
Analysis of Algorithms I:

Randomized Algorithms

Xi Chen

Columbia University

Introduction

Randomized algorithms: Algorithms that make random choices /

decisions by, e.g., fliping coins or sampling random numbers.

1 Call Random(0, 1) to get a bit b which is 0 with 1/2

probability and 1 with 1/2 probability (an unbiased coin flip).

2 Sometimes we flip biased coins: a p-biased coin, where

p : 0 ≤ p ≤ 1, returns 0 with probability 1− p and 1 with

probability p.

3 Call Random(1, n) to get an integer drawn between 1 and n

uniformly at random: for every i : 1 ≤ i ≤ n, it equals i with

probability 1/n.

Introduction

The behavior / performance of a randomized algorithm depends on

the random samples it gets. Consider the following algorithm ALG:

1 For i = 1 to n do

2 Flip a p-biased coin

3 If it is 1 then perform an operation that takes m steps

Clearly the running time of ALG depends on the number of 1’s in

the outcome of the n biased coins.

Introduction

We assume true randomness: Samples we get are independent

from each other. E.g., the outcome of the ith coin does not

depend on the outcomes of previous coins, and will not affect

coins in the future.

But keep in mind that in practice, we get randomness from

pseudorandom generators.

We now start with some terminologies and notation that will be

used in describing and analyzing randomized algorithms.

Introduction

Sample space: Set of all possible outcomes (or sample points).

Most of the time, we deal with finite and discrete sample spaces.

1 If an algorithm flips n coins, then the sample space is {0, 1}n,

where each sample point consists of n bits

b = (b1, b2, . . . , bn) ∈ {0, 1}n

2 If an algorithm draws k random numbers between 1 and n,

then the sample space is {1, 2, . . . , n}n, and each sample

point consists of k numbers

a = (a1, a2, . . . , ak) ∈ {1, 2, . . . , n}k

Introduction

Each sample point (outcome) in the sample space is associated

with a probability:

1 If we flip n independent (usually assumed by default) and

unbiased coins, then every sample point b ∈ {0, 1}n has

probability 1/2n, or Pr(b) = 1/2n.

2 If we flip n p-biased coins (1 with probability p), then the

probability of b depends on the number of 1’s in b:

Pr(b) = pnumber of 1’s in b · (1− p)number of 0’s in b (1)

3 If we draw k integers between 1 and n uniformly at random,

the probability of each a ∈ {1, . . . , n}k is 1/nk : Pr(a) = 1/nk .

Introduction

Let S denote the sample space, then we always have∑
x∈S

Pr(x) = 1.

Let S denote the sample space, then an event A is a subset of S ,

and its probability is defined as

Pr(A) =
∑
x∈A

Pr(x)

where the sum is over all sample points in A.

Introduction

For example, if we flip n coins, then

A =
{
b ∈ {0, 1}n

∣∣∣ there are three 1’s in b
}

is an event. And

Pr(A) =
∑
b∈A

Pr(x).

If the coins are independent and p-biased, we have

Pr(A) =

(
n

3

)
· p3 · (1− p)n−3 (2)

because |A| =
(n
3

)
(check the appendix if you are not familiar with

binomial coeffients) and for every b ∈ A, Pr(b) follows from (1).

Introduction

Given two events A and B (both are subsets of the sample space

S), we usually use Pr(A and B) to denote Pr(A ∩ B), the

probability that both events happen. Moreover, we say events A

and B are independent if

Pr(A and B) = Pr(A) · Pr(B).

In general, events are not independent. E.g., consider A as the

event that the first 3 bits are 1 and B as the event that there are

four 1’s in total. Show that they are not independent.

Introduction

Now let’s rewind back, and see where Pr(b) = 1/2n comes from

when we flip n independent and unbiased coins. This is because

Pr(b) = Pr(coin 1 is b1 and coin 2 is b2 and · · · and coin n is bn)

= Pr(coin 1 is b1) · Pr(coin 2 is b2 and · · · and coin n is bn)

· · ·
= Pr(coin 1 is b1) · Pr(coin 2 is b2) · · ·Pr(coin n is bn)

= 1/2n

The second equation and the equations that we skip all come from

the assumption of independence. Try to derive Pr(b) when the

coins are biased.

Introduction

Let S denote the sample space, then a random variable is a map

from S to real numbers (or it maps each sample point in S to a

real number). For example,

1 The number of 1’s in n coin flipping is a random variable (it

maps each sample point to the number of 1’s in it).

