Analysis of Algorithms I: Reductions and NP-Completeness

Xi Chen

Columbia University

Introduction

Recall the first NP-complete problem Circuit-SAT:

- Input: A boolean circuit. It is a directed acyclic graph in which every vertex has in-degree ≤ 2. There is a unique vertex that has out-degree 0 and is called the output of the circuit. The vertices with in-degree 0 are called the inputs of the circuit. Every vertex that is not an input (including the output) is labelled as one of the three Boolean gates: ∧ (and) ∨ (or) ¬ (not). (See Figure 34.8 on Page 1072 for an example.)
- Output: Yes if the circuit is satisfiable: there is an assignment of {0,1} to each input such that the circuit outputs 1.

Theorem

Circuit-SAT is NP-complete.

Now we use the NP-completeness of Circuit-SAT to show that 3-SAT is also NP-complete. 3-SAT: Satisfiability of a CNF Boolean formula with 3 literals in each clause (or a so-called 3-CNF formula). Here is an example of a 3-CNF:

$$(x_1 \lor \neg x_3 \lor \neg x_2) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

Formally, there are Boolean variables x_1, \ldots, x_k . A literal is either a variable x_i itself or its negation $\neg x_i$. A 3-CNF formula is then an AND of *n* clauses, each of which is the OR of three "distinct" literals. The problem is then, given a 3-CNF over x_1, \ldots, x_k , does there exist an assignment to x_1, \ldots, x_k such that the formula evaluates to true: For every clause, at least one of its three literals is true. Such an assignment is called a satisfying assignment. We prove the following theorem:

Theorem

3-SAT is NP-complete.

It is easy to show that 3-SAT is in NP: Given any assignment, checking whether it is indeed a satisfying assignment is in polynomial time. To prove that it is NP-hard, we now give a polynomial-time reduction from Circuit-SAT. (Recall from the last class why this is good enough.)

Let Q denote a boolean circuit with s inputs and t gates, one of which is the output of Q. Introduce a Boolean variable for each input and each gate of the circuit, including the output. Let zdenote the variable corresponding to the output. Our goal is to construct a 3-CNF Φ over these s + t variables so that Φ has a satisfying assignment if and only if Q has a satisfying assignment. To this end, we view Q differently as t equations over the s + t variables: Each gate imposes a Boolean equation over some of the variables. For each of the t gates of Q:

- If it is a ¬ gate, let a denote the variable of the gate and b denote the (single) input variable, then it requires a = ¬b.
- If it is a \lapha gate, let a denote the variable of the gate and b,
 c denote the two input variables, then it requires a = b \lapha c.
- If it is a ∨ gate, let a denote the variable of the gate and b,
 c denote the two input variables, then it requires a = b ∨ c.

Q is satisfiable if and only if there is an assignment to the s + t variables such that z = 1 and all these t equations are satisfied.

Now we continue the reduction. For each of the t equations, we construct two or three clauses such that the equations is satisfied if and only if all the clauses are satisfied:

1 For an equation $a = \neg b$, we have

$$a = \neg b \iff (a \lor b) \land (\neg a \lor \neg b)$$

Meaning that $a = \neg b$ iff both clauses above are satisfied.

1 For an equation $a = b \wedge c$, we have

$$a = b \wedge c \iff (\neg a \lor b) \land (\neg a \lor c) \land (a \lor \neg b \lor \neg c)$$

2 For an equation $a = b \lor c$, we have

$$a = b \lor c \iff (a \lor \neg b) \land (a \lor \neg c) \land (\neg a \lor b \lor c)$$

Let Φ denote the conjunction of z (as a clause with one single literal) and all the clauses above, two clauses for each \neg gate and three clauses for each \lor and \land gate. It is easy to see that Φ can be constructed from the input circuit Q in polynomial time. Also Φ has a satisfying assignment iff there is an assignment to the s + t variables such that z = 1 and all t equations are satisfied.

