Analysis of Algorithms I:

Strongly Connected Components

Xi Chen

Columbia University

Introduction

We discuss the second application of Depth-first Search (DFS):
Strongly connected components. We start with some definitions.
Let G = (V, E) be a directed graph. We say C is a strongly
connected component (SCC) of V if it is a maximal set of vertices
such that every two vertices u, v € C are mutually reachable: there
is a path from u to v as well as a path from v to u. The word
“maximal” basically means for any v € C and w ¢ C, u and w are
not mutually searchable. Check Appendix B.

Introduction

Every directed G = (V, E) can be partitioned into pairwise disjoint
SCCs, just like connected components in an undirected graph:

G, G, ..., C, forsome k>1
The SCC problem is then the following:

Given a directed graph G = (V/, E), find its SCCs

Introduction

Given G, let GT = (V,ET) denote the reverse graph of G:
ET = {(v,u): (u,v) € E}

It is easy to see that, by the definition of G, v is reachable from
uin GT if and only if u is reachable from v in G. Quick question:
Given the list representation of G, how to construct the list
representation of G in linear time?

Introduction

First try: here is a straight-forward SCC algorithm using DFS:

@ pick an arbitrary vertex u from V
@ call DFS-Visit(G, u) to get R: vertices reachable from v in G

© call DFS-Visit (G, u) to get R': vertices reachable from v in
GT or equivalently, v € R iff u is reachable from v in G

Q output RN R’ (show that this is the SCC that contains u)

© remove RN R’ from G and repeat, until G is empty

Introduction

However, its worst-case running time is not good. Each call
to DFS-Visit costs O(n + m) so the total running time is

O(n(n+ m))

There are also worst-case examples to show that Q(nm) time is
necessary (try to construct one by yourself). We will show that
there is actually a O(n + m) linear-time algorithm for the SCC
problem !l Much more efficient.

Introduction

We start with the following lemma about the SCCs of G:

Let C and C' be two SCCs of G. If there is an edge from C to C’
in G, then there is no edge from C’ to C.

Otherwise, show that u € C and v € C’ are mutually reachable and
thus, one can merge C and C’ to get a larger SCC, contradiction.

Introduction

This leads us to define the component graph Gscc of G: each SCC
of G corresponds to a vertex in Ggcc so the vertices of Ggcc are

{Cl,...,Ck}, where Cq, ..., Cx are the SCCs of G

and (G, G) is an edge in Gscc if there is an edge from C; to C; in
G. Given this definition, it is easy to prove the following lemma:

The component graph Gscc of G must be a DAG.

Quick proof: Assume there is a cycle (3G, - -+ Gy = C; of length
¢>2in G'. Then it can be shown that any two vertices in U‘_; G;
are indeed mutually reachable in G and thus, one can merge

Ci,...,Cy_1 to obtain an even larger SCC, contradiction.

Introduction

We know that as a DAG, Gscc must have at least one source (a
vertex with no incoming edges) and at least one sink (a vertex
with no outgoing edges). We call an SCC C of G a source (sink)
SCC if C corresponds to a source (sink) vertex in Gscc. So C is a
sink SCC of G if there is no edge from C to other SCCs of G. The
following lemma is the key idea behind the linear-time algorithm:

Let C be any sink SCC of G and u be any vertex in C. Then C is
exactly the set of vertices reachable from u in G. Therefore, to

compute C, one only needs to compute the set of vertices
reachable from u in G by making a call to DFS-Visit(G, u).

Introduction

Before proving Lemma 3, it suggests the following algorithm:

@ find a vertex v € V in a sink SCC of G
@ call DFS-Visit (G, u) to get R: vertices reachable from u
© output R, the SCC that contains u according to Lemma 3
@ remove R from G and repeat, until G is empty

Clearly the main problem left is how to find a vertex u in a sink

SCC of G. Another subtle problem is, after removing a SCC from
G, how to find a vertex in a sink SCC of the remaining graph.

Introduction

Proof of Lemma 3: Let R denote the set of vertices reachable from
uin G. By definition we have C C R because v € C means not
only v is reachable from u but also u is reachable from v. We need
to show C = R when C is a sink SCC of G. Show that if v ¢ C,
then v is not reachable from v in G, by using the assumption that
C is a sink SCC.