2 Given an input instance I , the running time t(I) of a

randomized algorithm is a random variable (it maps each

sample point in the sample space of the algorithm to its

running time on I using this sample point, because given I

and a sample point, the behavior of the algorithm is

deterministic and its running time is a fixed number).

Introduction

Given a random variable X , its expectation is

E [X] =
∑
x

x · Pr(X = x)

where the sum is over all possible values x of X . In particular,

given a randomized algorithm and an input I , we are interested in

its expected running time

E [t(I)] =
∑
i

i · Pr(t(I) = i)

Introduction

We measure the performance of a randomized algorithm using its

worst-case expected running time:

T (n) = max
I with input size n

expected running time on I

= max
I with input size n

E [t(I)]

For example, we will show that for any input instance I of length n,

the expected running time of Randomized Quicksort is O(n lg n).

This implies that its worst-case expected running time is O(n lg n).

Introduction

Come back to ALG described earlier:

1 Let X denote the number of 1’s in the n coins, and let t

denote the running time of ALG (note that we use t instead

of t(I) because ALG takes no input).

2 These two random variables X and t satisfies

t = m · X + O(n)

where O(n) accounts for the time lines 1 and 2 take.

(Formally, an equation involving multiple random variables

means given any sample point in the sample space, the values

of the random variables involved satisfy the equation.)

Introduction

As a result, we have

E [t] = m · E [X] + O(n)

For basic properties of expectations (e.g, why we can take m and

O(n) out the expectation), check the appendix.

Introduction

Question: what is E [X]. By the definition, we have

E [X] =
n∑

i=0

i · Pr(X = i)

Here the sum is from 0 to n because these are the only possible

values of X (the number of 1’s cannot be negative and cannot be

larger than n no matter what sample point we get).

Introduction

Using (2), we get

E [X] =
n∑

i=0

i ·
(
n

i

)
· pi · (1− p)n−i

There seems no way to simplify this sum, unless you are good at

dealing with binomial coefficients. Actually there is a different and

much simpler way to calculate E [X].

Introduction

For each i : 1 ≤ i ≤ n, let Xi denote the following (indicator)

random variable: Xi = 1 if the ith coin is 1; Xi = 0 otherwise.

Then we get the following equation:

X = X1 + X2 + · · ·+ Xn

because for any sample point b ∈ {0, 1}n, Xi contributes 1 to the

right hand side if the outcome of the ith coin is 1 and contributes

0 otherwise. Thus, the right hand side is always equal to the

number of 1’s in the sample point b, which is X by definition.

Introduction

Here comes the step that greatly simplifies the calculation of E [X].

Using the linearity of expectations, we get

E [X] = E [X1 + X2 + · · ·+ Xn] = E [X1] + E [X2] + · · ·+ E [Xn]

Moreover, because Xi is a 0-1 (indicator) random variable,

E [Xi] = 0 · Pr(Xi = 0) + 1 · Pr(Xi = 1) = Pr(Xi = 1).

Because the coins are p-biased, we have

Pr(Xi = 1) = p ⇒ E [X] = pn ⇒ E [t] = pmn + O(n)

Introduction

We use another example to demonstrate the use of indicator

variables to simplify the calculation of expectations. Max-Cut is

the following problem: Let G = (V ,E) be an undirected graph,

where V = {1, 2, . . . , n} has n vertices and E has m edges. Given

a partition of the vertices, that is, a map f from V to {0, 1}, an

edge ij ∈ E is called a cut edge if f (i) 6= f (j) (or the two vertices

lie in different parts of the partition). In Max-Cut, we are given a

graph G and need to find a partition that maximizes the number

of cut edges.

Introduction

This is a very difficult problem. Later in the course, we will

introduce the complexity class NP and Max-Cut is one of the first

problems shown to be NP-complete (or one of the most difficult

problems in NP). However, we now give an extremely simple

randomized algorithm. Even though it does not give us the largest

cut, the expected number of cut edges we get is m/2. (This is not

too bad because there are m edges in total so the size of the

largest cut can be no more than m.) Considering how simple this

randomized algorithm is, it does a good job in demonstrating the

power of randomization.