However, we are not done yet: Some clauses of Φ have only one or two literals. We replace each such clause in Φ as follows:

For each clause in Φ with two literals (a ∨ b): Introduce a new variable p; and replace (a ∨ b) by:

$$(a \lor b \lor p) \land (a \lor b \lor \neg p)$$

There is only one clause in Φ that has a single literal: (z). Introduce two new variables p and q; and replace (z) by:

$$(z \lor p \lor q) \land (z \lor \neg p \lor q) \land (z \lor p \lor \neg q) \land (z \lor \neg p \lor \neg q)$$

Let Φ denote the resulting 3-CNF. Φ can be constructed from Q in polynomial time; and Φ is satisfiable if and only if Q is satisfiable.

This gives us a polynomial-time reduction from Circuit-SAT to 3-SAT and thus, 3-SAT is NP-hard and NP-complete as well. So, from now on, we can use 3-SAT as our starting point, instead of Circuit-SAT, and we will see that it makes life a lot easier.

Integer Linear Inequalities (ILL): Given a set of $\{0,1\}$ variables as well as a set of linear inequalities over them, does there exist a $\{0,1\}$ assignment that satisfies all the linear inequalities?

Theorem

ILL is NP-complete.

It is easy to see that ILL is in NP. To prove ILL is NP-hard, we give a simple polynomial-time reduction from 3-SAT. Given a 3-CNF Φ over *m* variables x_1, \ldots, x_m and *n* clauses, we construct a system of linear inequalities as follows. It has the same set of variables. For each clause $(a \lor b \lor c)$ in Φ , where a, b and c are literals, we add a new linear inequality $\alpha + \beta + \gamma \ge 1$ as follows: If $a = x_i$ for some $i \in [m]$, then $\alpha = x_i$; if $a = \neg x_i$ for some $i \in [m]$, then set $\alpha = (1 - x_i)$, and similarly with β and γ . It is easy to show that

$$(a \lor b \lor c) = 1 \iff \alpha + \beta + \gamma \ge 1$$

because a is true if and only if $\alpha = 1$. For example:

$$(x_1 \lor x_2 \lor \neg x_3) = 1 \iff x_1 + x_2 + (1 - x_3) \ge 1$$

So Φ is satisfiable if and only if the linear system has a solution. This reduction is clearly polynomial time. So ILL is NP-complete. Max Independent Set: Given an undirected graph G = (V, E), a subset $I \subseteq V$ of vertices is an independent set if vertices in I are pairwise nonadjacent. Decision problem: Given G and a number k, decide if G has an independent set of size $\geq k$.

Theorem

Max Independent Set is NP-complete.

Again, membership in NP is trivial: Given a set $I \subseteq V$ of vertices, checking whether $|I| \ge k$ is an independent set is easy. To show it is NP-hard, we give a polynomial-time reduction from 3-SAT. Let Φ denote a 3-CNF with *m* variables and *n* clauses C_1, \ldots, C_n .

We construct from Φ the following graph G = (V, E):

- V has exactly 3n vertices v_{i,j}, i ∈ [n] and j ∈ [3]. One vertex for each literal of each clause C₁,..., C_n: v_{i,j} corresponds to the jth literal in the ith clause C_i.
- ② E has the following edges. For each clause, add three edges to connect its three vertices v_{i,1}, v_{i,2} and v_{i,3}. In addition, we connect all the complementary literals: If there are two clauses in Φ, say the *i*th and the *i*'th with *i* ≠ *i*', such that the *j*th literal of the *i*th clause is the negation of the *j*'th literal of the *i*'th clause, then connect v_{i,j} and v_{i',j'}.

It is clear that G can be constructed in polynomial time. We show that Φ is satisfiable iff G has an independent set of size = n.

If Φ is satisfiable, then *G* has an independent set of size *n*: Take any satisfying assignment of Φ . Let *I* denote the following set of vertices: For each $i \in [n]$, pick ONE and ONLY ONE vertex $v_{i,j}$ that corresponds to a true literal (Claim: Such a vertex always exists, why?), and add it to *I*. From the construction, it is clear that |I| = n. Moreover, show that *I* is an independent set of *G*. If G has an independent set of size n, then Φ is satisfiable: Let I denote an independent set of size n. Then I must consist of exactly ONE vertex from each triple $(v_{i,1}, v_{i,2}, v_{i,3})$. We construct an assignment to x_1, \ldots, x_m as follows. For each x_{ℓ} , $\ell \in [m]$:

- Set $x_{\ell} = 1$ if \exists a vertex $v_{i,j} \in I$ that corresponds to x_{ℓ} ;
- **2** Set $x_{\ell} = 0$ if \exists a vertex $v_{i,i} \in I$ that corresponds to $\neg x_{\ell}$;
- **③** Otherwise, set $x_{\ell} \in \{0, 1\}$ arbitrarily.

