
Analysis of Algorithms I:

Strongly Connected Components

Xi Chen

Columbia University

Introduction



We discuss the second application of Depth-first Search (DFS):

Strongly connected components. We start with some definitions.

Let G = (V ,E ) be a directed graph. We say C is a strongly

connected component (SCC) of V if it is a maximal set of vertices

such that every two vertices u, v ∈ C are mutually reachable: there

is a path from u to v as well as a path from v to u. The word

“maximal” basically means for any u ∈ C and w /∈ C , u and w are

not mutually searchable. Check Appendix B.

Introduction



Every directed G = (V ,E ) can be partitioned into pairwise disjoint

SCCs, just like connected components in an undirected graph:

C1,C2, . . . ,Ck , for some k ≥ 1

The SCC problem is then the following:

Given a directed graph G = (V ,E ), find its SCCs

Introduction



Given G , let GT = (V ,ET ) denote the reverse graph of G :

ET =
{

(v , u) : (u, v) ∈ E
}

It is easy to see that, by the definition of GT , v is reachable from

u in GT if and only if u is reachable from v in G . Quick question:

Given the list representation of G , how to construct the list

representation of GT in linear time?

Introduction



First try: here is a straight-forward SCC algorithm using DFS:

1 pick an arbitrary vertex u from V

2 call DFS-Visit (G , u) to get R: vertices reachable from u in G

3 call DFS-Visit (GT , u) to get R ′: vertices reachable from u in

GT or equivalently, v ∈ R ′ iff u is reachable from v in G

4 output R ∩ R ′ (show that this is the SCC that contains u)

5 remove R ∩ R ′ from G and repeat, until G is empty

Introduction



However, its worst-case running time is not good. Each call

to DFS-Visit costs O(n + m) so the total running time is

O
(
n(n + m)

)
There are also worst-case examples to show that Ω(nm) time is

necessary (try to construct one by yourself). We will show that

there is actually a O(n + m) linear-time algorithm for the SCC

problem !!! Much more efficient.

Introduction



We start with the following lemma about the SCCs of G :

Lemma

Let C and C ′ be two SCCs of G. If there is an edge from C to C ′

in G , then there is no edge from C ′ to C .

Otherwise, show that u ∈ C and v ∈ C ′ are mutually reachable and

thus, one can merge C and C ′ to get a larger SCC, contradiction.

Introduction



This leads us to define the component graph GSCC of G : each SCC

of G corresponds to a vertex in GSCC so the vertices of GSCC are{
C1, . . . ,Ck

}
, where C1, . . . ,Ck are the SCCs of G

and (Ci ,Cj) is an edge in GSCC if there is an edge from Ci to Cj in

G . Given this definition, it is easy to prove the following lemma:

Lemma

The component graph GSCC of G must be a DAG.

Quick proof: Assume there is a cycle C1C2 · · ·C` = C1 of length

` ≥ 2 in G ′. Then it can be shown that any two vertices in ∪`i=1Ci

are indeed mutually reachable in G and thus, one can merge

C1, . . . ,C`−1 to obtain an even larger SCC, contradiction.

Introduction



We know that as a DAG, GSCC must have at least one source (a

vertex with no incoming edges) and at least one sink (a vertex

with no outgoing edges). We call an SCC C of G a source (sink)

SCC if C corresponds to a source (sink) vertex in GSCC. So C is a

sink SCC of G if there is no edge from C to other SCCs of G . The

following lemma is the key idea behind the linear-time algorithm:

Lemma (3)

Let C be any sink SCC of G and u be any vertex in C . Then C is

exactly the set of vertices reachable from u in G . Therefore, to

compute C , one only needs to compute the set of vertices

reachable from u in G by making a call to DFS-Visit (G , u).

Introduction



Before proving Lemma 3, it suggests the following algorithm:

1 find a vertex u ∈ V in a sink SCC of G

2 call DFS-Visit (G , u) to get R: vertices reachable from u

3 output R, the SCC that contains u according to Lemma 3

4 remove R from G and repeat, until G is empty

Clearly the main problem left is how to find a vertex u in a sink

SCC of G . Another subtle problem is, after removing a SCC from

G , how to find a vertex in a sink SCC of the remaining graph.

Introduction



Proof of Lemma 3: Let R denote the set of vertices reachable from

u in G . By definition we have C ⊆ R because v ∈ C means not

only v is reachable from u but also u is reachable from v . We need

to show C = R when C is a sink SCC of G . Show that if v /∈ C ,

then v is not reachable from u in G , by using the assumption that

C is a sink SCC.

