DATA MANIPULATION

COMS W1001
Introduction to Information Science

Boyi Xie




I
Today's Topics

- Computer Architecture

- Machine Language

- Program Execution

- Arithmetic/Logic Instructions

- Communication with Other Devices




I
CPU Basics

- Central Processing Unit (CPU)

- The circuitry in a computer that controls the manipulation of data
- Consists of

- Arithmetic/logic unit — circuitry that performs operations on data

« Control unit — circuitry for coordinating the machine’s activities

- Register unit — data storage cells, called registers (general-purpose registers &
special-purpose reqisters)

Central processing unit Main memory
Register unit
Arithmetic/logic
unit

Bus

Control
unit

(00 -- 0000

_[

Registers




Stored-Program Concept

- Early computers
- Programs and data are different entities
- Only data in memory
- CPU could be conveniently rewired

- Stored-program concept

- Programs can be encoded and stored in main memory

- CPU to extract the program from memory, decode the instructions, and
execute them

- No CPU rewiring required




Machine Language

- CPU are designed to recognize the instructions encoded as bit
patterns

- This collection of instructions along with the encoding system is called
machine language

- An instruction expressed in machine language is called machine
instruction




The Instruction Repertoire

- Atypical CPU is able to decode only a limit number of machine
instructions

- Once a machine can perform certain elementary but well-chosen
tasks, adding more features does not increase the machine’s
theoretical capabilities

- Two philosophies of CPU architecture

- RISC - reduced instruction set computer
- To execute a minimal set of machine instructions
- Machine is efficient and fast

- CISC — complex instruction set computer

- To execute a large number of complex instructions, even though many of them
are technically redundant

- Easier to program: a single instruction can be used to accomplish a task that
would require a multi-instruction sequence in a RISC design




Instruction Category

- Data transfer
- Movement of data from one location to another
- Transfer of data between CPU and main memory, e.g. LOAD, STORE
- 1/O instructions
- Arithmetic/Logic
- Boolean operations, e.g. AND, OR, XOR
- Shift or rotate the contents in registers, e.g. SHIFT, ROTATE
- Control

- Direct the execution of the program, e.g. JUMP (unconditional jump and
conditional jump)




Instruction Category

- An example — dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.




An lllustrative Machine Language

- Assume a computer with
- 16 general-purpose registers
- 256 main memory cells, each with a capacity of 8 bits
- Machine instructions of 16 bits

Central processing unit Main memory
. Address Cells
Registers
o Program counter 00 ]
1 Bus or [ ]
- 02 ]
12 Instruction register
03 ]
P . .
— S —




An lllustrative Machine Language

- Assume a computer with
- 16 general-purpose registers
- 256 main memory cells, each with a capacity of 8 bits

- Machine instructions of 16 bits

Op-code Operand

1 !
I [ I

0011 0101 1010 0111 Actualbit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Instruction—[ 3 5 A 7

Op-code 3 means ‘

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.




Program EXxecution

- Two special purpose registers
- Instruction register — hold the instructions being executed
- Program counter — contains the address of the next instruction

- The machine cycle — a three-step process

1. Retrieve the next

instruction from
memory (as indicated
by the program

counter) and then

increment the

program counter.

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.




Program Execution

- An example of program execution

Program counter contains
address of first instructions.

CPU Main memory
Address Cells
Registers
= Program counter A0
0
Al
A0 Bus L6C |
1 L = Az — Program is
6D | stored in
A3 main memory
> = Ad beginning at
: address AO.
A5 [ 56
Instruction register A6
A7
A8
F [
A9 |




Program EXxecution

CPU Main memory

Program counter
Address Cells

Bus A0 |_-
a1 | e
Instruction register
A2
A3

a. At the beginning of the fetch step the instruction starting at address AQ is
retrieved from memory and placed in the instruction register.

CPU Main memory
Program counter Address Cells
A0

Bus
. . Al
Instruction register

1 A2 (16|
A3 6D |

b. Then the program counter is incremented so that it points to the next instruction.




