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Recall the first NP-complete problem Circuit-SAT:

1 Input: A boolean circuit. It is a directed acyclic graph in which

every vertex has in-degree ≤ 2. There is a unique vertex that

has out-degree 0 and is called the output of the circuit. The

vertices with in-degree 0 are called the inputs of the circuit.

Every vertex that is not an input (including the output) is

labelled as one of the three Boolean gates: ∧ (and) ∨ (or) ¬
(not). (See Figure 34.8 on Page 1072 for an example.)

2 Output: Yes if the circuit is satisfiable: there is an assignment

of {0, 1} to each input such that the circuit outputs 1.
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Theorem

Circuit-SAT is NP-complete.

Now we use the NP-completeness of Circuit-SAT to show that

3-SAT is also NP-complete. 3-SAT: Satisfiability of a CNF

Boolean formula with 3 literals in each clause (or a so-called

3-CNF formula). Here is an example of a 3-CNF:(
x1 ∨ ¬x3 ∨ ¬x2

)
∧
(
x2 ∨ x3 ∨ x4

)
∧
(
¬x1 ∨ ¬x3 ∨ ¬x4

)
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Formally, there are Boolean variables x1, . . . , xk . A literal is either

a variable xi itself or its negation ¬xi . A 3-CNF formula is then an

AND of n clauses, each of which is the OR of three “distinct”

literals. The problem is then, given a 3-CNF over x1, . . . , xk , does

there exist an assignment to x1, . . . , xk such that the formula

evaluates to true: For every clause, at least one of its three literals

is true. Such an assignment is called a satisfying assignment.
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We prove the following theorem:

Theorem

3-SAT is NP-complete.

It is easy to show that 3-SAT is in NP: Given any assignment,

checking whether it is indeed a satisfying assignment is in

polynomial time. To prove that it is NP-hard, we now give a

polynomial-time reduction from Circuit-SAT. (Recall from the

last class why this is good enough.)
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Let Q denote a boolean circuit with s inputs and t gates, one of

which is the output of Q. Introduce a Boolean variable for each

input and each gate of the circuit, including the output. Let z

denote the variable corresponding to the output. Our goal is to

construct a 3-CNF Φ over these s + t variables so that Φ has a

satisfying assignment if and only if Q has a satisfying assignment.
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To this end, we view Q differently as t equations over the s + t

variables: Each gate imposes a Boolean equation over some of

the variables. For each of the t gates of Q:

1 If it is a ¬ gate, let a denote the variable of the gate and b

denote the (single) input variable, then it requires a = ¬b.

2 If it is a ∧ gate, let a denote the variable of the gate and b,

c denote the two input variables, then it requires a = b ∧ c .

3 If it is a ∨ gate, let a denote the variable of the gate and b,

c denote the two input variables, then it requires a = b ∨ c .

Q is satisfiable if and only if there is an assignment to the s + t

variables such that z = 1 and all these t equations are satisfied.
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Now we continue the reduction. For each of the t equations,

we construct two or three clauses such that the equations is

satisfied if and only if all the clauses are satisfied:

1 For an equation a = ¬b, we have

a = ¬b ⇔
(
a ∨ b

)
∧
(
¬a ∨ ¬b

)
Meaning that a = ¬b iff both clauses above are satisfied.
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1 For an equation a = b ∧ c , we have

a = b ∧ c ⇔
(
¬a ∨ b

)
∧
(
¬a ∨ c

)
∧
(
a ∨ ¬b ∨ ¬c

)
2 For an equation a = b ∨ c , we have

a = b ∨ c ⇔
(
a ∨ ¬b

)
∧
(
a ∨ ¬c

)
∧
(
¬a ∨ b ∨ c

)
Let Φ denote the conjunction of z (as a clause with one single

literal) and all the clauses above, two clauses for each ¬ gate and

three clauses for each ∨ and ∧ gate. It is easy to see that Φ can

be constructed from the input circuit Q in polynomial time. Also

Φ has a satisfying assignment iff there is an assignment to the

s + t variables such that z = 1 and all t equations are satisfied.
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However, we are not done yet: Some clauses of Φ have only one

or two literals. We replace each such clause in Φ as follows:

1 For each clause in Φ with two literals (a ∨ b): Introduce

a new variable p; and replace (a ∨ b) by:(
a ∨ b ∨ p

)
∧
(
a ∨ b ∨ ¬p

)
2 There is only one clause in Φ that has a single literal: (z).

