Analysis of Algorithms I:

Universal Hashing

Xi Chen

Columbia University

Introduction

Goal: Let U denote a (very large) universe set. Need a data
structure to handle any sequence of n dictionary operations:

OP1(k1), OPa(k2), ..., OPp(kn)

where ki, ..., k, € U are keys and OP; € {Search, Insert, Delete }.

Introduction

Given a sequence of n operations, we let Sop = () and let
S; = subset of U we get after the first i operations

It is clear that |S;| < n for any i. The sets S;'s are completely
determined by the sequence of operations and do not depend on
the data structure (or the hash function we use as in a hash table).

Introduction

Suppose we use a hash table T[0...m — 1] of size m to handle a
sequence of n operations. Let h: U — {0,1,..., m — 1} be the
hash function we use, then the ith operation OP;(k;) takes time:

time needed to compute h(k;) + O(COLp(kj, Si—1))

where we use COLj(k, S) to denote the number of collisions
between key k and keys in S, with respect to h:

COL(k,S) = |{y € S : h(k) = h(x)}|

So COLy(ki, Si—1) is the length of the list at slot h(k;) before OP;.

Introduction

As a result, if the evaluation of h can always be done in constant
many steps, the total running time is

O(n) + 0 (zn: COLh(k;,S;_1)>

i=1

In the last class we showed that no matter which hash function h
is used, there always exists a sequence of n operations that leads
to Q(n?) total running time when |U| is large enough (e.g., > nm).
This is unavoidable if we try to fix a hash function and use it to
handle all possible sequences of dictionary operations.

Introduction

Instead, we show how to randomly and properly pick (or build)
a hash function so that for any sequence, the total running time
is O(n) in expectation. This method is usually referred to as
Universal Hashing.

Introduction

Definition

Let H be a collection of hash functions from U to {0,...,m —1}.
We say it is universal if for any two distinct keys x and y from U:
[the number of functions h € H such that h(x) = h(y)] < |H|/m.

A corollary from the definition: If we pick a hash function h from
H uniformly at random (each with probability 1/|H]), then

Prh(x)=h(y)] <1/m, forallx#yeU

That is, for any two keys x and y, the probability that there is
collision between them (with respect to h) is bounded by 1/m.

Introduction

Theorem

Assume there is a universal collection H in which every function h
can be evaluated in O(1) steps. Then given any sequence of n
operations, if we pick a hash function h from H uniformly at
random, then the total running time is

O(n+ (n*/m))

in expectation.

Introduction

By the linearity of expectations, the expected total running time is

o(n)+ 0 (Z E[COL(K;, S,-_l)]>

i=1

it suffices to show that for every i € [n], we have

E[COLh(k,',S;_l)] < (n/m)~|—1 (1)

Introduction

To prove (1), we first consider the case when k; € S;_1. Because
|Si—1| < n, there are at most (n — 1) keys y € S;_1 other than k;.
For each such y, we use X, to denote the indicator {0, 1} random
variable which is 1 if h(y) = h(k;) and is 0 otherwise. Then by the
definition of COLy, and the linearity of expectations, we have

E[COLy(ki,Si-1)] = E|1+ > X
ye€Si—1—{ki}

=1+ E[X,] =1+> Pr[X, =1]

=1+(n—-1)/m<n/m+1

Introduction

Here the last equation uses the fact that
PriX,=1]=1/m

This comes from the assumption that H is universal (and this is
the only place we use the assumption that H is universal). The
other case when k; ¢ S;_1 can be proved similarly.

Introduction

But does such a universal collection H exists? Next we present a
construction of H when p = |U| is a prime. (What if |U| is not a
prime? Either find a prime p that is a little larger than |U| and use
{0,1,...,p — 1} as the universe set instead; or use a construction
that does not need this assumption. Google for other constructions
of universal collections if interested.)

Introduction

Assume p is a prime. Let
Zp=1{0,1,2,....,p—1} and Zy={1,2,...,p—1}
So U = Zp. For every pair (a, b) where a € Zy, and b € Zp, let
hap(k) = (ak + b mod p) mod m
be a hash function from U to {0,1,..., m}. Set
H={hsp:acZyand beZ,}

so H contains (p — 1)p functions.

Introduction

This collection H has all the properties we need: It is very easy to
pick a hash function h from H randomly: just pick a from Z7 and b
from Z, uniformly at random and set h = h,p. Evaluation of each
h € H only takes O(1) steps. Most importantly, H is universal!:

When p is a prime, H is a universal collection of hash functions.

Introduction

Let k # / be two different keys from U = Z,. We need to count
the number of pairs (a, b), where a € Z;; and b € Zp, such that

hab(k) = hab(g)
and show that it is no more than

IH _ p(p—1)
m m

Introduction

To this end we construct the following function:
g : Ly X Lp—LpxLp
where (r,s) = g(a, b) if
r=ak+b modp and s=al+ b modp

Using g, we now need to count the number of pairs (a, b) such
that (r,s) = g(a, b) satisfies

r mod m=s mod m (2)

Introduction

Next we prove that the map g defined in the last slide is indeed a
one-to-one correspondence between Z; x Zp and

{(r,s) €Zpx Zp:r+#s}
To prove this, we need to show that

© When r = s, there exists no (a, b) € Zj, x Zp such that
g(a,b) = (r,s); and

@ When r # s, there exists exactly one (a, b) € Zj, x Zp such
that g(a, b) = (r,s).

Both can be proved using the assumption that p is prime.

Introduction

Once we know that g is a one-to-one correspondence between
(a,b) € Z; x Zp and (r,s) € Zp x Zp with r # s, we have

number of (a, b) € Z,, x Zp st. (r,s) = g(a, b) satisfies (2)
is exactly the same as

number of (r,s) € Z, x Z,, that satisfies r # s and (2)

Introduction

It is much simpler to count the number of (r,s) such that r # s
and (2) is satisfied. Fix r to be any number from {0,1,...,p—1}.
Then to satisfy both conditions, s can only be

ceF=2myr—m,r+myr+2m,...

Assume there are g1 many possible s's smaller than r: r — g1m,
...,r—mand g many possible s's larger than r: r+m,.. .,
r+ gom. Because r —gim >0 and r +gom < p — 1, we have

(r+qgm)—(r—qgm)<p-1

and thus, the total number of possible s'sis g1 + g2 < (p—1)/m.

Introduction

Therefore, the total number of (r,s) that satisfies r # s and (2) is

p—1
SP‘T

Since the total number of hash functions in H is p(p — 1), we can
finally conclude that H is universal.

Introduction

