
Analysis of Algorithms I:

Single-Source Shortest Paths

Xi Chen

Columbia University

Introduction

We start with some notation. Let G = (V ,E) denote a weighted

directed graph. The weight of (u, v) ∈ E is w(u, v). The weight of

a path p = 〈v0, v1, . . . , vk〉 is the sum of the weights of its edges:

w(p) =
k∑

i=1

w(vi−1, vi)

Introduction

Given u, v ∈ V , we define the shortest-path weight from u to v :

δ(u, v) = min
{
w(p) : any path from u to v

}
and δ(u, v) = +∞ if v is not reachable from u. Usually we simply

refer to δ(u, v) as the distance from u to v . In this class, we focus

on the single-source shortest-paths problem: Given a weighted

directed graph G = (V ,E) and a source vertex s ∈ V , compute

δ(s, v) and find a shortest path from s to v , for all v ∈ V . In the

next class, we discuss the all-pairs shortest-paths problems. While

the latter can be solved by running a single-source algorithm once

for each vertex, usually it can be solved faster.

Introduction

Some basic properties of δ(s, v):

1 Triangle inequality:

δ(u, v) ≤ δ(u, y) + δ(y , v), for all u, y , v ∈ V

Implies δ(s, v) ≤ δ(s, u) + w(u, v) for any (u, v) ∈ E

2 * Subpath property *: If p = 〈v0, v1, . . . , vk〉 is a shortest

path from v0 to vk , then for any i , j : 0 ≤ i ≤ j ≤ k ,

pi ,j = 〈vi , vi+1, . . . , vj〉

must be a shortest path from vi to vj .

Introduction

We start by discussing the case when all weights are nonnegative

(e.g., distances between cities). Dijkstra’s algorithm: Very very

similar to Prim’s algorithm for minimum spanning trees. Let

G = (V ,E) be a weighted directed graph. Note: If G is

undirected, just replace each undirected edge by two directed edges

with opposite directions with the same weight. For convenience,

we also assume that all vertices are reachable from s, though this

assumption is not necessary.

Introduction

Dijkstra’s algorithm maintains a set of vertices S , with S = {s} at

the beginning. For each round, we pick a vertex from V − S and

add it to S . When a vertex v is picked and added into S , the

distance δ(s, v) is computed correctly and stored in v .d . Since we

assumed that all vertices are reachable from s, the algorithm stops

when S = V . In addition to v .d , each vertex v ∈ V also has an

attribute v .π, a pointer to another vertex in the graph. Edges from

Eπ =
{

(v .π, v) : v ∈ V − {s}
}
⊆ E

form a shortest-paths tree: For every v ∈ V −{s}, the unique path

from s to v in Eπ must be a shortest path from s to v . In the

class, we only focus on the v .d attribute.

Introduction

Before describing the algorithm, we present the key lemma to

Dijkstra’s algorithm. Let S be a set of vertices with s ∈ S . We say

p is an S-path from s to v ∈ V − S if all vertices of p lie in S

except v itself (so all the edges on the path p have both endpoints

in S except the last edge (u, v), with u ∈ S and v ∈ V −S .) Quick

question: If we know the distance δ(s, u) for all u ∈ S , how can we

compute the weight of the shortest S-path from s to v ∈ V − S?

We denote the latter by δ(s,S , v). Use the following formula:

δ(s,S , v) = min
u∈S

{
δ(s, u) + w(u, v)

}
(1)

Prove its correctness. Here comes the lemma:

Introduction

Lemma

Let S be a set of vertices with s ∈ S. If v ∈ V − S has the

minimum δ(s,S , v) among all vertices v ∈ V − S, then we must

have δ(s, v) = δ(s,S , v).

