
Analysis of Algorithms I:

Randomized Quicksort

Xi Chen

Columbia University

Introduction

As discussed in the last class, we use randomization to improve the

performance of Quicksort against those worst-case instances. We

use the following procedure Randomized-Partition to replace

Partition. It randomly picks one element in the sequence, swaps it

with the first element, and then calls Partition.

Introduction

Randomized-Partition (A, p, q), which works on A[p . . . q]

1 r = Random (p, q) (pick an integer between p and q uniformly

at random) and exchange A[p] with A[r]

2 return Partition (A, p, q)

So essentially we randomly pick an element in the sequence and

use it as a pivot to partition.

Introduction

Randomized-Quicksort (A, p, q), which sorts A[p . . . q]

1 If p < q

2 s = Randomized-Partition (A, p, q)

3 Randomized-Quicksort (A, p, s − 1)

4 Randomized-Quicksort (A, s + 1, q)

Use induction to prove its correctness. Given any input instance A,

its running time t(A) is now a random variable that depends on

the pivots it picks randomly.

Introduction

Theorem (Main)

Given any input sequence A of length n, Randomized-Quicksort

(A[1 . . . n]) has expected running time O(n lg n).

This of course implies that the worst-case expected running time

(defined in the note of the last class) of Randomized-Quicksort is

O(n lg n). Actually, we will see from the analysis that the order of

the elements in A at the beginning (almost) does not affect the

running time of Randomized-Quicksort at all.

Introduction

We start with some intuition of why its expected running time is

O(n lg n). This is by no means a proof. So we know Quicksort has

worst-case running time Ω(n2) because if the input is already

sorted, every pivot we pick is the smallest / largest of the sequence,

which leads to highly unbalanced subsequences and Ω(n2) running

time. Now what if we are very (or extremely) lucky and get the

median of the sequence as a pivot every time. (Btw, what if we

just “find the median of the sequence” and use it as a pivot? But

... how much time it takes to find the median? Will see next class.)

Introduction

Best case: Always use the median to partition. Recurrence:

T (n) = 2T (n/2) + Θ(n)

From now on we usually assume T (1) = Θ(1) by default. Using

Case 2 of the Master Theorem applies, we get T (n) = Θ(n lg n).

Introduction

Now what if we are not that lucky but always partition the

sequence into two subsequences of ratio 9 : 1 or 1 : 9. The

recurrence becomes:

T (n) = T (n/10) + T (9n/10) + Θ(n).

How to solve it? Use recursion tree to make a good guess, and

then prove it formally using the substitution method.

Introduction

The first level: cn

The second level sums to: c(n/10) + c(9n/10) = cn

The third level sums to:

c(n/100) + c(9n/100) + c(9n/100) + c(81n/100) = cn

How many levels are there? The longest path (the rightmost one)

is of length log10/9 n = Θ(lg n). From the recursion tree, a good

guess would be T (n) = Θ(n lg n). Use the substitution method to

formally prove it.

Introduction

Note that recursion tree alone sometimes may not serve as a good

proof and sometimes may lead to wrong conclusions. In particular,

this tree is not a complete tree (the leftmost path is much shorter,

though still of the order log10 n = Θ(lg n)). Many of the levels

close to the bottom do not sum to cn. This is very different from

the recursion tree for

T (n) = aT (n/b) + f (n)

which is a complete tree and all nodes on the same level have the

same number. So it is always a good idea to verify your guess from

irregular recursion trees using the substitution method.

Introduction

More generally, it can be shown that if every pivot we use satisfies

the longer subsequence ≤ the shorter sequence× 9

then the running time is O(n lg n) (though the recurrence for this

is kind of scary). Also 9 can be replaced by any fixed constant, like

99. It is also easy to calculate that the probability of picking a

pivot satisfying the property above is 4/5 (or 49/50 if replacing 9

by 99, or even closer to 1 if we use a larger constant).

Introduction

To summarize, if every pivot results in two subsequences of ratio

bounded by a constant, then Quicksort takes time O(n lg n). On

the other hand, every time Randomized Quicksort picks a pivot, it

satisfies this condition with a probability close to 1. But ... this is

still far from a formal proof (though the idea here may lead you to

Exercise ?, a proof different from the one we present next, where

the difficulty is to solve a hairy recurrence).

Introduction

Now we start the proof. Randomized-Quicksort spends most of the

time in those calls to Randomized-Paritition. (Check that it spends

only constant many steps between any two consecutive calls to

Randomized-Partition). So to bound its running time, it suffices to

bound the time it spends in Randomized-Partition.

Introduction

Every time we call Randomized-Partition (A, p, q), it takes time

Θ(1) + Θ(q − p)

where Θ(1) accounts for the time needed to choose a random

index and to swap A[r] and A[p]. Or equivalently, it takes time

Θ(1) + Θ(number of comparisons made between two elements)

We need the following lemma to suppress the Θ(1) above.

Introduction

Lemma

The number of calls to Randomized-Partition is at most n.

Proof.

First, every element is used as a pivot at most once. This is

because every time an element is used as a pivot, it is at the right

position by the end of this partition operation, and is never

examined again, not to mention being used as a pivot again.

(Check an example, and prove it using induction.)

On the other hand, every time we call Randomized-Partition, it

picks an element as a pivot. Therefore, the number of calls to

Randomized-Partition is the same as the number of pivots picked,

and is no more than n.

Introduction

The time we spend in Randomized-Quicksort:

1 Call 1: c1 + c2 ·# of comparisons made in Call 1

2 Call 2: c1 + c2 ·# of comparisons made in Call 2

3 · · ·
4 Call k : c1 + c2 ·# of comparisons made in Call k

where by the previous lemma, k ≤ n no matter what pivots we use.