Introduce two new variables p and q; and replace (z) by:(
z ∨ p ∨ q

)
∧
(
z ∨ ¬p ∨ q

)
∧
(
z ∨ p ∨ ¬q

)
∧
(
z ∨ ¬p ∨ ¬q

)
Let Φ denote the resulting 3-CNF. Φ can be constructed from Q in

polynomial time; and Φ is satisfiable if and only if Q is satisfiable.
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This gives us a polynomial-time reduction from Circuit-SAT to

3-SAT and thus, 3-SAT is NP-hard and NP-complete as well. So,

from now on, we can use 3-SAT as our starting point, instead of

Circuit-SAT, and we will see that it makes life a lot easier.
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Integer Linear Inequalities (ILL): Given a set of {0, 1} variables

as well as a set of linear inequalities over them, does there exist

a {0, 1} assignment that satisfies all the linear inequalities?

Theorem

ILL is NP-complete.

It is easy to see that ILL is in NP. To prove ILL is NP-hard, we give

a simple polynomial-time reduction from 3-SAT. Given a 3-CNF Φ

over m variables x1, . . . , xm and n clauses, we construct a system

of linear inequalities as follows. It has the same set of variables.
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For each clause (a ∨ b ∨ c) in Φ, where a, b and c are literals, we

add a new linear inequality α + β + γ ≥ 1 as follows: If a = xi for

some i ∈ [m], then α = xi ; if a = ¬xi for some i ∈ [m], then set

α = (1− xi ), and similarly with β and γ. It is easy to show that

(a ∨ b ∨ c) = 1 ⇔ α + β + γ ≥ 1

because a is true if and only if α = 1. For example:

(x1 ∨ x2 ∨ ¬x3) = 1 ⇔ x1 + x2 + (1− x3) ≥ 1

So Φ is satisfiable if and only if the linear system has a solution.

This reduction is clearly polynomial time. So ILL is NP-complete.
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Max Independent Set: Given an undirected graph G = (V ,E ), a

subset I ⊆ V of vertices is an independent set if vertices in I are

pairwise nonadjacent. Decision problem: Given G and a number

k , decide if G has an independent set of size ≥ k.

Theorem

Max Independent Set is NP-complete.

Again, membership in NP is trivial: Given a set I ⊆ V of vertices,

checking whether |I | ≥ k is an independent set is easy. To show it

is NP-hard, we give a polynomial-time reduction from 3-SAT. Let

Φ denote a 3-CNF with m variables and n clauses C1, . . . ,Cn.
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We construct from Φ the following graph G = (V ,E ):

1 V has exactly 3n vertices vi ,j , i ∈ [n] and j ∈ [3]. One vertex

for each literal of each clause C1, . . . ,Cn: vi ,j corresponds to

the jth literal in the ith clause Ci .

2 E has the following edges. For each clause, add three edges

to connect its three vertices vi ,1, vi ,2 and vi ,3. In addition, we

connect all the complementary literals: If there are two

clauses in Φ, say the ith and the i ′th with i 6= i ′, such that

the jth literal of the ith clause is the negation of the j ′th

literal of the i ′th clause, then connect vi ,j and vi ′,j ′ .