Introduction

Randomized-Max-Cut (G), where G = (V ,E), V = {1, . . . , n}

1 For i = 1 to n do

2 flip an unbiased coin b, and set f (i) = b

3 output f

Introduction

Running time: Θ(n). This is a typical randomized algorithm where

the outcome of the random samples does not affect its running

time (in contrast to Randomized Quicksort). To see how good the

partition f is, we need to understand the following random variable:

X : number of cut edges in the partition f

Here X is a random variable because it is a map from the sample

point f to nonnegative integers between 0 and m.

Introduction

However, working on X directly seems very difficult:

E [X] =
m∑
i=0

Pr(X = i)

How to calculate Pr(X = i)? One way is the following: For each

edge ij ∈ E , where i 6= j (no self-loop in G), we have

Pr(ij is a cut edge)

= Pr((f (i) = 0 and f (j) = 1) or (f (i) = 1 and f (j) = 0)

= Pr(f (i) = 0 and f (j) = 1) + Pr(f (i) = 1 and f (j) = 0)

= 1/4 + 1/4 = 1/2

Introduction

So every edge ij ∈ E is a cut edge with probability 1/2. From the

argument used earlier in calculating the probability that there are i

1’s in n unbiased coins, we have

Pr(X = i) =

(
m

i

)/
2m

However, the equation above is not correct. The reason is because

the m events, [ij is a cut edge], where ij ∈ E , are not independent

(unlike the coins that we assume to be independent).

Introduction

For example, consider the following graph G = (V ,E) with three

vertices V = {1, 2, 3} and E = {12, 23, 31}. We have

Pr(12, 23, 13 are all cut edges) = 0

because in no partition these three can all be cut edges. (Why?)

This implies that the following three events [12 is a cut edge],

[23 is a cut edge] and [31 is a cut edge] are not independent,

because if they are independent then the probability should be 1/8.

Introduction

So, how do we calculate E [X]? We use indicator random variables

and the linearity of expectations! For each edge ij ∈ E , we let:

Xi ,j : 1 if ij is a cut edge and 0 otherwise

From the earlier analysis, we already have

E [Xi ,j] = Pr(Xi ,j = 1) = Pr(ij is a cut edge) = 1/2.

It is also clear that

X =
∑

ij∈E Xi ,j

because Xi ,j contributes 1 to the right hand side if ij is a cut edge

and contributes 0 otherwise, so the right hand side is equal to the

total number of cut edges.

Introduction

As a result, using the linearity of expectation, we get

E [X] =
∑
ij∈E

E [Xi ,j] =
∑
ij∈E

1/2 = m/2

So the expected cut size is m/2.

Introduction

We next introduce Quicksort:

Divide-and-Conquer

“in place” sort (using only constant extra space)

Good performance in practice

MergeSort: recursively merging; Quicksort: recursively partitioning.

Introduction

Divide: Given an array A of length n, use x = A[1] as a pivot

to partition A. More exactly, the goal is to exchange elements

of A so that it becomes a reordering of the input array:

A[1],A[2], . . . ,A[i − 1],A[i] = x ,A[i + 1], . . . ,A[n]

for some i : 1 ≤ i ≤ n, such that A[1],A[2], . . . ,A[i − 1] ≤ x

and A[i + 1], . . . ,A[n] > x .

Conquer: Sort recursively the lower subarray A[1 . . . i − 1]

and the upper subarray A[i + 1 . . . n] using Quicksort.

Combine: Trivial.

Introduction

If we do not need the “in place” feature, the partition operation is

easy to implement: Set the pivot x to be the first element in the

array to be partitioned; create two empty arrays; make a pass of all

elements in the array to be partitioned except the first one; for

each of them compare it with x and move it to one of the arrays

depending on the comparison result.

Introduction

Here is a beautiful implementation of “in place” partition:

Partition (A,p,q), which partitions A[p, p + 1, . . . , q] using A[p]

1 Set the pivot x = A[p] and i = p

2 for j = p + 1 to q do

3 if A[j] ≤ x then set i = i + 1 and exchange A[i] and A[j]

4 exchange A[i] and A[p]

5 return i (where do we use this returned value?)

Introduction

The loop invariant we use to prove the correctness of Partition is

the following: At the beginning of each loop, we have A[p] = x ,

A[k] ≤ x for all k : p + 1 ≤ k ≤ i (3)

A[k] > x for all k : i + 1 ≤ k ≤ j − 1. (4)

Before the first loop, we have i = p and j = p + 1 so (3) and (4)

are trivially satisfied (because there is no k between p + 1 and

i = p or between i + 1 = p + 1 and j − 1 = p).