First show that 1) and 2) above cannot both happen (because I is an independent set) so there is no ambiguity. Then show that this must be a satisfying assignment of Φ . It then follows that this is a polynomial-time reduction from 3-SAT to Max Independent Set and thus, the latter is also NP-complete.

Clique: A clique of an undirected graph G = (V, E) is a subset of pairwise adjacent vertices. Decision problem: Given G and a number k, decide whether there is a clique of size $\geq k$.

Theorem

Clique is NP-complete.

It is easy to see that Clique is in NP. To prove it is NP-hard, we give a simple polynomial-time reduction from Max Independent Set to Clique. To this end, let (G, k), where G = (V, E), denote an input of Max Independent Set. We use G' = (V, E') to denote the complement of $G: (u, v) \in E$ if and only if $(u, v) \notin E$.

The following lemma is easy to prove:

Lemma $I \subset V$ is an independent set of G iff I is a clique of G'

This immediately implies that G has an independent set of size $\geq k$ if and only if G' has a clique of size $\geq k$. This gives us a polynomial-time reduction from Max Independent Set to Clique, so the latter is also NP-complete.

Vertex Cover: A vertex cover of G is a subset $I \subseteq V$ of vertices such that every edge $(u, v) \in E$ has at least one vertex in I. Decision problem: Given G and a number k, decide whether G has a vertex cover of size $\leq k$ or not.

Theorem

Vertex Cover is NP-complete.

It is easy to see that Vertex Cover is in NP. To show it is NP-hard we give a simple polynomial-time reduction from Independent Set.

The following lemma is easy to prove:

Lemma

 $I \subseteq V$ is an independent set of G iff V - I is a vertex cover of G.

This implies that G has an independent set $\geq k$ if and only if G, the same graph, has a vertex cover of size $\leq n - k$. This gives us a reduction (Given (G, k) for Max Independent Set, transform it into (G, n - k) for Vertex Cover) from Max Independent Set to Vertex Cover, so the latter is also NP-complete. Subset Sum: Given a set S of integers and a target integer t, decide if there is a subset T of S that sums to exactly t.

Theorem

Subset Sum is NP-complete.

It is easy to see that Subset Sum is in NP. To show it is NP-hard, we give a polynomial-time reduction from Vertex Cover to Subset Sum. Given G = (V, E) and k, we need to decide if G has a vertex cover of size = k. (Note that G has a vertex cover of size $\leq k$ iff it has a vertex cover of size = k, why?) We construct t and S, a set of |V| + |E| integers, as follows.

Let $V = \{1, 2, ..., n\}$ and |E| = m. S has one integer a_i for each vertex $i \in V$; and one integer $b_{i,j}$ for each edge $(i,j) \in E$. Each of these n + m numbers have 2m + 1 bits in binary: the leading bit + 2 bits for each edge (arrange the *m* edges in any order; for any $\ell \in [m]$, we refer to the (2ℓ) th and $(2\ell - 1)$ th lowest bits as the edge bits that correspond to the ℓ th edge). We set a_i 's and $b_{i,j}$'s:

- The leading bit of a_i, i ∈ [n], is set to be 1. For each l ∈ [m], set the two edge bits that correspond to the lth edge 01 if i is a vertex of the edge; and 00 otherwise.
- For each edge (i, j) ∈ E, we set b_{i,j} as follows. The leading bit of b_{i,j} is set to 0. Set the two edge bits that correspond to (i, j) ∈ E to be 01; and set all other edge bits to be 00.