It is clear that G can be constructed in polynomial time. We show

that Φ is satisfiable iff G has an independent set of size = n.
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If Φ is satisfiable, then G has an independent set of size n: Take

any satisfying assignment of Φ. Let I denote the following set of

vertices: For each i ∈ [n], pick ONE and ONLY ONE vertex vi ,j
that corresponds to a true literal (Claim: Such a vertex always

exists, why?), and add it to I . From the construction, it is clear

that |I | = n. Moreover, show that I is an independent set of G .
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If G has an independent set of size n, then Φ is satisfiable: Let

I denote an independent set of size n. Then I must consist of

exactly ONE vertex from each triple (vi ,1, vi ,2, vi ,3). We construct

an assignment to x1, . . . , xm as follows. For each x`, ` ∈ [m]:

1 Set x` = 1 if ∃ a vertex vi ,j ∈ I that corresponds to x`;

2 Set x` = 0 if ∃ a vertex vi ,j ∈ I that corresponds to ¬x`;

3 Otherwise, set x` ∈ {0, 1} arbitrarily.

First show that 1) and 2) above cannot both happen (because I

is an independent set) so there is no ambiguity. Then show that

this must be a satisfying assignment of Φ. It then follows that this

is a polynomial-time reduction from 3-SAT to Max Independent

Set and thus, the latter is also NP-complete.
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Clique: A clique of an undirected graph G = (V ,E ) is a subset

of pairwise adjacent vertices. Decision problem: Given G and a

number k , decide whether there is a clique of size ≥ k .

Theorem

Clique is NP-complete.

It is easy to see that Clique is in NP. To prove it is NP-hard, we

give a simple polynomial-time reduction from Max Independent Set

to Clique. To this end, let (G , k), where G = (V ,E ), denote an

input of Max Independent Set. We use G ′ = (V ,E ′) to denote the

complement of G : (u, v) ∈ E if and only if (u, v) /∈ E .
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The following lemma is easy to prove:

Lemma

I ⊆ V is an independent set of G iff I is a clique of G ′

This immediately implies that G has an independent set of size

≥ k if and only if G ′ has a clique of size ≥ k . This gives us a

polynomial-time reduction from Max Independent Set to Clique,

so the latter is also NP-complete.

Introduction



Vertex Cover: A vertex cover of G is a subset I ⊆ V of vertices

such that every edge (u, v) ∈ E has at least one vertex in I .

Decision problem: Given G and a number k , decide whether G

has a vertex cover of size ≤ k or not.

Theorem

Vertex Cover is NP-complete.

It is easy to see that Vertex Cover is in NP. To show it is NP-hard

we give a simple polynomial-time reduction from Independent Set.
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The following lemma is easy to prove:

Lemma

I ⊆ V is an independent set of G iff V − I is a vertex cover of G .

This implies that G has an independent set ≥ k if and only if G ,

the same graph, has a vertex cover of size ≤ n − k . This gives us

a reduction (Given (G , k) for Max Independent Set, transform it

into (G , n − k) for Vertex Cover) from Max Independent Set to

Vertex Cover, so the latter is also NP-complete.
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Subset Sum: Given a set S of integers and a target integer t,

decide if there is a subset T of S that sums to exactly t.

Theorem

Subset Sum is NP-complete.

It is easy to see that Subset Sum is in NP. To show it is NP-hard,

we give a polynomial-time reduction from Vertex Cover to Subset

Sum. Given G = (V ,E ) and k, we need to decide if G has a

vertex cover of size = k . (Note that G has a vertex cover of size

≤ k iff it has a vertex cover of size = k , why?) We construct t

and S , a set of |V |+ |E | integers, as follows.
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Let V = {1, 2, . . . , n} and |E | = m. S has one integer ai for each

vertex i ∈ V ; and one integer bi ,j for each edge (i , j) ∈ E . Each of

these n + m numbers have 2m + 1 bits in binary: the leading bit +

2 bits for each edge (arrange the m edges in any order; for any

` ∈ [m], we refer to the (2`)th and (2`− 1)th lowest bits as the

edge bits that correspond to the `th edge). We set ai ’s and bi ,j ’s:

1 The leading bit of ai , i ∈ [n], is set to be 1. For each ` ∈ [m],

set the two edge bits that correspond to the `th edge 01 if i is

a vertex of the edge; and 00 otherwise.