Assume this is not the case, then we must have δ(s, v) < δ(s,S , v)

because δ(s, v) ≤ δ(s,S , v) by definition. This means there is a

shortest path p from s to v such that

w(p) < δ(s,S , v)

Introduction

Let y denote the first vertex not in S on the path p. If y = v then

p is indeed an S-path and thus,

w(p) ≥ δ(s, S , v)

contradiction. So y 6= v is a predecessor of v in p. Let p′ denote

the subpath of p from s to y , then p′ is clearly an S-path (why?).

As a result, we have

δ(s,S , y) ≤ w(p′) ≤ w(p) < δ(s,S , v)

contradicting with the assumption that v has the minimum

δ(s,S , v) among all vertices in V − S (since y ∈ V − S).

Introduction

This suggests the following naive but correct algorithm: Start with

S = {s} and s.d = 0. At any time every v ∈ S has v .d = δ(s, v).

For each round (when S 6= V yet), use formula (1) to compute

δ(s,S , v) for each v ∈ V , which takes time |V − S | · |S |. Find a

vertex v ∈ V that has the minimum δ(s,S , v). Set

v .d = δ(s,S , v)

and add it into S . But . . . too slow!

Introduction

Instead, we keep the following invariant: Prior to each round

1 For every u ∈ S , u.d = δ(s, u). For every v ∈ S ,

v .d = δ(s,S , v)

which is set to be +∞ if currently there is no S-path from s

to v (may happen even if all vertices are reachable from s)

2 We also maintain a priority queue Q of vertices in V − S ,

sorted based on the v .d attribute. So to find a vertex v ∈ V

with the minimum δ(s,S , v), it suffices to make a call to

Extract-Min. However (similar to Prim’s algorithm), after

adding v to S (note that there is no need to change v .d ,

why?) we need to update w .d for every w remains in Q.

Introduction

Now we present Dijkstra’s algorithm:

1 set S = {s}, s.d = 0 and s.π = nil (root)

2 for each v ∈ V − {s} (check that the invariant holds)

3 if (s, v) ∈ E : set v .d = w(s, v) and v .π = s

4 else: set v .d = +∞ and v .π = nil

5 Priority-Queue-Init (Q,V − {s})
6 while Q 6= ∅ (S 6= V) do

7 u = Extract-Min (Q)

8 for each v ∈ adj[u] do

9 if v ∈ Q and v .d > u.d + w(u, v) then

10 Decrease-Key (Q, v , u.d + w(u, v)) and v .π = u

Introduction

To prove its correctness, it suffices to show that after adding u to S

at the beginning a while-loop, by the end of the loop we still have

v .d = δ(s,S , v)

for every vertex v in Q. Ruunning time of Dijkstra: Initialization of

Q plus n− 1 Extract-Min plus m Decrease-Key. If we use Heap (or

Red-Black tree) to implement Q: O(m lg n). By using a Fibonacci

heap (Chapter 19), the total running time is O(m + n lg n).

Introduction

Now we work on the more general case when the weights can be

negative. Again, we assume that all vertices v ∈ V are reachable

from s. The trouble of having negative weights is that sometimes

δ(s, v) is not well defined. How can this happen? It happens when

there is a cycle c in G such that the total weight w(c) of edges in

c is negative. For example, if (s, a), (a, b), (b, c), (c , a), (a, d) ∈ E

and the weight of the cycle abca is negative, then we can go from

s to d by cycling around abca for as many times as we want so

that the total weight of the path approaches −∞. So no matter

what path from s to d you pick, I can always find you in this (kind

of stupid) way a path with even smaller total weight. Show that if

there is no negative-weight cycle in G , then δ(s, v) is well-defined

and there always exists a shortest “simple” path from s to v .

Introduction

The Bellman-Ford algorithm solves the single-source shortest-paths

problem when the weights may be negative. (See the details

below.) The input is a weighted directed graph G = (V ,E) in

which the weights may be negative, as well as a source vertex

s ∈ V . Output: Either indicate that G has a negative-weight

cycle; or if no negative-weight cycle exists in G (for which case

δ(s, v) is well-defined for all v ∈ V), compute δ(s, v) and a

shortest path from s to v for all v ∈ V . For the latter, again we

mean that Eπ forms a shortest-paths tree.