Finally, we set the target integer t:

$$t = k \cdot 4^m + \sum_{i=0}^{m-1} 2 \cdot 4^i$$

To see that this gives us a polynomial-time reduction from Vertex Cover to Subset Sum, we show that S has a subset that sums to t iff G has a vertex cover of size k. To this end, we first notice that for any $T \subseteq S$, when we add up the numbers in T, there is no carry from the two edge bits that correspond to the ℓ th edge to the next bit, because 1) no carry from the lower two bits, by induction; 2) every integer in S has either 00 or 01 in these two bits; and 3) there are exactly three integers in S that has 01 in these two bits. If G has a vertex cover C with k vertices, then there is a subset T of S that sums to t. Let T denote the following integers in S:

$$\mathcal{T} = \left\{ a_i : i \in C
ight\} \cup \left\{ b_{i,j} : i \notin C ext{ or } j \notin C
ight\}$$

First, the leading bit of a_i is 1 and the leading bit of $b_{i,j}$ is 0. As |C| = k, the leading bits of a_i , $i \in C$, cancel with the first term $k \cdot 4^m$ in t. We only need to show that for every edge $(i,j) \in E$, the sum of numbers in T has 10 in the two edge bits that corresponds to $(i,j) \in E$ (why?).

If a subset T of S sums to t, then G has a vertex cover C of size = k. Take $C = \{i : a_i \in T\}$ and we show that C is a vertex cover of G and |C| = k. Because there is no carry from any two edge bits to the next bit (the leading bit in particular), T must have exactly k a_i 's due to the term $k \cdot 4^m$ in t. So |C| = k. Again, because there is no carry from any two edge bits to the next, for each edge $(i, j) \in E$, T must have exactly two numbers with 01 at the two edge bits that correspond to (i, j). Thus, for each edge $(i,j) \in E$, T contains either a_i or a_j . It follows that C is a vertex cover of G. This gives us a polynomial-time reduction from Vertex Cover to Subset Sum and thus, the latter is also NP-complete.

Directed Hamiltonian Cycle: A simple cycle that visits every vertex in a directed graph G = (V, E). Decision problem: Given a directed graph G = (V, E), decides if G has a Hamiltonian cycle.

Theorem

Directed Hamiltonian Cycle is NP-complete.

It is clear that Directed Hamiltonian Cycle is in NP. To show it is NP-hard, we give a polynomial-time reduction from 3-SAT. Note that this proof is different from the one given in the textbook, a reduction from Vertex Cover. I found it somewhat simpler. Let Φ be a 3-CNF with *m* variables and *n* clauses C_1, \ldots, C_n .

We start with the following gadget: A doubly linked list between u and v of length 3n + 2 is a sequence of 3n + 3 vertices

 $\langle w_0, w_1, \cdots, w_{3n+2} \rangle$

where $w_0 = u$ and $w_{3n+2} = v$, such that there is an edge from w_i to w_{i+1} and an edge from w_{i+1} to w_i , for each $i \in [0:3n+1]$.

We use G to denote the following directed graph: G has the following 2m + 2 special vertices: s, u_i, v_i, t , where $i \in [m]$:

- Add (s, u_1) and (s, v_1) to E;
- Por each *i* ∈ [*m*], add new vertices to create a doubly linked list between *u_i* and *v_i* of length 3*n* + 2. We call the new vertices *w_{i,1},..., w_{i,3n+1}*.
- For each $i \in [m-1]$, add $(u_i, u_{i+1}), (u_i, v_{i+1}), (v_i, u_{i+1})$ and (v_i, v_{i+1}) to *E*; Finally, add $(u_m, t), (v_m, t)$ and (t, s) to *E*.

