DATABASE

COMS W1001
Introduction to Information Science

Boyi Xie

I
Today's Topics

- Database System Applications

- Database Systems versus File Systems
- View of Data

- Database Architecture

- E-R Model

- Relational Model

- Fundamental Operations

- A Sample Relational Database

Database System Applications

- Banking

- customer information, accounts, transactions
- Airlines

- reservation, schedule
- Universities

- student information, course registration

- Telecommunication
- records of calls made, monthly bills

Finance
- purchases of financial instruments such as stocks

Sales
- product, customer, purchase information

Manufacturing
- inventories, orders, supply chain management

Human resources
- information about employees, salaries, payroll

Database Systems vs File Systems

- Using Files for data management

- Data redundancy and inconsistency
- Difficulty in accessing data

- Data isolation

View of Data

Data Abstraction

Physical level — the lowest level of abstraction describes how the
data are actually stored.

Logical level — the next-higher level of abstraction describes what
data are stored in the database, and what relationships exist
among those data.

View level — the highest level of abstraction describes only part of
the entire database.

Instances and Schemas

Instance — the collection of information stored in the database at a
particular moment is called an instance of the database.

Schema — the overall design of the database is called the database
schema. Schemas are changed infrequently.

Database Languages

- Data-Definition Language
- Specify the database schema
- Table definition and creation
- Metadata — data about data
- E.g. CREATE TABLE

- Data-Manipulation Language
- Retrieval of information stored in the database
- Insertion of new information into database
- Deletion of information from the database
- Modification of information stored in the database
- E.g. SELECT

Database Users and Administrators

- People work with a database can be categorized as
database users or database administrators

naive users . sophisticated
(tellers, agents application iSere database
web hsers) ’ programmers (analysts) administrators

use write use use

application application query administration
interfaces rograms tools tools

Transaction Management

- Often, several operations on the database form a single logical unit of
work.

- E.g. a funds transfer, one account is debited and another account is
credited. Either both the credit and debit occur, or that neither occuir.

- A transaction is a unit of program execution that accesses and
possibly updates various data items

- Atomicity — either all operations of the transaction are reflected properly in
the database, or none are

- Consistency — the correctness of the transaction and the preservation of
the consistency of the database

- Isolation — even though multiple transactions may execute concurrently,
each transaction is unaware of other transactions

- Durability — after a transaction completes successfully, the changes it has
made to the database persist, even if there are system failures

Database System Structure

- Storage Manager

- Authorization and integrity manager

- Tests for the satisfaction of integrity constraints and checks the authority
of users to access data

- Transaction manager

- Ensures that the database remains in a consistent (correct) state
despite system failures, and the concurrent transaction executions
proceed without conflicting

- File manager

- Manages the allocation of space on disk storage and the data structures
used to represent information stored on disk

- Buffer manager

- Responsible for fetching data from disk storage into main memory, and
deciding what data to cache in main memory

Database System Structure

- The Query Processor

- DDL interpreter

- Interpret DDL statements and records the definitions in the data
dictionary
- DML compiler
- Translates DML statements in a query language into an evaluation plan
consisting of low-level instructions that the query evaluation engine
understands
- Query evaluation engine
- Executes low-level instructions generated by the DML compiler

naive users — sophisticated
(tellers, agents, application users database
web {lsgrs) ' programmers (analysts) administrators

use write use use

application application query administration
interfaces rograms tools tools

compilerand| .| pam oueries | |DDL interpreter
/ linker
application)
object code and organizer

| query evaluation J
engine

| |
| |
| |
| |
| |
| |
| |
| |
|

| 1 |
| program DML compiler |
|

| |
| |
| |
| |
| |
| |
| |
| |

query processor

buffer manager | | file manager | authorization transaction
‘ and integrity manager
manager

/ storage manager

disk storage

indices

data dictionary

data — statistical data

K—//

Application Architectures

- Two-tier architecture
- Three-tier architecture

. o —

! ‘. : |
| | ! |
[| : :
| : client : |
! application ! | application client |
I\ / ! I
network network
A \ ; R Y
: : | application server |
1 I |
. | database system | server : |
| ! ! database system :
i

a. two-tier architecture b. three-tier architecture

Data Model

Entity-Relationship (E-R) model

The E-R model perceives the real world as consisting of basic
objects, called entities, and relationships among these objects.

