnemonics.
•  Because assembly language is so close in nature to machine

language , it is referred to as a low-level language

3

LDF R2, id3!
MULF R2, R2, #60.0!
LDF R1, id2!
ADDF R1, R1, R2!
STF id1, R1!

Why We Need Programming Languages
•  People still find it very difficult to write entire programs in assembly

language, other programming languages have been invented.
•  Programming languages are notations for describing computations to

people and to machines.
•  In the 1950s, a new generation of programming languages known as

high-level languages began to appear
•  They allow programmers to create powerful and complex programs

without knowing how the CPU works, and without writing large
numbers of low-level instructions.

4

Some High-Level Programming Languages
Languages Description
BASIC Beginners All-purpose Symbolic Instruction Code, 1960s
FORTRAN FORmula TRANslator, 1950ss
COBOL Common Business-Oriented Language, 1950s
Pascal Originally designed for teaching programming, 1970s
C and C++ General purpose programming language, developed at Bell

Lab in 1972 (C) and 1983 (C++)
C# Around the year 2000 by Microsoft for .NET platform
Java General purpose programming language, created by Sun

Microsystem in early 1990s
JavaScript Mainly used in web pages, created in 1990s
Pythons General purpose programming language, created in the

early 1990s
Ruby General purpose programming language, created in the

early 1990s
Visual Basic Created in the early 1990s for Windows-based applications

5

How a Program Works
• Before a program can be run, it first must be translated

into a form in which it can be executed by a computer.
•  The software systems that do this translation are called

compilers.

• A compiler is a program that can read a program in one
language – the source language – and translate it into an
equivalent program in another language – the target
language.

6

• Compiler
•  Translates a source program into a target program
•  If the target program is an executable machine-language program,

it can then be called by the user to process inputs and produce
outputs

How a Program Works

7

Source Program

Target Program

Compiler

input output

How a Program Works
•  Phases of a compiler

•  Analysis part
•  breaks up the source program into

constituent pieces
•  imposes a grammatical structure
•  uses this structure to create

intermediate representation
•  Synthesis part

•  construct the desired target program
from the intermediate representation
and the information in the symbol
table

•  Symbol table
•  the analysis part collects information

about the source program and stores
it in a data structure called a symbol
table, which is passed along with the
intermediate representation to the
synthesis part.

8

target-machine code

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent
Code Optimizer

Machine-Dependent
Code Optimizer

Lexical Analyzer

Code Generator

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

target-machine code

Symbol
Table

How a Program Works

9

target-machine code

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent
Code Optimizer

Machine-Dependent
Code Optimizer

Lexical Analyzer

Code Generator

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

target-machine code

Symbol Table
position
initial
rate

…
…
…

1
2
3

position = initial + rate * 60

<id,1> <=> <id,2> <+> <id,3> <*> <60>!

=

<id,1> +

<id,2> *

60 <id,3> =

<id,1> +

<id,2> *

inttofloat <id,3>

60

How a Program Works

10

target-machine code

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent
Code Optimizer

Machine-Dependent
Code Optimizer

Lexical Analyzer

Code Generator

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

target-machine code

Symbol Table
position
initial
rate

…
…
…

1
2
3

position = initial + rate * 60

t1 = inttofloat(60)!
t2 = id3 * t1!
t3 = id2 + t2!
id1 = t3!

t1 = id3 * 60.0!
id1 = id2 + t1!

LDF R2, id3!
MULF R2, R2, #60.0!
LDF R1, id2!
ADDF R1, R1, R2!
STF id1, R1!

0001 0010 1111 0000!
1110 0010 0011 1100!
…!

How a Program Works
•  Interpreter

•  Translates a source program to its equivalent machine-language
program and immediately executes them.

•  The Python language uses an interpreter.

11

Source Program
Interpreter

input
output

References & Photo Credits
• Pearson Custom Computer Science COMS W1001

Introduction to Information Science, Columbia University.
Chapter 12 Introduction to Computer and Programming by
Tony Gaddis

• Compilers, Principles, Techniques, and Tools. Alfred V.
Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.

12