Introduction

Now we discuss how to find a vertex in a sink SCC of G. Note that
Cis an SCC of G if and only if it is an SCC of GT: Cisasink SCC
of G if and only if it is a source SCC of GT. So it suffices to find a
vertex in a source SCC of G efficiently. The following lemma
shows how: We start by running DFS on GT! Upon termination,
let u.f denotes the finish time of u in DFS(GT). (We use u.f to
denote the finish time in DFS(GT) in the rest of the note.)

The vertex u with the largest finish time u.f must belong to a
source SCC of G and thus, a sink SCC of G.

Introduction

Lemma 4 is a corollary of the following stronger lemma (why?):
Given an SCC C of GT (and G as well), we use f(C) to denote

f(C)= £

(€) = max {u-f}

the maximum finish time of vertices in C. Again, remember that
u.f denotes the finish time of u in DFS(GT). (Note the subtle
difference between the presentations of the note and textbook.)

Let C and C' be two SCCs of GT (and G as well). If there is an
edge from C to C' in G, then we must have f(C) > f(C').

Introduction

Consider the following two cases: In DFS(GT), C is visited before
C’ or (' is visited before C. For the first case, let u € C be the
first vertex DFS discovers among C U C’. Then at the time when u
is discovered, all vertices in C U C’ are white and thus, there is a
white path from u to every vertex in C U C’ (why? use the
assumption that there is an edge from C to C’ in GT). Therefore,
by the White-Path theorem, all vertices in C U C’ are descendants
of u in the depth-first forest and thus, by the Parenthesis lemma u
has the largest finish time and f(C) > f(C’) because u € C.

Introduction

The other case: Assume u € C’ is the first vertex DFS discovers
among C U C’. At the time when u is discovered, all vertices in C’
are white and thus, there is a white path from u to every vertex in
C’'. Therefore, by the White-Path theorem, u has the largest finish
time in C" and f(C’) = u.f. However, every vertex v € C is not
reachable from uin G (why?). Because v € C is not discovered
at the time u.d, it remains white at the time u.f (why? use the
White-Path theorem). Therefore, v.d > u.f and f(C) > f(C').

Introduction

From Lemma 5, we can simply call DFS(GT) to find the vertex u
with the largest finish time u.f. It must belong to a source SCC of
G and thus, a sink SCC of G. By Lemma 3, DFS-Visit (G, u)
returns the SCC C that contains u. But how do we continue after
removing C from G? Do we need to call DFS on the new graph?

Introduction

No! Here is the technically most important idea in the linear-time
algorithm for SCC. After we found the first SCC and delete it from
G, it can be shown that the vertex v with the largest finish time
v.f from DFS(GT) among the remaining vertices must belong to
a sink SCC C’ of the remaining graph, denoted by G’. Therefore,
we can just call DFS-Visit (G’, v) to get the SCC C’ that contains
v, which is the second SCC of G we find simply because an SCC
of G’ is also an SCC of G. We can repeat to find the third SCC of
G, the fourth, and so on. Note that we only call DFS(GT) once.

Introduction

Why does v, the vertex with the largest finish time v.f in the
remaining graph G’, after deleting the first SCC C we found,
belong to a sink SCC C’ of G'? This follows from Lemma 5: If
there is another SCC C* in G’ with an edge from C’ to C* in G,
then there is an edge from C* to C’ in G' and thus,

F(C*) > £(C)

This contradicts the assumption that v € C’ has the largest finish
time among vertices in G’. Similarly, by induction one can show
that after removing the second SCC, the vertex with the largest
finish time in the remaining graph belongs to a sink SCC of the
remaining graph, and so on.

Introduction

To summarize, here is the linear-time algorithm for SCC:

@ construct the adjacency list representation of G from G

@ call DFS(GT) to get a reordering S (a linked list) of the
vertices V' with their finish times sorted from large to small

© while G and S are not empty do

o let u be the first vertex in S

@ call DFS-Visit(G, u) to get R: vertices reachable from u
o R must be the SCC that contains u
o

remove R from G and S

Introduction

Both line 1 and line 2 can be done in time O(n+ m) (for line 2,
recall the linear-time topological sort algorithm). To see why the
while-loop takes time O(n+ m), note that essentially it is DFS (G)
with vertices in the for-loop of DFS(G) ordered as in S.

Introduction