Introduction



Now we discuss how to find a vertex in a sink SCC of G . Note that

C is an SCC of G if and only if it is an SCC of GT ; C is a sink SCC

of G if and only if it is a source SCC of GT . So it suffices to find a

vertex in a source SCC of GT efficiently. The following lemma

shows how: We start by running DFS on GT ! Upon termination,

let u.f denotes the finish time of u in DFS (GT ). (We use u.f to

denote the finish time in DFS (GT ) in the rest of the note.)

Lemma (4)

The vertex u with the largest finish time u.f must belong to a

source SCC of GT and thus, a sink SCC of G.

Introduction



Lemma 4 is a corollary of the following stronger lemma (why?):

Given an SCC C of GT (and G as well), we use f (C ) to denote

f (C ) = max
u∈C

{
u.f

}
the maximum finish time of vertices in C . Again, remember that

u.f denotes the finish time of u in DFS (GT ). (Note the subtle

difference between the presentations of the note and textbook.)

Lemma (5)

Let C and C ′ be two SCCs of GT (and G as well). If there is an

edge from C to C ′ in GT , then we must have f (C ) > f (C ′).

Introduction



Consider the following two cases: In DFS (GT ), C is visited before

C ′ or C ′ is visited before C . For the first case, let u ∈ C be the

first vertex DFS discovers among C ∪C ′. Then at the time when u

is discovered, all vertices in C ∪ C ′ are white and thus, there is a

white path from u to every vertex in C ∪ C ′ (why? use the

assumption that there is an edge from C to C ′ in GT ). Therefore,

by the White-Path theorem, all vertices in C ∪ C ′ are descendants

of u in the depth-first forest and thus, by the Parenthesis lemma u

has the largest finish time and f (C ) > f (C ′) because u ∈ C .

Introduction



The other case: Assume u ∈ C ′ is the first vertex DFS discovers

among C ∪ C ′. At the time when u is discovered, all vertices in C ′

are white and thus, there is a white path from u to every vertex in

C ′. Therefore, by the White-Path theorem, u has the largest finish

time in C ′ and f (C ′) = u.f . However, every vertex v ∈ C is not

reachable from u in GT (why?). Because v ∈ C is not discovered

at the time u.d , it remains white at the time u.f (why? use the

White-Path theorem). Therefore, v .d > u.f and f (C ) > f (C ′).

Introduction



From Lemma 5, we can simply call DFS (GT ) to find the vertex u

with the largest finish time u.f . It must belong to a source SCC of

GT and thus, a sink SCC of G . By Lemma 3, DFS-Visit (G , u)

returns the SCC C that contains u. But how do we continue after

removing C from G ? Do we need to call DFS on the new graph?

Introduction



No! Here is the technically most important idea in the linear-time

algorithm for SCC. After we found the first SCC and delete it from

G , it can be shown that the vertex v with the largest finish time

v .f from DFS (GT ) among the remaining vertices must belong to

a sink SCC C ′ of the remaining graph, denoted by G ′. Therefore,

we can just call DFS-Visit (G ′, v) to get the SCC C ′ that contains

v , which is the second SCC of G we find simply because an SCC

of G ′ is also an SCC of G . We can repeat to find the third SCC of

G , the fourth, and so on. Note that we only call DFS (GT ) once.

Introduction



Why does v , the vertex with the largest finish time v .f in the

remaining graph G ′, after deleting the first SCC C we found,

belong to a sink SCC C ′ of G ′? This follows from Lemma 5: If

there is another SCC C ∗ in G ′ with an edge from C ′ to C ∗ in G ′,

then there is an edge from C ∗ to C ′ in GT and thus,

f (C ∗) > f (C ′)

This contradicts the assumption that v ∈ C ′ has the largest finish

time among vertices in G ′. Similarly, by induction one can show

that after removing the second SCC, the vertex with the largest

finish time in the remaining graph belongs to a sink SCC of the

remaining graph, and so on.

Introduction



To summarize, here is the linear-time algorithm for SCC:

1 construct the adjacency list representation of GT from G

2 call DFS (GT ) to get a reordering S (a linked list) of the

vertices V with their finish times sorted from large to small

3 while G and S are not empty do

4 let u be the first vertex in S

5 call DFS-Visit (G , u) to get R: vertices reachable from u

6 R must be the SCC that contains u

7 remove R from G and S

Introduction



Both line 1 and line 2 can be done in time O(n + m) (for line 2,

recall the linear-time topological sort algorithm). To see why the

while-loop takes time O(n + m), note that essentially it is DFS (G )

with vertices in the for-loop of DFS (G ) ordered as in S .

Introduction


