
Analysis of Algorithms I:

Counting and Radix Sort

Xi Chen

Columbia University

Introduction



In the last class, we showed that any comparison sorting algorithm

takes time Ω(n lg n) in the worst case and thus, Merge sort and

Heapsort are asymptotically optimal comparison sorting algorithms.

Now consider the following problem: If you are told in advance

that the input sequence is a permutation of {1, 2, . . . , n}, how

much time do we need to sort it? still Ω(n lg n)?

Introduction



Linear! Because you don’t even need to examine the input, and the

only thing to do is write down (1, 2, . . . , n) as output. The lesson

here is that any knowledge about the input sequences may provide

insight towards sorting algorithms that are more efficient than

those optimal comparison-based sorting algorithms. Here we focus

on the case when the input elements fall in a reasonably small

range. We will see that making comparisons is not the most

efficient way to obtain order information from the input sequence.

Introduction



Counting Sort (A[1 . . . n]), where A[i ] ∈ {1, 2, . . . , k} for all i

1 Make a pass and compute, for each j ∈ [k], the number of j ’s

in A. Store it in C [j ], j ∈ {1, 2, . . . , k}.
2 Create an empty sequence B[1 . . . n]. Starting from B[1],

write C [1] many 1’s, C [2] many 2’s, . . ., and C [k] many k ’s.

Introduction



Counting sort is clearly correct, and it does not use any comparison

at all. Its running time is O(k + n) and when k is O(n), it is a

linear-time sorting algorithm and beats every comparison-based

algorithm. Counting sort gains order information from the values

of the input elements (the reason why the comparison lower bound

does not apply), which is way more efficient than comparisons

when the range is reasonably small.

Introduction



But can we do better? What if k = n2? Yes, we can, by using

Radix sort. Before that we give an alternative and seemingly

unnecessarily complicated implementation of Counting sort.

Introduction



Counting Sort (A[1 . . . n]), where A[i ] ∈ {1, 2, . . . , k} for all i

1 Make a pass and compute, for each j ∈ [k], the number of j ’s

in A. Store it in C [j ], j ∈ {1, 2, . . . , k}.

2 Use C [1 . . . k] to get, for each j ∈ [k], the number of elements

in A that are ≤ j . Store it in C ′[j ] (How to do this in O(k)?)

3 For i from n down to 1 do

4 move A[j ] to B[C ′[A[j ]]]; and C ′[A[j ]]← C ′[A[j ]]− 1

Introduction



The operation of Counting sort is demonstrated in Figure 8.2 on

Page 195. Basically, the new counters C ′[1 . . . k] and the for loop

place each element A[j ] into its “correct” sorted position so that

Equal elements appear in the output sequence in the

same order as they do in the input sequence.

A sorting algorithm with this property is called a stable sort. But

why do we need this property? What is the difference between two

3’s? It is important when each number being sorted by Counting

sort is part of a bigger object. For example, we will use Counting

sort as a subroutine in Radix sort (to sort on each digit).

Introduction



Radix sort (A[1 . . . n]), where A[i ] is a decimal number of d digits

1 For i from 1 to d do

2 use Counting sort (or any stable sort) to sort A on digit i

Introduction



The operation of Radix sort is demonstrated in Figure 8.3 on Page

198. We use induction to prove the following statement:

Lemma

After the kth loop, where k = 1, 2, . . . , d, the sequence is sorted

on the lower k digits.

In the proof on the next slide, by the lower k digits of a, we mean

the number represented by the lower k digits of a.

Introduction



We use induction on k . The basis when k = 1 is trivial. Now

assume (as the inductive hypothesis) that at the end of the

(k − 1)th loop, for some k : 2 ≤ k ≤ d , the sequence is sorted on

the lower (k − 1) digits. We need to show that after applying a

stable sort on digit k in the kth loop, the sequence is sorted on the

lower k digits. To prove this, let ai , aj ∈ A be any two elements

from A with the lower k digits of ai being strictly smaller than

those of aj . We show that after the kth loop, ai must appear

before aj in the sequence.

Introduction



1 If the kth digits of ai and aj are different, then the kth digit

of ai must be smaller by our assumption on ai and aj . Then

after the kth loop, ai must appear before aj because the kth

loop sorts on the kth digit.

2 If the kth digits of ai and aj are the same, then the lower

(k − 1)th digits of ai must be strictly smaller than those of aj ,

again, by the assumption on ai and aj . From the inductive

hypothesis, we know ai appears before aj before we apply

counting sort on digit k. Because they have the same digit k,

they appear in the same order and thus, ai still appears before

aj after the kth loop.

This finishes the proof of correctness.

Introduction



But what is the running time of Radix sort? If every element lies in

{0, 1, . . . , n}, we need roughly log10 n digits in the decimal system.

Each call to Counting sort takes time O(n + 10) = O(n) because

each digit has k = 10 possibilities. So the total running time is

O(n log10 n) = O(n lg n)!!!

even worse than Counting sort.

Introduction



But . . . it does not have to be the decimal system. What if we

make each digit larger? Assume every element lies in the range of

{0, 1, . . . , 2h − 1} and is represented by h = dr bits. We partition

these h bits into d blocks of r bits each. We call each block a digit

(or equivalently, we use the base-2r system).

Introduction



Now each call to Counting sort takes time O(n + 2r ) because each

digit lies in {0, 1, . . . , 2r − 1}. We make d calls so the total

running time is O(d(n + 2r )). Why is Radix sort better than

Counting sort? It depends on how we pick r .

Introduction



When h = ` lg n for some constant ` > 0, the range of the input

elements is {0, 1, . . . , n` − 1}. If we set r = lg n, then the total

running time of Radix sort is

O
(
`(n + 2r )

)
= O(` · n) = O(n)

since we make ` (a constant) many calls to Counting sort and each

call takes time O(n + 2r ). As a result, for any positive constant

` > 0, if we know in advance that the input elements fall in a

polynomial-size range {0, 1, . . . , n` − 1}, then Radix sort runs in

linear time by setting r = lg n.

Introduction


