
Analysis of Algorithms I:

Selection and Comparison Lower Bound

Xi Chen

Columbia University

Introduction



Consider the following problem:

Selection: Given a sequence A[1 . . . n] and an integer

i : 1 ≤ i ≤ n, find the ith smallest integer in A.

For i = 1 or n, the problem is to find the smallest or the largest

element. This clearly can be done in linear time by making a pass

over all the n elements and keeping track of the smallest or largest

element seen so far. For general i , we can solve the problem by

sorting the whole sequence A first (e.g., using Mergesort) and then

output A[i ]. This takes time O(n lg n). Can we do better?

Introduction



Here is a divide-and-conquer framework for Selection: (For

simplicity we assume that all the elements are distinct.)

1. Divide: Pick a pivot x from the sequence. Use it to partition

the sequence so that it becomes:

A[1], . . . ,A[k − 1],A[k] = x ,A[k + 1], . . . ,A[n]

for some k . All elements on the left of A[k] are smaller than x

and all elements on the right are larger than x .

Introduction



2. Conquer: Compare i with k . Three cases:

1 If i = k, output x because x is the kth smallest.

2 If i < k, make a recursive call to find the ith smallest in

the lower subsequence
(

A[1], . . . ,A[k − 1]
)

3 If i > k, make a recursive call to find the (i − k)th smallest in

the upper subsequence
(

A[k + 1], . . . ,A[n]
)

3. Combine: Trivial.

Using induction, one can prove the correctness of this algorithm

(no matter how we pick a pivot in the Divide step).

Introduction



From what we have learnt from Quicksort, it is not surprising that

the performance of this algorithm crucially depends on the way we

pick pivots. Again, if we always use the first element in the

sequence, then the worst-case running time is quadratic (consider

sequences that are already sorted). And again, randomization

helps. We show that if pivots are picked uniformly at random (just

like in Randomized Quicksort), then the worst-case expected

running time is linear. We will refer to this randomized selection

algorithm as Randomized-Select.

Introduction



Theorem

Randomized-Select has worst-case expected running time O(n).

Similar to the analysis of Randomized Quicksort, there are two

approaches to prove the theorem above. We present a proof similar

to the analysis of Randomized Quicksort described in Exercise 7-3.

A different proof using indicator random variables and linearity of

expectations can be found in Exercise 9-4.

Introduction



We use T (n) to denote the worst-case expected running time of

Randomized-Select over all sequences of length n. Note that T (n)

here is a number instead of a random variable:

T (n) = max
A of length n and i ∈ [n]

E
[
running time on (A, i)

]
where we use [n] to denote {1, 2, . . . , n} for convenience.

Introduction



Now let z1 < z2 < · · · < zn denote a reordering of the input

sequence. First, the partition step takes time Θ(n) no matter

which element we pick to be the pivot. So we have

T (n) ≤ Θ(n) + expected running time of the recursive call

Introduction



We discuss the following cases:

1 If x = z1, then the expected running time of the recursive call

is no more than T (n − 1) (this happens if i > 1).

2 · · ·
3 If x = zn/2, then the expected running time of the recursive

call is no more than T (n/2) (this happens if i > n/2).

4 If x = zn/2+1, then the expected running time of the recursive

call is no more than T (n/2) (this happens if i ≤ n/2).

5 · · ·
6 If x = zn, then the expected running time of the recursive call

is no more than T (n − 1) (this happens if i < n).

Introduction



To summarize, when x = zk , where k ∈ [n], the expected running

time of the recursive call to Randomized-Select is no more than

T
(

max(k − 1, n − k)
)

=

{
T (n − k) when k ≤ n/2

T (k − 1) when k > n/2

Because the probability that we pick x = zk , for each k ∈ [n], is

1/n, the expected running time is bounded by:

T (n) ≤ Θ(n) +
n∑

k=1

(1/n) · T
(

max(k − 1, n − k)
)

Introduction



n∑
k=1

T
(

max(k − 1, n − k)
)

=

n/2∑
k=1

T (n − k) +
n∑

k=n/2+1

T (k − 1)

=
(
T (n − 1) + T (n − 2) + · · ·+ T (n/2)

)
+
(
T (n/2) + T (n/2 + 1) + · · ·+ T (n − 1)

