
Analysis of Algorithms I:

Red-Black Trees

Xi Chen

Columbia University

Introduction

Goal: Maintain a dynamic subset S of a universe U and handle the

following operations: Insert, Delete, Search, Min, Max, Successor,

Predecessor (and more) in worst-case O(lg n) time, where n = |S |.

1 AVL trees

2 2-3 trees

3 2-3-4 trees

4 B-trees

We discuss red-black trees in this class. A red-black tree is a very

“balanced” binary search tree. Difficulty: insertion and deletion.

Introduction

In a usual binary search tree, an internal node may have either 1 or

2 child nodes and every node has a key, including the leaves. Given

such a BST, we transform it as follows for convenience when

describing red-black trees. If a child of a node u does not exist,

(instead of setting the corresponding pointer of u to be nil) we

create a new leaf with key = nil and set the corresponding pointer

of u to be this nil leaf. After this, every internal node of the tree

has both left and right child nodes (though none, or one, or both

of them might be nil); every internal node has a key from the

universe; and every leaf has its key = nil. Check page 310 for an

example (ignore the colors for now).

Introduction

From now on, by a BST we always mean a BST after this

transformation. Use induction to prove the following:

Lemma

A binary search tree with n internal nodes has n + 1 nil leaves.

Thus, a binary search tree with n internal nodes (or n keys) has

2n + 1 nodes in total.

Introduction

A red-black tree is a binary search tree (and thus, satisfies the BST

property in the first place!) in which each node v has one extra bit

of info: its color v .color ∈ {Red, Black }, such that the following

three properties are satisfied:

1 The root of the tree is black and every nil leaf is black; (so all

paths from the root to a leaf start and end with a black node.)

2 If a node is red then both its children are black;

3 For every node v , all paths from v to its leaves have the same

number of black nodes. Given a node v , we refer to the

number of black nodes from (but not including) v to a leaf

the black-height of v .

Introduction

An example of a red-black tree can be found on page 310. Some

discussions: First, Property 2 also implies that if a node is red then

its parent must be black (why?). As a result, in any path from the

root to a leaf, there cannot be two consecutive red nodes. For

every red node in such a path, both its successor and predecessor

must be black. (Or equivalently, no two red nodes are directly

connected in the tree.) So for any path P from the root to a leaf:

of red nodes in P ≤ # of black nodes in P

(where # stands for “the number”) and thus,

2 ·# of black nodes in P ≥ # of nodes in P

Introduction

For Property 3, it is equivalent to the following weaker statement:

Lemma

A red-black tree satisfies Property 3 if and only if all paths from

the root to a leaf have the same number of black nodes.

So whenever we need to check that a given tree satisfies Property

3, it suffices to show that all paths from the root to a leaf have the

same number of black nodes. But whenever we need to use

Property 3, we can use its original and stronger form (for any node

v , all paths from v to a leaf have the same number of black

nodes). Also think about the shape of a red-black tree when it has

no red node at all to get some intuition as why it is “balanced”.

Introduction

The first thing we show about red-black trees is that they are very

“balanced” and have O(lg n) depth when it has n internal nodes

(and thus, contains n keys). Because a red-black tree is a binary

search tree, all the query operations described for binary search

trees apply, e.g., Search, Min, Max, Predecessor and Successor. All

these operations have worst-case O(lg n) running time because

red-black trees always have O(lg n) depth. (What about Insert and

Delete? Do they still work?)

Introduction

We give two proofs for the following theorem:

Theorem

A red-black tree with n internal nodes has O(lg n) depth.

Introduction

By the lemma on slide 4, the total number of nodes is 2n + 1. Let

bh denote the black-height of the root. By Property 3, any path

from the root to a leaf has bh many black nodes (excluding the

root itself) and thus, has length ≥ bh. As a result, if we only

consider levels 0, 1, . . . , bh of the tree, it must be a complete

binary tree of depth bh (why?). This implies that

2n + 1 ≥ 1 + 21 + · · ·+ 2bh = 2bh+1 − 1

and thus, bh = O(lg n). Moreover, by Property 2 we have

depth of the tree = length of the longest path ≤ 2 · bh

and thus, the depth of a red-black tree is O(bh) = O(lg n).