We are not done yet (we haven't encoded the clauses in G yet) but it is a good time to look at G and see what is going on. The key question is then what are the Hamiltonian cycles of G. It is easy to see that G right now has 2^m Hamiltonian cycles. Starting with s, for each $i \in [m]$, the cycle can visit all vertices in the doubly linked list between u_i and v_i either from u_i to v_i or from v_i to u_i . After visiting all the m doubly linked lists, the cycle visits t and finally goes back to s, forming a Hamiltonian cycle. One can also view each of these 2^m Hamiltonian cycles of G as a $\{0,1\}$ assignment to the *m* Boolean variables x_1, \ldots, x_m of Φ : If the cycle traverses the *i*th linked list from u_i to v_i , then $x_i = 1$; otherwise the cycle traverses the *i*th linked list from v_i to u_i , then $x_i = 0$. In this way we can decode a Boolean assignment from each Hamiltonian cycle of G. What we will do next is to add more structures to the graph G to encode the n clauses of Φ , so that every Hamiltonian cycle of G that remains (if any) corresponds to a satisfying assignment of Φ , instead of an arbitrary assignment. This implies that G has a Hamiltonian cycle iff Φ is satisfiable.

To this end, we add a new vertex h_j for each clause C_j , $j \in [n]$:

● For each of the three literals in the *j*th clause, if it is x_i for some i ∈ [m], then we add the following two edges to E:

$$(w_{i,3j-1}, h_j)$$
 and $(h_j, w_{i,3j})$

So that if we traverse the *i*th linked list from u_i to v_i , we can visit h_i on the way if we have not visited it yet.

2 If it is $\neg x_i$ for some $i \in [m]$, add the following edges to E:

$$(w_{i,3j}, h_j)$$
 and $(h_j, w_{i,3j-1})$

So that if we traverse the *i*th linked list from v_i to u_i , we can visit h_i on the way if we have not visited it yet.

If Φ is satisfiable then G has a Hamiltonian cycle. To see this, given a satisfying assignment of Φ , we construct a Hamiltonian cycle starting from s as follows: For each $i \in [m]$, the cycle traverses the *i*th linked list from u_i to v_i if $x_i = 1$; and from v_i to u_i if $x_i = 0$. Along the path from u_i to v_i (or from v_i to u_i), visit as many clause vertices as possible: visit h_j if it is not visited yet and x_i is a literal in the *j*th clause C_j (or $\neg x_i$ is a literal in the *j*th clause *C*_j). Since it is a satisfying assignment, every clause vertex is visited once and the cycle goes to t and finally back to s.

It can also be shown (a more delicate argument, however) that if G has a Hamiltonian cycle then Φ is satisfiable. Basically any Hamiltonian cycle must visit the *i*th linked list either from u_i to v_i or from v_i to u_i . In particular, it cannot visit a clause vertex when it traverses the *i*th linked list and then jumps to another doubly linked list. It has to visit all the linked lists one by one (why?). Whether the cycle traverses the *i*th list from u_i to v_i or from v_i to u_i gives us an assignment to the *m* Boolean variables. We only need to show that this is a satisfying assignment of Φ . This gives us a polynomial-time reduction from 3-SAT to Directed Hamiltonian Cycle and thus, the latter is also NP-complete.

Hamiltonian Cycle: A simple cycle that visits every vertex in an undirected graph G = (V, E). Decision problem: Given an undirected G = (V, E), decide if G has a Hamiltonian cycle.

Theorem

Hamiltonian Cycle is NP-complete.

It is clear that Hamiltonian Cycle is in NP. To show it is NP-hard we give a polynomial-time reduction from Directed Hamiltonian Cycle. We only sketch the proof here. Let G denote a directed graph for which we need to decide if it has a Hamiltonian cycle.

We construct an undirected G' = (V', E') as follows. Set V':

Replace each vertex v in G by three vertices v_1 , v_2 and v_3 .

Then we construct the edge set E' of G'. Starting with $E' = \emptyset$:

For each vertex v in G, add two undirected edges (v_1, v_2) and (v_2, v_3) to E'. For each directed edge (u, v) in G, add an undirected edge (u_3, v_1) to E'.

Show that G has a directed Hamiltonian cycle if and only if G' has a Hamiltonian cycle. This gives a polynomial-time reduction from Directed Hamiltonian Cycle to Hamiltonian Cycle and thus, the latter is NP-complete as well.

Finally, check the textbook (or try to figure out by yourself) for a very simple polynomial-time reduction from Hamiltonian Cycle to the Traveling Salesman Problem and thus, we have:

Theorem TSP is NP-complete.