Introduction

1 set s.d = 0 and s.π = nil (root)

2 for each v ∈ V − {s} do

3 set v .d =∞ and v .π = nil

4 repeat n − 1 times

5 for each edge (u, v) ∈ E do

6 if v .d > u.d + w(u, v) then

7 set v .d = u.d + w(u, v) and v .π = u

8 for each edge (u, v) ∈ E do

9 if v .d > u.d + w(u, v) then

10 return “negative cycle”

11 return “no reachable negative cycle”

Introduction

The running time of Bellman-Ford is Θ(nm). Now we prove its

correctness. First of all, if there is a negative-weight cycle, say

c = 〈v0, v1, . . . , vk , v0〉

in G , then the algorithm must return “negative cycle”. To see this,

assume for contradiction that line 10 is not executed.

Introduction

Because (v0, v1), (v1, v2), . . . , (vk , v0) ∈ E , we have

v1.d ≤ v0.d + w(v0, v1)

v2.d ≤ v1.d + w(v1, v2)

· · ·
v0.d ≤ vk .d + w(vk , v0)

Summing up all these k + 1 inequalities gives us

0 ≤ w(v0, v1) + w(v1, v2) + · · ·+ w(vk , v0)

contradicting with our assumption of c being a negative cycle.

Introduction

Finally we show that if there is no negative-weight cycle in G ,

then v .d = δ(s, v) for all v before the first for-loop of line 8; and

the algorithm outputs “no reachable negative cycle” by the end.

We prove the second part first. If v .d = δ(s, v) for all v ∈ V , then

for any (u, v) ∈ E , we have the following simple inequality

δ(s, v) ≤ δ(s, u) + w(u, v)

(why?) and thus,

v .d ≤ u.d + w(u, v)

for all (u, v) ∈ E . So it outputs “no reachable negative cycle”.

Introduction

We prove v .d = δ(s, v) for all v ∈ V . First, it is easy to prove,

using induction, that v .d ≥ δ(s, v) during any time of the

algorithm. Also v .d is nonincreasing during the execution of

Bellman-Ford because we only change v .d on line 7, which only

makes it smaller. These two properties imply that if v .d is set to

be δ(s, v) at some time during the execution, then it remains to be

δ(s, v) ever after! Now we start the proof.

Introduction

Pick any vertex v ∈ V . We show that v .d = δ(s, v) by the end of

the (n− 1) iterations of line 4. If there is no negative-weight cycle,

then δ(s, v) is well-defined and there is a “simple” path p from s

to v with w(p) = δ(s, v). Because

p = 〈v0, v1, . . . , vk−1, vk〉, where s = v0 and v = vk

is simple, we have k ≤ n − 1. It suffice to prove by induction:

By the end of the ith iteration of line 4, vi .d = δ(s, vi).

Because it implies that by the end of the (k ≤ n − 1)th iteration,

we have v .d = δ(s, v) and it remains so ever after.

Introduction

The basis is trivial. Induction step: Assume that by the end of the

(i − 1)th iteration (or at the beginning of the ith iteration), for

some i ≤ k , vi−1.d = δ(s, vi−1) and remains so ever after. We

show that by the end of the ith iteration, it must be the case that

vi .d = δ(s, vi). This is because in the for-loop of line 5, after the

edge (vi−1, vi) ∈ E is processed, we must have

vi .d ≤ vi−1.d + w(vi−1, vi) = δ(s, vi−1) + w(vi−1, vi) = δ(s, vi)

The second equation uses vi−1.d = δ(s, vi−1) by the inductive

hypothesis. The last equation uses the * subpath property *.

Introduction

Read Section 24.2: How to solve the single-source shortest

paths problem efficiently when G is a DAG:

Topological sort + dynamic programming

Introduction