Introduction

An alternative proof: Given a red-black tree T , we keep all the

black nodes (including the nil leaves) but merge every red node

into its parent. Denote the new tree by T ′. Clearly a leaf of T

remains to be a leaf in T ′. The new tree T ′ has the following

properties: Every internal node of T ′ has 2, 3 or 4 children (also

called a 2-3-4 tree); and all paths from the root of T ′ to a leaf

have the same length. It is equal to the black-height of the root in

T which we denote by bh. (Prove both properties.) They imply

n + 1 = number of leaves in T = number of leaves in T ′ ≥ 2bh

and thus, bh = O(lg n). The rest of the proof is the same.

Introduction

So we know that any red-black tree has low depth. The most

difficult part is then how to properly insert or delete an internal

node, while maintaining all the red-black properties (and the BST

property as well, of course) so that the new tree (with one more or

one less node) remains a red-black tree. Clearly we cannot just use

the insert and delete operations for general BSTs (which we will

refer to as BST-Insert and BST-Delete) since in general they result

in a BST that violates the red-black properties. We discuss

RB-Insert in details below, while details of RB-Delete can be found

in the textbook.

Introduction

High-level idea of RB-Insert:

1 Call BST-Insert to insert the new node first; denote the new

node by z and color it red. (Note that z has two nil children.)

2 If the parent z .p of z turns out to be black (lucky!), we are

done (show that this new tree is indeed a red-black tree).

3 If the parent z .p is red, we are somewhat close (show that this

new tree satisfies all red-black properties, except one violation:

both z and z .p are red).

4 fix this violation using recoloring and “rotation”.

We start by describing the the “rotation” operation.

Introduction

Rotation is a basic operation used in RB-Insert. It only uses O(1)

running time and reconstructs the tree locally. See Figure 13.2 on

page 313 for the definition of Left-Rotate and Right-Rotate. The

key property here is that rotation preserves the BST property

(ignore the colors for now). To see this, consider the subtree on

the left of Figure 13.2. It becomes the subtree on the right after a

left-rotation at x . If the original tree satisfies the BST property:

a.k ≤ x .k ≤ b.k ≤ y .k ≤ c .k , ∀a ∈ α, b ∈ β and c ∈ γ

this implies that the new tree also satisfies the BST property.

Introduction

The best example to demonstrate the operation of RB-Insert can

be found in Figure 13.4 on page 317. In the next few slides, we

follow the operation of RB-Insert on this tree closely and try to

summarize the three cases to be discussed formally later.

Introduction

First, we call BST-Insert to insert the new node with key = 4,

denoted by z , and color it red. This gives us Figure 13.4(a) in

which z has two black nil children (all nil leaves are not drawn in

the picture). This tree clearly satisfies the BST property because it

is the result of BST-Insert. Check each of the red-black properties.

The only violation at this moment is that the parent z .p (with key

5) of z is red as well (if z .p happens to be black then we are

already done). This violates Property 2, but all other red-black

properties hold, e.g., all paths from the root to a leaf still have 3

black nodes (including the black nils).

Introduction

To deal with this violation, first note that the grandparent z .p.p of

z (the node with key = 7) must be black (why? because z .p is red

and because it is a red-black tree before inserting z). We also note

that the uncle node of z , y in Figure 13.4(a) with key 8, is red as

well. (The uncle of z being red, however, is not necessarily the

case. If the uncle of z is black we will apply a different operation.)

So if we recolor 5 and 8 to be black and 7 to be red, we resolve the

violation between z and z .p. Actually all red-black properties get

preserved (in particular, check Property 3), except that a new

violation of Property 2 occurs: z .p.p and z .p.p.p are both red (if

z .p.p.p is black we are done). At the end, we set z to be z .p.p.