2 For each edge (i , j) ∈ E , we set bi ,j as follows. The leading

bit of bi ,j is set to 0. Set the two edge bits that correspond

to (i , j) ∈ E to be 01; and set all other edge bits to be 00.
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Finally, we set the target integer t:

t = k · 4m +
m−1∑
i=0

2 · 4i

To see that this gives us a polynomial-time reduction from Vertex

Cover to Subset Sum, we show that S has a subset that sums to t

iff G has a vertex cover of size k . To this end, we first notice that

for any T ⊆ S , when we add up the numbers in T , there is no

carry from the two edge bits that correspond to the `th edge to the

next bit, because 1) no carry from the lower two bits, by induction;

2) every integer in S has either 00 or 01 in these two bits; and 3)

there are exactly three integers in S that has 01 in these two bits.

Introduction



If G has a vertex cover C with k vertices, then there is a subset

T of S that sums to t. Let T denote the following integers in S :

T =
{

ai : i ∈ C
}
∪
{

bi ,j : i /∈ C or j /∈ C
}

First, the leading bit of ai is 1 and the leading bit of bi ,j is 0. As

|C | = k , the leading bits of ai , i ∈ C , cancel with the first term

k · 4m in t. We only need to show that for every edge (i , j) ∈ E ,

the sum of numbers in T has 10 in the two edge bits that

corresponds to (i , j) ∈ E (why?).
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If a subset T of S sums to t, then G has a vertex cover C of size

= k. Take C = {i : ai ∈ T} and we show that C is a vertex cover

of G and |C | = k. Because there is no carry from any two edge

bits to the next bit (the leading bit in particular), T must have

exactly k ai ’s due to the term k · 4m in t. So |C | = k. Again,

because there is no carry from any two edge bits to the next, for

each edge (i , j) ∈ E , T must have exactly two numbers with 01 at

the two edge bits that correspond to (i , j). Thus, for each edge

(i , j) ∈ E , T contains either ai or aj . It follows that C is a vertex

cover of G . This gives us a polynomial-time reduction from Vertex

Cover to Subset Sum and thus, the latter is also NP-complete.
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Directed Hamiltonian Cycle: A simple cycle that visits every vertex

in a directed graph G = (V ,E ). Decision problem: Given a

directed graph G = (V ,E ), decides if G has a Hamiltonian cycle.

Theorem

Directed Hamiltonian Cycle is NP-complete.

It is clear that Directed Hamiltonian Cycle is in NP. To show it is

NP-hard, we give a polynomial-time reduction from 3-SAT. Note

that this proof is different from the one given in the textbook, a

reduction from Vertex Cover. I found it somewhat simpler. Let Φ

be a 3-CNF with m variables and n clauses C1, . . . ,Cn.
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We start with the following gadget: A doubly linked list between

u and v of length 3n + 2 is a sequence of 3n + 3 vertices

〈w0,w1, · · · ,w3n+2〉

where w0 = u and w3n+2 = v , such that there is an edge from

wi to wi+1 and an edge from wi+1 to wi , for each i ∈ [0 : 3n + 1].
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We use G to denote the following directed graph: G has the

following 2m + 2 special vertices: s, ui , vi , t, where i ∈ [m]:

1 Add (s, u1) and (s, v1) to E ;

2 For each i ∈ [m], add new vertices to create a doubly linked

list between ui and vi of length 3n + 2. We call the new

vertices wi ,1, . . . ,wi ,3n+1.

3 For each i ∈ [m − 1], add (ui , ui+1), (ui , vi+1), (vi , ui+1) and

(vi , vi+1) to E ; Finally, add (um, t), (vm, t) and (t, s) to E .
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We are not done yet (we haven’t encoded the clauses in G yet) but

it is a good time to look at G and see what is going on. The key

question is then what are the Hamiltonian cycles of G . It is easy to

see that G right now has 2m Hamiltonian cycles. Starting with s,

for each i ∈ [m], the cycle can visit all vertices in the doubly linked

list between ui and vi either from ui to vi or from vi to ui . After

visiting all the m doubly linked lists, the cycle visits t and finally

goes back to s, forming a Hamiltonian cycle.
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One can also view each of these 2m Hamiltonian cycles of G as a