It is very useful in mapping the meanings and interactions of real-
world enterprises onto a conceptual schema.

Many database design tools draw on concepts from the E-R model.
Relational Model

The relational model is today the primary data model for
commercial data-processing applications.

A relational database consists of a collection of tables
A row in a table represents a relationship among a set of values

Database designers often formulate database schema design by first

modeling data at a high level, using the E-R model, and then translating
it into the relational model.

I
Entity-Relationship Model

- The E-R model employs three basic notions

- Entity sets

- An entity is a “thing” or “object” in the real world that is distinguishable from
all other objects

- An entity set is a set of entities of the same type that share the same
properties, or attributes
- Relationship sets
- Arelationship is an association among several entities
- The function that an entity plays in a relationship is called that entity’s role
- Arelationship may also have attributes called descriptive attributes

- Attributes

- Simple and composite attributes

- E.g. person name is a composite attribute consisting of first-name, middle-name,
and last-name

- Single-valued and multivalued attributes

* E.g. phone number can be a multivalued attribute because a person may have
zero, one, or several phone numbers

- Derived attributes

- E.g. age is a derived attribute, which can be computed from date-of-birth and the
current date. In this case, date-of-birth may be referred to as a base attribute

Symbols used in the E-R notation

E entity set attribute

multivalued attribute

<|'\> relationship set B A B derived attribute
relationship set for
weak entity set
discriminating attribute

Is-A
@ (specialization or of weak entity set
generalization)

00

“ E weak entity set

\
7
v,

primary key

E-R diagram with composite, multivalued,
and derived attributes

Gniddel_namD street>

@st_name Iast_namD city >
C_name >
address
@stomer R state >

customer

\ zip_code
@one_numb@ ‘ :: age ::)
Cdate_of_birth

E-R diagram with attributes attached to a
relationship set

e

O N

customer QV account
-

date_of_birth @

account number
I

E-R diagram with a weak entity set

loan_nurnber payment_number™

loan loan_payment payment

/

E-R diagram with a ternary relationship

Job branch name

employee works_on branch

employee_id

branch_city

E-R diagram with specialization and generalization

TS G

Y

erson
ISA

credit_rating

customer

employee

ISA

officer secretary

teller
station_number —

E-R diagram for a banking enterprise

_loan_number > ayment_numbed

Customer_id /
e
customer borrow loan @
D o)
customer
banker
employee id
manage
employee
worker

account number
\) balance
account

ISA

saving checking

overdraft_amount>

E-R diagram for an e-commerce enterprise

o e Comal >
name
Cname
author publisher
- customer
@ @ basket_id
== @ Eggﬁg;”g— basket_of

/ b°°:k <o waronouse | —aate >
=

Relational Model

The relational mode is today the primary data model for
commercial data-processing applications

A relational database consists of a collection of tables,
each of which is assigned a unique name

The headers (or columns) of a table are attributes

A row in a table is a tuple of the attributes, and represents
a record

We can represent Entity-Relationship diagrams by tables
In relational model

Fundamental Operations

- The Project Operation (pi 1)

‘ Trloan-number,amount(loan)

- The Select Operation (sigma o)

‘ 0-amount>1200(|oan)

: 0-branch-name=“Perryridge”(loan)
‘ c)-branch-name=“Perryridge” Aamount>1 ZOO(IOan)

- Composition of Relational Operation
‘ Trcustomer—name(ocustomer-city=“Harrison”(cus‘tomer))

- The Rename Operation (rho p)

- returns the result of expression E under the name x, with the attributes
renamed to A1,A2,...,An.

- Join Operation (M)

- Combine rows from two or more tables, based on a common field between
them.