Introduction

The operation described in the last slide (recoloring only) will be

referred to as Case 1 in RB-Insert. To summarize, if

1 the only violation comes from z and z .p being both red; and

2 z ’s uncle is red as well,

we can recolor z ’s parent, uncle and grandparent (push the black

from z ’s grandparent down to its parent and uncle) to resolve this

violation. A new violation may occur, however. But it appears at a

higher level if z .p.p and z .p.p.p are both red.

Introduction

Next in Figure 13.4(b), z is now the node with key = 7. We

cannot use the same method to push up the violation because the

uncle of z , y in the picture with key = 14, is black. Also notice

that the path from z ’s grandparent to z is a zigzag (one left edge

and one right edge). In this case, we perform a left rotation at z .p

to reconstruct the subtree locally. After the rotation, z .p becomes

the left child of z and we set it to be z (Figure 13.4(c)). Check

that all red-black properties are preserved, though the violation

caused by z and z .p remains since they are still both red.

Introduction

The operation (a rotation only) described in the last slide will be

referred to as Case 2 in RB-Insert. To summarize, if

1 the only violation comes from z and z .p being both red;

2 the uncle of z is black; and

3 the path from z ’s grandparent to z is a zigzag,

then we perform a rotation so that all conditions stay the same

(the tree still satisfies all red-black properties except the violation

caused by z and z .p; and the uncle of z is still black) except that

the path from z to its grandparent now is a zigzig. Case 2 basically

is a preparation for Case 3 in which we finally resolve the violation

once and for all and obtain a red-black tree.

Introduction

Finally in Figure 13.4(c), the only violation is that both z and z .p

are red. Note that the uncle of z is black and the path from z ’s

grandparent to z is a zigzig (after Case 2). For this situation, we

just do a right-rotation at z ’s grandparent (the node with key 11)

and get the tree depicted in Figure 13.4(d). We also recolor z .p

(with key 7) to be black and the sibling of z (with key 11) to be

red. Check the tree we get is a red-black tree. (Note that even if

the tree depicted in Figure 13.4 is a subtree of a bigger one, after

these three steps we get a red-black tree.) Thus, RB-Insert

terminates.

Introduction

The operation (rotation and recoloring) described in the last slide

will be referred to as Case 3 in RB-Insert. To summarize, if

1 the only violation comes from z and z .p being both red;

2 the uncle of z is black; and

3 the path from z ’s grandparent to z is a zigzig,

then we perform a rotation and recolor two nodes. By the end,

there is no violation anymore and we get a red-black tree. Finally

we summarize RB-Insert in the next slide.

Introduction

1 Call BST-Insert to insert the new node; denote it by z

and color z red (note that z has two nil child nodes.)

2 While z 6= root and z .color = z .p.color = red

3 do if z .p = z .p.p.left

4 if the uncle of z is red: Case 1 (recoloring only)

5 else (the uncle of z is black)

6 if z = z .p.right (zigzag)

7 Case 2 (prepare for Case 3; rotation only)

8 Case 3 (resolve the violation) and exit

9 else (z .p = z .p.p.right)

10 same with “right” and “left” exchanged

11 Set the root to be black if it is red

Introduction

Note that there are two “big” cases in the while loop: z ’s parent is

either a left child or a right child. We will only discuss the case

when z ’s parent is a left child. There will be three subcases (these

are the Case 1, 2 and 3 we mentioned earlier). There will also be

three subcases when z ’s parent is a right child but they are

symmetric: just switch “right” and “left”.

Introduction

We next describe the operations of Case 1, 2 and 3 more formally.

Case 1 can be found in Figure 13.5. Assume that the whole tree

satisfies all red-black properties and the only violation is caused by

z and z .p: both of them are red. Because it is Case 1, z ’s uncle, y

in the picture, is red as well. (As we mentioned earlier, the

grandparent of z must be black.)

Introduction

Because the tree satisfies Property 2 (except for z and z .p) and 3,

we know that the roots of α, β, γ, δ, ε are all black. Moreover, all

of them have the same black-height (otherwise show that there is

a violation of Property 3). Let bh denote their black-height, then

any path from z .p.p to a leaf has bh + 2 black nodes.