)
= 2

n−1∑
k=n/2

T (k)

Introduction



Finally we use the substitution method to show that T (n) ≤ an for

some constant a > 0 to be specified later. First, the basis is trivial

if we set a to be large enough so that a > T (1). To prove the

induction step, by the recurrence and the inductive hypothesis:

T (n) ≤ cn + (2/n)
n−1∑

k=n/2

T (k)

≤ cn + (2/n)
n−1∑

k=n/2

ak < cn + 3an/4

It is clear that if we pick a > 4c , T (n) < cn + 3an/4 < an. This

shows that T (n) = O(n), and we finish the proof of Theorem 1.

Introduction



While Randomized-Quicksort has expected running time O(n lg n),

we know Mergesort is deterministic and also has running time

O(n lg n). So a natural question is, does there exist a deterministic

selection algorithm that has linear worst-case running time? The

answer is affirmative.

Introduction



Here is a deterministic method to pick a pivot from A[1 . . . n] (for

simplicity, we assume n is a multiple of 5):

1 Divide A into groups of 5 elements each: for each i ∈ [n/5],

Group i has A[5(i − 1) + 1],A[5(i − 1) + 2], . . . ,A[5i ].

2 Find the median of each group directly. We use Ci , i ∈ [n/5],

to denote the median of Group i .

3 Recursively select the median x out of (C1, . . . ,Cn/5).

4 Partition A using x as a pivot.

5 Recurse on the lower or upper subsequence.

Introduction



We show that this deterministic selection algorithm has worst-case

running time O(n). The key here is that every time we pick an x

using the method described in the last slide (Step 1-3), it results in

two balanced subsequences. More exactly, we show that if x is the

pivot picked, then both the number of elements smaller than x and

the number of elements larger than x are at least 3n/10. This

immediately implies (why) that the length of the lower and upper

subsequences are both no more than 7n/10.

Introduction



To see this, check Figure 9.1 on Page 221, in which we place all

the groups with its median smaller than x to the left of x ; and all

the groups with its median larger than x to the right of x . Because

x is the median of the medians, we know that there are roughly

speaking n/10 groups to the left of x and n/10 groups to the right

of x . Then all elements in the shadow are larger than x : each of

them is larger than the median of its own group, and the median

of its group is larger than x . Now how many elements we have in

the shadow? 3n/10 roughly speaking (the shadow is a rectangle

with height 3 and width n/10).

Introduction



This gives us the following recurrence:

T (n) ≤ Θ(n) + T (n/5) + Θ(n) + T (7n/10)

The first term Θ(n) is the time we need to find the n/5 medians,

because for each group it takes constant many steps. The second

term T (n/5) is the time we need to recursively find the median x

of the n/5 medians (C1, . . . ,Cn/5). The third term Θ(n) is the

running time of Partition. The last term T (7n/10) is the running

time of the recursive call on one of the subsequences, because we

have shown that both of them have length at most 7n/10.

Introduction



Use the substitution method to solve this recurrence, and we get

T (n) = O(n). Question: How about dividing the input sequence

into groups of 3 (why 5?) elements each? Doew the worst-case

running time remain linear?

Introduction



Next we come back to sorting. We have seen several sorting

algorithms. The best deterministic sorting algorithm we have seen

so far, e.g., Mergesort and Heapsort (We will not cover Heapsort

in class. Check Chapter 6 if you are not familiar with Heaps.) has

worst-case running time Θ(n lg n). A natural question is then, can

we do better? does every sorting algorithm take time Ω(n lg n)?

Introduction



It depends. We show that if an algorithm only uses comparisons to

get order information about the input sequence, then Θ(n lg n) is

the best one can hope. In particular, this bound is achieved, e.g.,

by Mergesort and Heapsort. In the next class, we will see that if all

the input integers fall in a reasonably small range, then there is a

linear-time algorithm using no comparison at all! (This contrasts

with comparison sorts, e.g., Mergesort and Heapsort, where the

running time does not depend on how large the input elements are

and we never make any assumption on the range of the input

elements. As long as the RAM model is considered, it always takes

one step to compare two input elements.)