A Sample Relational Database

- This sample database will address the following topics
- E-R diagram to schema diagrams for relational database
- Create and delete a database (schema)
- Create and delete a table
- Data types
- Insert, update and delete records (rows in a table)

- Queries
- Project operation
- Select operation
- Rename operation
- Join operation
 Others

E-R Diagram

Students @

@ Professors

@@

lass_yea

course_id

Courses

t

B

Schema Diagram

houses head of professors teaches
house_name |§_—| professor_id —>| professor_id [«—{ professor_id
mascot house name first_name course _id
motto last_name classroom
house ghost
students enrolls_in courses
student id <«— student_id :>>| course_id
first_name course_id name
last_name exam description
HOgWCll"'l'S house name grade required_textbook
Schema Diagram | class_year required_equipment

Creation and Deletion of a Database

- Create a database (schema)

CREATE DATABASE hogwarts;

- Delete a database (schema)

DROP DATABASE hogwarts;

- Show Databases

SHOW DATABASES;

- Show Tables

SHOW TABLES;

Create and Delete a Table, Data Types

- Create a table

CREATE TABLE students (
student_id INT NOT NULL
AUTO_INCREMENT,
first name VARCHAR(255),
last hame VARCHAR(255),
house _name VARCHAR(100),
class_year INT,
PRIMARY KEY (student_id)

);
- Delete all records in a table
TRUNCATE TABLE students:

- Delete a table
DROP TABLE students;

More about data types:

http://dev.mysql.com/doc/refman/5.6/en/
data-types.html

Insert, Update, and Delete a Record

- Insert a record

INSERT INTO enrolls_in
(student_id, course _id, exam, grade)
VALUES (ll1||’ "1", l|86l|’ IIBII);

- Update a record

UPDATE enrolls_in SET grade ="A'
WHERE student_id ='1" AND course _id ='5';

- Delete a record

DELETE FROM enrolls_in
WHERE student_id ='9' AND course _id ='5';

Basic Queries

- Select all records in a table

SELECT * FROM students;

- Project partial attributes

SELECT first_ name, last_name, house_name
FROM students;

- Create View

CREATE VIEW house_assignments AS
SELECT first_ nhame, last name, house _nhame
FROM students;

Rename Tables and Attributes

- Rename tables

SELECT * FROM head_of AS h, professors AS p
WHERE h.professor_id = p.professor id;

- Rename attributes

SELECT p.first_ name AS "First Name", p.last name
AS "Last Name", h.house name AS "House"

FROM head_of AS h, professors AS p

WHERE h.professor_id = p.professor id;

Join, Natural Join, Outer Join

- Join

SELECT * FROM head_of JOIN professors;
- Join based on conditions

SELECT * FROM head_of JOIN professors
ON head_of.professor_id = professors.professor id;

- Natural join
SELECT * FROM head_of NATURAL JOIN professors;

- Quter join

- Left join
SELECT * FROM professors LEFT JOIN head_of
ON head_of.professor_id = professors.professor id;
- Right join
SELECT * FROM head_of RIGHT JOIN professors
ON head_of.professor_id = professors.professor _id;

I
Group By, Order By

- Group By

SELECT e.student_id, s.first name, s.last hame, COUNT(*)
FROM enrolls_in AS e, students AS s

WHERE e.student _id = s.student _id

GROUP BY e.student_id;

- Order By

SELECT s.first_ name, s.last name, AVG(e.exam)

FROM enrolls_in AS e, students AS s, courses AS ¢

WHERE e.course_id = c.course_id AND e.student_id = s.student_id
GROUP BY s.first_ name, s.last name

ORDER BY AVG(e.exam) DESC;

Other Useful Commands

- DISTINCT

SELECT DISTINCT e.student_id, s.first_ name, s.last name
FROM enrolls_in AS e, students AS s
WHERE e.student_id = s.student_id;

- COUNT

SELECT e.student_id, s.first name, s.last hame, COUNT(*)
FROM enrolls_in AS e, students AS s

WHERE e.student_id = s.student_id

GROUP BY e.student _id;

- AVG

SELECT s.first_ nhame, s.last name, AVG(e.exam)

FROM enrolls_in AS e, students AS s, courses AS ¢

WHERE e.course_id = c.course_id AND e.student_id = s.student_id
GROUP BY s.first_ name, s.last name

ORDER BY AVG(e.exam) DESC;

References & Photo Credits

- Abraham Silberschatz, Henry F. Korth, S. Sudarshan.
Database System Concepts. McGraw-Hill.

- Brookshear, J. Glenn (2011-04-13). Computer Science:
An Overview (11th Edition). Prentice Hall.

- Harry Potter Wiki. http://harrypotter.wikia.com