Introduction

In Case 1, we simply recolor z .p and y to be black (push the black

down from z .p.p) and recolor z .p.p to be red. It is clear that there

is no violation of Property 2 in the subtree depicted. Also Property

3 remains to hold in the whole tree. This is because any path from

z .p.p to a leaf still has bh + 2 black nodes! We end Case 1 by

setting z to be z .p.p. By the end, we get a tree that satisfies all

red-black properties, except that there is a possible violation

caused by z and z .p if z .p is red as well (otherwise we are done).

So in Case 1, we recolor three nodes and push the violation up for

two levels.

Introduction

Case 2 is very simple so check Figure 13.6. Again, assume the

whole tree satisfies all red-black properties and the only violation is

caused by z and z .p: both are red. In Case 2, the uncle of z is

black (so Case 1 does not apply) and the path from z to z ’s

grandparent is a zigzag. Then in Case 2, we just do a left rotation

at z .p and set z to be z .p (the node with key A in the picture).

Introduction

Because the whole tree satisfies Property 2 (except forz and z .p)

and Property 3 before the rotation, we know that all the roots of

α, β, γ are black and have the same black-height, denoted by bh.

Thus, before rotation every path from the node with key C to a

leaf has bh + 2 black nodes. After the rotation, it is easy to check

that the only violation to Property 2 is caused by z and z .p. And

Property 3 is preserved: all paths from the node with key C to a

leaf still have bh + 2 black nodes. Thus, the tree we get after Case

2 satisfies all red-black properties except the one caused by z and

z .p, but now the path from z ’s grandparent to z is a zigzig (so we

are now ready to apply Case 3 and finally resolve the violation).

Introduction

In Case 3, we have a tree that satisfies all red-black properties

except a violation caused by z and z .p. Moreover, the uncle of z is

black and the path from z to z ’s grandparent (which must be

black) is a zigzig. Because the tree satisfies Property 3, we know

that all the roots of α, β, γ, δ are black (note that here the root of

δ is black because it is the uncle of z) and have the same

black-height, denoted by bh. So all paths from z .p.p (the node

with key C in the picture) to a leaf have bh + 2 black nodes.

Introduction

In Case 3, we perform a right rotation at z .p.p (the node with key

C in the picture). After the rotation, we recolor z .p (B in the

picture) to be black and the sibling of z (C in the picture, the

grandparent of z before the rotation) to be red. Now it can be

shown that this tree satisfies all the red-black properties. In

particular, all paths from z .p to a leaf still have bh + 2 black nodes

so Property 3 is preserved (why?). It also satisfies Property 2

because there is no violation in the subtree depicted and the root

of this subtree (B in the picture) is now black. So we are done and

RB-Insert terminates.

Introduction

To summarize, RB-Insert starts with at most one violation caused

by z (the new node) and z .p: both are red. Then depending on

the color of z ’s uncle, we either apply Case 1 or Case 2/3. In Case

1, we recolor three nodes and push the violation up for two levels

(and make sure that no other violations occur). In Case 2/3, we

perform one (Case 3) or two (Case 2) rotations followed by

recoloring two nodes, and finally obtain a red-black tree. (Think

about what happens if we never run into Case 2 or 3. Will we still

get a Red-Black tree? Also when do we get to use line 11 of

RB-Insert?)

Introduction

A formal proof of the correctness of RB-Insert is given in the

textbook, where you can find a loop invariant and how it is

maintained with roughly the same ideas described in the previous

slides. About the running time of RB-Insert:

1 How many times do we run into Case 2/3? At most once! By

the end of Case 3 we get a RB tree and RB-Insert terminates.

2 How many times do we run into Case 1? O(lg n) because

every time we run into Case 1, we push the violation up for

two levels but the tree only has O(lg n) levels.

As a result, the worst-case running time of RB-Insert is O(lg n).

Check RB-Delete in the textbook (similar idea but more involved).

Introduction