Introduction



A comparison sorting algorithm only uses comparisons between

elements to gain order information about an input sequence. Such

an algorithm behaves like the questioner in 20 questions:

en. wikipedia. org/ wiki/ Twenty_ Questions

In each round the algorithm can pick two elements ai and aj and

ask which element is larger. Depending on the answer (and all

answers to previous questions as well), the algorithm picks again

two elements, compare them, and repeat. The algorithm stops

until the comparison results so far are sufficient to determine the

correct order of the input sequence.

Introduction

en.wikipedia.org/wiki/Twenty_Questions


Consider Insertion sort, Mergesort, Heapsort and Quicksort. All of

them are comparison sorting algorithms because in any of these

algorithms, we only gain order information about the input

sequence by comparisons. (Between any two comparisons, these

algorithms may reorder the input sequence or make copies of input

elements, but gain no order information at all from these

operations.)

Introduction



Theorem

Any deterministic comparison sorting algorithm must make

Ω(n lg n) comparisons in the worst case.

In the proof, we assume that all the input elements are distinct and

thus, every comparison is of the form: “ai < aj” or “ai > aj”. We

show that, over distinct elements, any comparison sorting

algorithm makes Ω(n lg n) comparisons. Theorem 2 then follows.

(If an algorithm makes Ω(n lg n) comparisons in the special case of

distinct elements, then of course it makes Ω(n lg n) comparisons

over general sequences that may have equal elements. Note that

we are proving a lower bound here.)

Introduction



An abstract way to describe a comparison sorting algorithm is to

use decision trees. (Consider a decision tree as a game plan

prepared in advance for 20 questions.) See Figure 8.1 on Page 192.

A decision tree for sort n elements is a binary tree in which:

1 every internal node is labeled by i : j , where i 6= j ∈ [n]; and

2 every leaf is labeled by a permutation (π1, π2, . . . , πn) of [n].

Introduction



Given such a decision tree, we can use it to sort any sequence of n

distinct elements (a1, . . . , an) as follows:

1 Start at the root;

2 If the current node is internal and is labeled i : j , we compare

ai with aj . If ai < aj , move to the left child; if ai > aj , move

to the right child. Repeat this step until a leaf is reached;

3 If the leaf is labeled with permutation (π1, . . . , πn), output(
aπ(1), aπ(2), . . . , aπ(n)

)
(1)

We say a decision tree is correct if it always outputs the correct

order for any sequence of n distinct elements (a1, . . . , an).

Introduction



Every (correct) comparison sorting algorithm can be used to

construct, for each n ≥ 1, a correct decision tree for sorting n

elements. Question: How to construct decision trees from a

comparison sorting algorithm? and why they are correct? For

example, Figure 8.1 is the decision tree of Insertion sort operating

on 3 elements. Question: What is the decision tree of Mergesort

over 4 elements? Also note that given any comparison sorting

algorithm, the worst-case number of comparisons it uses over

sequences of length n is exactly the height of its decision tree for

sorting n elements. For example, from Figure 8.1, we know that in

the worst case, Insertion sort uses 3 comparisons over sequences of

length 3.

Introduction



As a result, if we can show that any correct decision tree for

sorting n elements has height Ω(n lg n), then any comparison

sorting algorithm makes Ω(n lg n) comparisons in the worst case.

Introduction



Theorem

Any correct decision tree for sorting n elements must have height

Ω(n lg n).

Proof.

The tree must have ≥ n! leaves. This is because there are n!

permutations over [n]. Every such permutation must be labeled at

one of the leaves. (If one of the permutation, say (1, 2, . . . , n), is

missing, then the output of the decision tree cannot be correct

when the input satisfies a1 < a2 < · · · < an.) On the other hand,

the number of leaves is ≤ 2h, where h denote the height. Thus,

h ≥ lg(n!) = Ω(n lg n).

The last step follows from Stirling’s approximation on Page 57.

Introduction



Stirling’s formula gives us a very good approximation for n!. But if

we only want to show that lg(n!) = Ω(n lg n), here is a proof:

lg n! = lg n + lg(n − 1) + · · ·+ lg 1

> lg n + lg(n − 1) + · · ·+ lg(n/2)

> (n/2) lg(n/2)

= (n/2)(lg n − 1)

= Ω(n lg n).

Introduction