Arithmetic/Logic Instructions

- Logic operations

10011010 10011010 10011010
AND 11001001 OR 11001001 XOR 11001001
10001000 11011011 01010011

- Rotation and shift operations
- Circular shift, or rotation — place the bit that fell off in the hole on the other side
- Logical shift — discard the bit that falls off and always fill with O
- Arithmetic shift — shifts that leave the sign bit unchanged

- Arithmetic Operations
- Add, subtract, multiply, and divide




Logic Instructions

- Use of AND
- Masking — produce a result that is partial replica of one of the operands
00001111 < Mask
AND 10101010
00001010
/ AN

Fill with O Replica

- Force 0 in a position

11011111
AND 10101010

10001010




Logic Instructions

- Use of OR
- Masking — produce a result that is partial replica of one of the operands
11110000 < Mask
OR 10101010
11111010
/ N

Fill with 1 Replica

- Force 1 in a position

00100000
AND 10001110

10101110




Logic Instructions

- Use of XOR
- Form the complement of a bit string

111111117 < Mask
XOR 10101010
01010101

/1

Produce the complement




Communicating with Other Devices

- Controller — an intermediary apparatus that handles the
communication between a computer and other devices
- Originally, each controller was designed for a particular type of device
- Gradually, a single controller is able to handle a variety of devices, e.g.
universal serial bus (USB) and Thunderbolt
- Each controller communicates with the computer itself by means of
connections to the same bus that connects the computer’'s CPU and

main memory
CD drive Modem

Controller Controller

Bus Main

CPU memory

Controller Controller

Monitor Disk drive




Communicating with Other Devices

- Memory-mapped 1/O

- Computer’s input/output devices appear to be in various memory locations

- The transfer of data to and from controllers is directed by the same LOAD

and STORE op-codes that are already provided for communication with
main memory

- Each controller is designed to respond to references to a unique set of

addresses while main memory is designed to ignore references to these
locations

Bus Main
CPU =—— Mmemory
#

— Controller — Peripheral device




Communicating with Other Devices

- Direct Memory Access (DMA)

- A controller carry on its own communication with main memory

- Enhance the computer’s performance, e.g. the computing resources of the

CPU are not wasted during the relatively slow data transfer from disk to
memory

- Complicate the communication taking place over a computer’s bus

- Von Neumann bottleneck

- Von Neumann architecture in which a CPU fetches its instructions from
memory over a central bus

- Coordination of all the activities on the bus is a major design issue

- The central bus can become an impediment as the CPU and the
controllers compete for bus access




Communicating with Other Devices

- Handshake

- A two-way dialogue between the computer and the peripheral device to

exchange information about the device’s status and coordinate their
activities

- Status word is often involved

- A bit pattern generated by the peripheral device and sent to the controller

- Reflect the conditions of the device, e.g. printer out of paper, ready for additional
data, paper jam, etc.




Communicating with Other Devices

- Popular Communication Media

- Parallel communication — several signals transferred at the same time,
each on a separate line, e.g. a computer’s internal bus

- Serial communication — signals transferred one after the other over a
single line, e.g. USB, Thunderbolt

- Long distance communication
- Modem (modulator-demodulator) — convert bit patterns into audible tones

- DSL (Digital Subscriber Line) — uses frequencies above the audible range to
transfer digital data while leaving the lower frequency spectrum for voice

- Communication rates
- Measured in bits per second (bps), Kbps, Mbps, Gbps, etc.
- Bandwidth — the maximum rate available on the communication path




Other Architectures

- Pipelining
- Increasing execution speed is not the only way to improve a computer’s
performance

- Real goal is to improve throughput — the total amount of work the machine
can accomplish in a given amount of time

- Use pipelining — the technique of allowing the steps in the machine cycle to
overlap

- Multiprocessor machines
- Parallel processing — process several activities at the same time
- MIMD (multiple-instruction stream, multiple-data stream) architecture
- SISD (single-instruction stream, single-data stream) architecture
- SIMD (single-instruction stream, multiple-data stream) architecture




References & Photo Credits

- Brookshear, J. Glenn (2011-04-13). Computer Science:
An Overview (11th Edition). Prentice Hall. Kindle Edition.