{0, 1} assignment to the m Boolean variables x1, . . . , xm of Φ: If

the cycle traverses the ith linked list from ui to vi , then xi = 1;

otherwise the cycle traverses the ith linked list from vi to ui , then

xi = 0. In this way we can decode a Boolean assignment from each

Hamiltonian cycle of G . What we will do next is to add more

structures to the graph G to encode the n clauses of Φ, so that

every Hamiltonian cycle of G that remains (if any) corresponds to

a satisfying assignment of Φ, instead of an arbitrary assignment.

This implies that G has a Hamiltonian cycle iff Φ is satisfiable.
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To this end, we add a new vertex hj for each clause Cj , j ∈ [n]:

1 For each of the three literals in the jth clause, if it is xi for

some i ∈ [m], then we add the following two edges to E :(
wi ,3j−1, hj

)
and

(
hj ,wi ,3j

)
So that if we traverse the ith linked list from ui to vi , we

can visit hj on the way if we have not visited it yet.

2 If it is ¬xi for some i ∈ [m], add the following edges to E :(
wi ,3j , hj

)
and

(
hj ,wi ,3j−1

)
So that if we traverse the ith linked list from vi to ui , we

can visit hj on the way if we have not visited it yet.
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If Φ is satisfiable then G has a Hamiltonian cycle. To see this,

given a satisfying assignment of Φ, we construct a Hamiltonian

cycle starting from s as follows: For each i ∈ [m], the cycle

traverses the ith linked list from ui to vi if xi = 1; and from vi to

ui if xi = 0. Along the path from ui to vi (or from vi to ui ), visit

as many clause vertices as possible: visit hj if it is not visited yet

and xi is a literal in the jth clause Cj (or ¬xi is a literal in the jth

clause Cj). Since it is a satisfying assignment, every clause vertex

is visited once and the cycle goes to t and finally back to s.
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It can also be shown (a more delicate argument, however) that if

G has a Hamiltonian cycle then Φ is satisfiable. Basically any

Hamiltonian cycle must visit the ith linked list either from ui to vi
or from vi to ui . In particular, it cannot visit a clause vertex when

it traverses the ith linked list and then jumps to another doubly

linked list. It has to visit all the linked lists one by one (why?).

Whether the cycle traverses the ith list from ui to vi or from vi
to ui gives us an assignment to the m Boolean variables. We

only need to show that this is a satisfying assignment of Φ. This

gives us a polynomial-time reduction from 3-SAT to Directed

Hamiltonian Cycle and thus, the latter is also NP-complete.
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Hamiltonian Cycle: A simple cycle that visits every vertex in an

undirected graph G = (V ,E ). Decision problem: Given an

undirected G = (V ,E ), decide if G has a Hamiltonian cycle.

Theorem

Hamiltonian Cycle is NP-complete.

It is clear that Hamiltonian Cycle is in NP. To show it is NP-hard

we give a polynomial-time reduction from Directed Hamiltonian

Cycle. We only sketch the proof here. Let G denote a directed

graph for which we need to decide if it has a Hamiltonian cycle.
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We construct an undirected G ′ = (V ′,E ′) as follows. Set V ′:

Replace each vertex v in G by three vertices v1, v2 and v3.

Then we construct the edge set E ′ of G ′. Starting with E ′ = ∅:

For each vertex v in G , add two undirected edges (v1, v2)

and (v2, v3) to E ′. For each directed edge (u, v) in G , add

an undirected edge (u3, v1) to E ′.

Show that G has a directed Hamiltonian cycle if and only if G ′

has a Hamiltonian cycle. This gives a polynomial-time reduction

from Directed Hamiltonian Cycle to Hamiltonian Cycle and thus,

the latter is NP-complete as well.
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Finally, check the textbook (or try to figure out by yourself)

for a very simple polynomial-time reduction from Hamiltonian

Cycle to the Traveling Salesman Problem and thus, we have:

Theorem

TSP is NP-complete.
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