Therefore, the total time is

c1 · k + c2 · total number of comparisons

= O(n) + Θ(total number of comparisons)

Introduction

Let X denote the total number of comparisons made in all the calls

to Randomized-Quicksort, which is a random variable because it

depends on the pivots we randomly pick. From the equation on

the last slide, the theorem follows immediately from

E [X] = O(n lg n)

However, understanding Pr[X = i] is very difficult. Instead we use

indicator random variables and linearity of expectations.

Introduction

For simplicity of the proof, we assume all elements in the input are

distinct. (The textbook uses a slightly different implementation of

Partition, and the proof does not require this assumption though

the idea is the same.) With this assumption, let z1 < z2 < · · · < zn
be a permutation of the input sequence, and let Zi ,j denote

Zi ,j =
{
zi , zi+1, . . . , zj

}
, for all i , j : 1 ≤ i < j ≤ n

Note that |Zi ,j | = j − i + 1.

Introduction

Indicator random variables: For all i , j : 1 ≤ i < j ≤ n, Xi ,j is an

indicator variable such that Xi ,j = 1 if we compare zi and zj at

least once in the execution and Xi ,j = 0 otherwise. Question: Is

the following equation correct?

X =
n∑

i=1

n∑
j=i+1

Xi ,j

Introduction

In general, it is not correct because Xi ,j is only an indicator

variable. No matter how many times we compare zi and zj ,

whether it is 1 or 2 or 3 or more, it always contributes 1 to the

right hand side. But ... if it can shown that we never compare zi
and zj more than once then this equation always holds.

Introduction

Lemma

For all i , j : 1 ≤ i < j ≤ n, zi and zj is compared at most once.

Proof.

First of all, we compare zi and zj if and only if one of them is the

pivot of the current partition operation. Without loss of generality,

say zi is the pivot. Then as mentioned earlier, after zi is done with

the role of being a pivot, it is in the right position and never

examined again and thus, we will never compare it with zj again in

the subsequent time.

Introduction

Now we can use the linearity of expectations:

E [X] = E

 n∑
i=1

n∑
j=i+1

Xi ,j

 =
n∑

i=1

n∑
j=i+1

E [Xi ,j]

From E [Xi ,j] = 0 · Pr(Xi ,j = 0) + 1 · Pr(Xi ,j = 1) = Pr(Xi ,j = 1),

the key is to calculate the probability that we compare zi and zj .

Introduction

We start with a few observations: First, as mentioned earlier, we

compare zi and zj only when one of them is the current pivot used

to partition. Second, until the moment we pick a pivot from Zi ,j ,

all elements in Zi ,j lie in the same subproblem. This is because

every time we pick a pivot outside of Zi ,j , say x , it holds that

either all elements in Zi ,j are greater than x or all elements in Zi ,j

are smaller than x . As a result, when using x to partition, all

elements in Zi ,j go to the same subproblem.

Introduction

When we pick the first pivot from Zi ,j (Is it possible that

Randomized-Quicksort never picks any pivot from Zi ,j?), say

x ∈ Zi ,j , there are two cases: If x = zi or zj , say zi , then we need

to compare x = zi to every element in the current subsequence

because it is the pivot, including zj . (Why zj must be in the

current subsequence? This is because x = zi is the first pivot we

pick from Zi ,j and thus, from the second observation, elements in

Zi ,j are still in the same subproblem at this moment.)

Introduction

If the first pivot x from Zi ,j is neither zi nor zj , then we don’t get

to compare zi and zj in this partition operation (instead we

compare x with zi , and x with zj). After partitioning using x , zi
and zj will never be compared again because zi < x and x < zj so

they will be separated into two different subproblems.

Introduction

To summarize, we compare zi with zj if and only if the first pivot

from Zi ,j is zi or zj . Thus,

Pr[Xi ,j = 1]

= Pr(first pivot from Zi ,j is zi) + Pr(first pivot from Zi ,j is zj)

But all elements in Zi ,j are equally likely to be the first pivot from

Zi ,j , so both probabilities above are equal to 1/(j − i + 1). The

next experiment may help understand why this is the case.

Introduction

Consider the following game with n balls inside a bin. (j − i + 1) of

the balls are red and the rest are black. One red ball is marked with

i , one is marked with i + 1,. . ., and one is marked with j . Then

1 Randomly pick a ball from the bin

2 If the ball we get is black, open the bin and

take out a few more black balls; then repeat line 1

3 If the ball we get is red, stop.

Introduction

Now what is the probability we end up with the red ball marked

with i? the one marked with i + 1? . . . the one marked with j?

They are all equal because being marked with i , i + 1, . . . , j does

not make any of them special, and does not yield any advantage

over other red balls. Compare this game with Randomized

Quicksort. Conclude that the probability that we end up with the

red ball marked with k : i ≤ k ≤ j is the same as the probability

that the first pivot from Zi ,j is zk .

Introduction

Finally, plugging in Pr[Xi ,j = 1] = 2/(j − i + 1), we get

E [X] =
n∑

i=1

n∑
j=i+1

2/(j − i + 1)

= 2 ·
n∑

i=1

(
1/2 + 1/3 + · · ·+ 1/(n − i + 1)

)
< 2 ·

n∑
i=1

(
1 + 1/2 + 1/3 + · · ·+ 1/n

)

Introduction

The sum 1 + 1/2 + · · ·+ 1/n is the harmonic series (check the

appendix of the textbook) and ln n is a very good approximation:

1 + 1/2 + · · ·+ 1/n = ln n + O(1)

As a result, we have

E [X] = 2 · n · O(ln n) = O(n ln n) = O(n lg n)

and ... this finishes the whole proof.

Introduction