Introduction

Induction Step: Assuming that the loop invariant holds at the

beginning of the jth loop, for some j : 1 ≤ j ≤ n, we show that it

holds at the beginning of the next loop. Two cases to consider:

Introduction

If A[j] > x , then the only action in the loop is to increment j . But

after j is incremented, (4) still holds because we know that

A[j − 1] (or A[j] before j is incremented) satisfies A[j − 1] > x .

Introduction

If A[j] ≤ x , then after i is incremented, we know A[i] > x due to

the loop invariant (or inductive hypothesis). After exchanging A[i]

and A[j], we know A[k] ≤ x for all k : p + 1 ≤ k ≤ i and A[k] > x

for all k : i + 1 ≤ k ≤ j . The loop finishes by incrementing j and

thus, the loop invariant holds.

Introduction

By induction, we conclude that the loop invariant holds at the

beginning of each loop and in particular, the last loop where

j = n + 1. From this, the correctness of Partition follows. It is also

easy to see that the running time of Partition is Θ(q − p), linear in

the length of the input array. An equivalent characterization of its

running time is

Θ(comparisons between A[j] and the pivot x made in line 3)

We will find the latter expression more helpful in the analysis of

Randomized Quicksort next class.

Introduction

Quicksort (A, p, q)

1 If q = p return

2 r = Partition (A, p, q) (Check Partition to see what it returns)

3 Quicksort (A, p, r − 1)

4 Quicksort (A, r + 1, q)

Using induction, one can prove the correctness of Quicksort. So

given any input sequence A or length n, we can call Quicksort

(A, 1, n) to sort it. But, what about its performance?

Introduction

We show that the worst-case complexity of Quicksort is Θ(n2): If

the input sequence A is already sorted, e.g., A = (1, 2, . . . , n), then

Quicksort takes Ω(n2) steps. To see this, we use u(k) to denote

the number of steps that Quicksort takes when the input is

(n − k , n − (k − 1), . . . , n − 1, n) of length k + 1, for each integer

k = 0, 1, . . . , (n − 1). We get the following recurrence:

u(0) = Θ(1)

u(k) = u(k − 1) + Θ(k) for all k ≥ 1

where Θ(k) accounts for the running time of Partition as well as a

recursive call to Quicksort with an empty input array.

Introduction

To solve this recurrence, we first put back the constants:

u(0) = c1

u(k) = u(k − 1) + c2 · k for all k ≥ 1

for some positive constants c1 and c2. Then

u(k) = u(k − 1) + c2 · k

= (u(k − 2) + c2 · (k − 1)) + c2 · k

= (u(k − 3) + c2 · (k − 2)) + c2 · (k − 1) + c2 · k
· · ·
= (u(0) + c2 · 1) + c2 · 2 + · · ·+ c2 · k

= Ω(k2).

Introduction

On the other hand, in Section 7.4.1 of the textbook, it is proved

that the worst-case running time of Quicksort over any sequence of

length n is O(n2). The proof uses the substitution method because

the Master theorem does not apply.

We conclude that the worst-case complexity of Quicksort is Θ(n2).

Introduction

So why do we call it Quicksort even though it has quadratic

worst-case complexity? The intuition is in a “typical” sequence

(imagine a random permutation), the first element which we use as

a pivot may not be smallest / largest (this happens if we hit a

jackpot). Usually the partition operation produces two subarrays of

comparable sizes (unlike the worst-case example in which one

subarray is empty and the other contains all elements except the

pivot). And if every pivot we pick produces two subarrays of

comparable sizes, one can show that its running time is O(n lg n).

Introduction

However, an adversary may always feed a sorted sequences so that

Quicksort takes quadratic time, essentially because it knows how

Quicksort picks pivots. What if we change the way the pivots are

selected? E.g., what if we pick the second element or the last

element as a pivot? No use. As long as the adversary knows how

the pivot is picked, it can always construct a sequence that leads

to Ω(n2) running time.

Introduction

Then, what if we randomly pick a pivot? We will see in next class

that by adding randomness into Quicksort, no adversary can come

up with a bad sequence. Indeed, for any sequence of length n, we

will show that the expected running time of Randomized Quicksort

is O(n lg n).

Introduction

